You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slamch.c 40 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static real c_b32 = 0.f;
  488. /* > \brief \b SLAMCHF77 deprecated */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* Definition: */
  493. /* =========== */
  494. /* REAL FUNCTION SLAMCH( CMACH ) */
  495. /* CHARACTER CMACH */
  496. /* > \par Purpose: */
  497. /* ============= */
  498. /* > */
  499. /* > \verbatim */
  500. /* > */
  501. /* > SLAMCH determines single precision machine parameters. */
  502. /* > \endverbatim */
  503. /* Arguments: */
  504. /* ========== */
  505. /* > \param[in] CMACH */
  506. /* > \verbatim */
  507. /* > Specifies the value to be returned by SLAMCH: */
  508. /* > = 'E' or 'e', SLAMCH := eps */
  509. /* > = 'S' or 's , SLAMCH := sfmin */
  510. /* > = 'B' or 'b', SLAMCH := base */
  511. /* > = 'P' or 'p', SLAMCH := eps*base */
  512. /* > = 'N' or 'n', SLAMCH := t */
  513. /* > = 'R' or 'r', SLAMCH := rnd */
  514. /* > = 'M' or 'm', SLAMCH := emin */
  515. /* > = 'U' or 'u', SLAMCH := rmin */
  516. /* > = 'L' or 'l', SLAMCH := emax */
  517. /* > = 'O' or 'o', SLAMCH := rmax */
  518. /* > where */
  519. /* > eps = relative machine precision */
  520. /* > sfmin = safe minimum, such that 1/sfmin does not overflow */
  521. /* > base = base of the machine */
  522. /* > prec = eps*base */
  523. /* > t = number of (base) digits in the mantissa */
  524. /* > rnd = 1.0 when rounding occurs in addition, 0.0 otherwise */
  525. /* > emin = minimum exponent before (gradual) underflow */
  526. /* > rmin = underflow threshold - base**(emin-1) */
  527. /* > emax = largest exponent before overflow */
  528. /* > rmax = overflow threshold - (base**emax)*(1-eps) */
  529. /* > \endverbatim */
  530. /* Authors: */
  531. /* ======== */
  532. /* > \author Univ. of Tennessee */
  533. /* > \author Univ. of California Berkeley */
  534. /* > \author Univ. of Colorado Denver */
  535. /* > \author NAG Ltd. */
  536. /* > \date April 2012 */
  537. /* > \ingroup auxOTHERauxiliary */
  538. /* ===================================================================== */
  539. real slamch_(char *cmach)
  540. {
  541. /* Initialized data */
  542. static logical first = TRUE_;
  543. /* System generated locals */
  544. integer i__1;
  545. real ret_val;
  546. /* Local variables */
  547. static real base;
  548. integer beta;
  549. static real emin, prec, emax;
  550. integer imin, imax;
  551. logical lrnd;
  552. static real rmin, rmax, t;
  553. real rmach;
  554. extern logical lsame_(char *, char *);
  555. real small;
  556. static real sfmin;
  557. extern /* Subroutine */ int slamc2_(integer *, integer *, logical *, real
  558. *, integer *, real *, integer *, real *);
  559. integer it;
  560. static real rnd, eps;
  561. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  562. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  563. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  564. /* April 2012 */
  565. if (first) {
  566. slamc2_(&beta, &it, &lrnd, &eps, &imin, &rmin, &imax, &rmax);
  567. base = (real) beta;
  568. t = (real) it;
  569. if (lrnd) {
  570. rnd = 1.f;
  571. i__1 = 1 - it;
  572. eps = pow_ri(&base, &i__1) / 2;
  573. } else {
  574. rnd = 0.f;
  575. i__1 = 1 - it;
  576. eps = pow_ri(&base, &i__1);
  577. }
  578. prec = eps * base;
  579. emin = (real) imin;
  580. emax = (real) imax;
  581. sfmin = rmin;
  582. small = 1.f / rmax;
  583. if (small >= sfmin) {
  584. /* Use SMALL plus a bit, to avoid the possibility of rounding */
  585. /* causing overflow when computing 1/sfmin. */
  586. sfmin = small * (eps + 1.f);
  587. }
  588. }
  589. if (lsame_(cmach, "E")) {
  590. rmach = eps;
  591. } else if (lsame_(cmach, "S")) {
  592. rmach = sfmin;
  593. } else if (lsame_(cmach, "B")) {
  594. rmach = base;
  595. } else if (lsame_(cmach, "P")) {
  596. rmach = prec;
  597. } else if (lsame_(cmach, "N")) {
  598. rmach = t;
  599. } else if (lsame_(cmach, "R")) {
  600. rmach = rnd;
  601. } else if (lsame_(cmach, "M")) {
  602. rmach = emin;
  603. } else if (lsame_(cmach, "U")) {
  604. rmach = rmin;
  605. } else if (lsame_(cmach, "L")) {
  606. rmach = emax;
  607. } else if (lsame_(cmach, "O")) {
  608. rmach = rmax;
  609. }
  610. ret_val = rmach;
  611. first = FALSE_;
  612. return ret_val;
  613. /* End of SLAMCH */
  614. } /* slamch_ */
  615. /* *********************************************************************** */
  616. /* > \brief \b SLAMC1 */
  617. /* > \details */
  618. /* > \b Purpose: */
  619. /* > \verbatim */
  620. /* > SLAMC1 determines the machine parameters given by BETA, T, RND, and */
  621. /* > IEEE1. */
  622. /* > \endverbatim */
  623. /* > */
  624. /* > \param[out] BETA */
  625. /* > \verbatim */
  626. /* > The base of the machine. */
  627. /* > \endverbatim */
  628. /* > */
  629. /* > \param[out] T */
  630. /* > \verbatim */
  631. /* > The number of ( BETA ) digits in the mantissa. */
  632. /* > \endverbatim */
  633. /* > */
  634. /* > \param[out] RND */
  635. /* > \verbatim */
  636. /* > Specifies whether proper rounding ( RND = .TRUE. ) or */
  637. /* > chopping ( RND = .FALSE. ) occurs in addition. This may not */
  638. /* > be a reliable guide to the way in which the machine performs */
  639. /* > its arithmetic. */
  640. /* > \endverbatim */
  641. /* > */
  642. /* > \param[out] IEEE1 */
  643. /* > \verbatim */
  644. /* > Specifies whether rounding appears to be done in the IEEE */
  645. /* > 'round to nearest' style. */
  646. /* > \endverbatim */
  647. /* > \author LAPACK is a software package provided by Univ. of Tennessee, Univ. of California Berkeley, Univ.
  648. of Colorado Denver and NAG Ltd.. */
  649. /* > \date April 2012 */
  650. /* > \ingroup auxOTHERauxiliary */
  651. /* > */
  652. /* > \details \b Further \b Details */
  653. /* > \verbatim */
  654. /* > */
  655. /* > The routine is based on the routine ENVRON by Malcolm and */
  656. /* > incorporates suggestions by Gentleman and Marovich. See */
  657. /* > */
  658. /* > Malcolm M. A. (1972) Algorithms to reveal properties of */
  659. /* > floating-point arithmetic. Comms. of the ACM, 15, 949-951. */
  660. /* > */
  661. /* > Gentleman W. M. and Marovich S. B. (1974) More on algorithms */
  662. /* > that reveal properties of floating point arithmetic units. */
  663. /* > Comms. of the ACM, 17, 276-277. */
  664. /* > \endverbatim */
  665. /* > */
  666. /* Subroutine */ int slamc1_(integer *beta, integer *t, logical *rnd, logical
  667. *ieee1)
  668. {
  669. /* Initialized data */
  670. static logical first = TRUE_;
  671. /* System generated locals */
  672. real r__1, r__2;
  673. /* Local variables */
  674. static logical lrnd;
  675. real a, b, c__, f;
  676. static integer lbeta;
  677. real savec;
  678. static logical lieee1;
  679. real t1, t2;
  680. extern real slamc3_(real *, real *);
  681. static integer lt;
  682. real one, qtr;
  683. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  684. /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
  685. /* November 2010 */
  686. /* ===================================================================== */
  687. if (first) {
  688. one = 1.f;
  689. /* LBETA, LIEEE1, LT and LRND are the local values of BETA, */
  690. /* IEEE1, T and RND. */
  691. /* Throughout this routine we use the function SLAMC3 to ensure */
  692. /* that relevant values are stored and not held in registers, or */
  693. /* are not affected by optimizers. */
  694. /* Compute a = 2.0**m with the smallest positive integer m such */
  695. /* that */
  696. /* fl( a + 1.0 ) = a. */
  697. a = 1.f;
  698. c__ = 1.f;
  699. /* + WHILE( C.EQ.ONE )LOOP */
  700. L10:
  701. if (c__ == one) {
  702. a *= 2;
  703. c__ = slamc3_(&a, &one);
  704. r__1 = -a;
  705. c__ = slamc3_(&c__, &r__1);
  706. goto L10;
  707. }
  708. /* + END WHILE */
  709. /* Now compute b = 2.0**m with the smallest positive integer m */
  710. /* such that */
  711. /* fl( a + b ) .gt. a. */
  712. b = 1.f;
  713. c__ = slamc3_(&a, &b);
  714. /* + WHILE( C.EQ.A )LOOP */
  715. L20:
  716. if (c__ == a) {
  717. b *= 2;
  718. c__ = slamc3_(&a, &b);
  719. goto L20;
  720. }
  721. /* + END WHILE */
  722. /* Now compute the base. a and c are neighbouring floating point */
  723. /* numbers in the interval ( beta**t, beta**( t + 1 ) ) and so */
  724. /* their difference is beta. Adding 0.25 to c is to ensure that it */
  725. /* is truncated to beta and not ( beta - 1 ). */
  726. qtr = one / 4;
  727. savec = c__;
  728. r__1 = -a;
  729. c__ = slamc3_(&c__, &r__1);
  730. lbeta = c__ + qtr;
  731. /* Now determine whether rounding or chopping occurs, by adding a */
  732. /* bit less than beta/2 and a bit more than beta/2 to a. */
  733. b = (real) lbeta;
  734. r__1 = b / 2;
  735. r__2 = -b / 100;
  736. f = slamc3_(&r__1, &r__2);
  737. c__ = slamc3_(&f, &a);
  738. if (c__ == a) {
  739. lrnd = TRUE_;
  740. } else {
  741. lrnd = FALSE_;
  742. }
  743. r__1 = b / 2;
  744. r__2 = b / 100;
  745. f = slamc3_(&r__1, &r__2);
  746. c__ = slamc3_(&f, &a);
  747. if (lrnd && c__ == a) {
  748. lrnd = FALSE_;
  749. }
  750. /* Try and decide whether rounding is done in the IEEE 'round to */
  751. /* nearest' style. B/2 is half a unit in the last place of the two */
  752. /* numbers A and SAVEC. Furthermore, A is even, i.e. has last bit */
  753. /* zero, and SAVEC is odd. Thus adding B/2 to A should not change */
  754. /* A, but adding B/2 to SAVEC should change SAVEC. */
  755. r__1 = b / 2;
  756. t1 = slamc3_(&r__1, &a);
  757. r__1 = b / 2;
  758. t2 = slamc3_(&r__1, &savec);
  759. lieee1 = t1 == a && t2 > savec && lrnd;
  760. /* Now find the mantissa, t. It should be the integer part of */
  761. /* log to the base beta of a, however it is safer to determine t */
  762. /* by powering. So we find t as the smallest positive integer for */
  763. /* which */
  764. /* fl( beta**t + 1.0 ) = 1.0. */
  765. lt = 0;
  766. a = 1.f;
  767. c__ = 1.f;
  768. /* + WHILE( C.EQ.ONE )LOOP */
  769. L30:
  770. if (c__ == one) {
  771. ++lt;
  772. a *= lbeta;
  773. c__ = slamc3_(&a, &one);
  774. r__1 = -a;
  775. c__ = slamc3_(&c__, &r__1);
  776. goto L30;
  777. }
  778. /* + END WHILE */
  779. }
  780. *beta = lbeta;
  781. *t = lt;
  782. *rnd = lrnd;
  783. *ieee1 = lieee1;
  784. first = FALSE_;
  785. return 0;
  786. /* End of SLAMC1 */
  787. } /* slamc1_ */
  788. /* *********************************************************************** */
  789. /* > \brief \b SLAMC2 */
  790. /* > \details */
  791. /* > \b Purpose: */
  792. /* > \verbatim */
  793. /* > SLAMC2 determines the machine parameters specified in its argument */
  794. /* > list. */
  795. /* > \endverbatim */
  796. /* > \author LAPACK is a software package provided by Univ. of Tennessee, Univ. of California Berkeley, Univ.
  797. of Colorado Denver and NAG Ltd.. */
  798. /* > \date April 2012 */
  799. /* > \ingroup auxOTHERauxiliary */
  800. /* > */
  801. /* > \param[out] BETA */
  802. /* > \verbatim */
  803. /* > The base of the machine. */
  804. /* > \endverbatim */
  805. /* > */
  806. /* > \param[out] T */
  807. /* > \verbatim */
  808. /* > The number of ( BETA ) digits in the mantissa. */
  809. /* > \endverbatim */
  810. /* > */
  811. /* > \param[out] RND */
  812. /* > \verbatim */
  813. /* > Specifies whether proper rounding ( RND = .TRUE. ) or */
  814. /* > chopping ( RND = .FALSE. ) occurs in addition. This may not */
  815. /* > be a reliable guide to the way in which the machine performs */
  816. /* > its arithmetic. */
  817. /* > \endverbatim */
  818. /* > */
  819. /* > \param[out] EPS */
  820. /* > \verbatim */
  821. /* > The smallest positive number such that */
  822. /* > fl( 1.0 - EPS ) .LT. 1.0, */
  823. /* > where fl denotes the computed value. */
  824. /* > \endverbatim */
  825. /* > */
  826. /* > \param[out] EMIN */
  827. /* > \verbatim */
  828. /* > The minimum exponent before (gradual) underflow occurs. */
  829. /* > \endverbatim */
  830. /* > */
  831. /* > \param[out] RMIN */
  832. /* > \verbatim */
  833. /* > The smallest normalized number for the machine, given by */
  834. /* > BASE**( EMIN - 1 ), where BASE is the floating point value */
  835. /* > of BETA. */
  836. /* > \endverbatim */
  837. /* > */
  838. /* > \param[out] EMAX */
  839. /* > \verbatim */
  840. /* > The maximum exponent before overflow occurs. */
  841. /* > \endverbatim */
  842. /* > */
  843. /* > \param[out] RMAX */
  844. /* > \verbatim */
  845. /* > The largest positive number for the machine, given by */
  846. /* > BASE**EMAX * ( 1 - EPS ), where BASE is the floating point */
  847. /* > value of BETA. */
  848. /* > \endverbatim */
  849. /* > */
  850. /* > \details \b Further \b Details */
  851. /* > \verbatim */
  852. /* > */
  853. /* > The computation of EPS is based on a routine PARANOIA by */
  854. /* > W. Kahan of the University of California at Berkeley. */
  855. /* > \endverbatim */
  856. /* Subroutine */ int slamc2_(integer *beta, integer *t, logical *rnd, real *
  857. eps, integer *emin, real *rmin, integer *emax, real *rmax)
  858. {
  859. /* Initialized data */
  860. static logical first = TRUE_;
  861. static logical iwarn = FALSE_;
  862. /* Format strings */
  863. static char fmt_9999[] = "(//\002 WARNING. The value EMIN may be incorre"
  864. "ct:-\002,\002 EMIN = \002,i8,/\002 If, after inspection, the va"
  865. "lue EMIN looks\002,\002 acceptable please comment out \002,/\002"
  866. " the IF block as marked within the code of routine\002,\002 SLAM"
  867. "C2,\002,/\002 otherwise supply EMIN explicitly.\002,/)";
  868. /* System generated locals */
  869. integer i__1;
  870. real r__1, r__2, r__3, r__4, r__5;
  871. /* Local variables */
  872. logical ieee;
  873. real half;
  874. logical lrnd;
  875. static real leps;
  876. real zero, a, b, c__;
  877. integer i__;
  878. static integer lbeta;
  879. real rbase;
  880. static integer lemin, lemax;
  881. integer gnmin;
  882. real small;
  883. integer gpmin;
  884. real third;
  885. static real lrmin, lrmax;
  886. real sixth;
  887. logical lieee1;
  888. extern /* Subroutine */ int slamc1_(integer *, integer *, logical *,
  889. logical *);
  890. extern real slamc3_(real *, real *);
  891. extern /* Subroutine */ int slamc4_(integer *, real *, integer *),
  892. slamc5_(integer *, integer *, integer *, logical *, integer *,
  893. real *);
  894. static integer lt;
  895. integer ngnmin, ngpmin;
  896. real one, two;
  897. /* Fortran I/O blocks */
  898. static cilist io___58 = { 0, 6, 0, fmt_9999, 0 };
  899. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  900. /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
  901. /* November 2010 */
  902. /* ===================================================================== */
  903. if (first) {
  904. zero = 0.f;
  905. one = 1.f;
  906. two = 2.f;
  907. /* LBETA, LT, LRND, LEPS, LEMIN and LRMIN are the local values of */
  908. /* BETA, T, RND, EPS, EMIN and RMIN. */
  909. /* Throughout this routine we use the function SLAMC3 to ensure */
  910. /* that relevant values are stored and not held in registers, or */
  911. /* are not affected by optimizers. */
  912. /* SLAMC1 returns the parameters LBETA, LT, LRND and LIEEE1. */
  913. slamc1_(&lbeta, &lt, &lrnd, &lieee1);
  914. /* Start to find EPS. */
  915. b = (real) lbeta;
  916. i__1 = -lt;
  917. a = pow_ri(&b, &i__1);
  918. leps = a;
  919. /* Try some tricks to see whether or not this is the correct EPS. */
  920. b = two / 3;
  921. half = one / 2;
  922. r__1 = -half;
  923. sixth = slamc3_(&b, &r__1);
  924. third = slamc3_(&sixth, &sixth);
  925. r__1 = -half;
  926. b = slamc3_(&third, &r__1);
  927. b = slamc3_(&b, &sixth);
  928. b = abs(b);
  929. if (b < leps) {
  930. b = leps;
  931. }
  932. leps = 1.f;
  933. /* + WHILE( ( LEPS.GT.B ).AND.( B.GT.ZERO ) )LOOP */
  934. L10:
  935. if (leps > b && b > zero) {
  936. leps = b;
  937. r__1 = half * leps;
  938. /* Computing 5th power */
  939. r__3 = two, r__4 = r__3, r__3 *= r__3;
  940. /* Computing 2nd power */
  941. r__5 = leps;
  942. r__2 = r__4 * (r__3 * r__3) * (r__5 * r__5);
  943. c__ = slamc3_(&r__1, &r__2);
  944. r__1 = -c__;
  945. c__ = slamc3_(&half, &r__1);
  946. b = slamc3_(&half, &c__);
  947. r__1 = -b;
  948. c__ = slamc3_(&half, &r__1);
  949. b = slamc3_(&half, &c__);
  950. goto L10;
  951. }
  952. /* + END WHILE */
  953. if (a < leps) {
  954. leps = a;
  955. }
  956. /* Computation of EPS complete. */
  957. /* Now find EMIN. Let A = + or - 1, and + or - (1 + BASE**(-3)). */
  958. /* Keep dividing A by BETA until (gradual) underflow occurs. This */
  959. /* is detected when we cannot recover the previous A. */
  960. rbase = one / lbeta;
  961. small = one;
  962. for (i__ = 1; i__ <= 3; ++i__) {
  963. r__1 = small * rbase;
  964. small = slamc3_(&r__1, &zero);
  965. /* L20: */
  966. }
  967. a = slamc3_(&one, &small);
  968. slamc4_(&ngpmin, &one, &lbeta);
  969. r__1 = -one;
  970. slamc4_(&ngnmin, &r__1, &lbeta);
  971. slamc4_(&gpmin, &a, &lbeta);
  972. r__1 = -a;
  973. slamc4_(&gnmin, &r__1, &lbeta);
  974. ieee = FALSE_;
  975. if (ngpmin == ngnmin && gpmin == gnmin) {
  976. if (ngpmin == gpmin) {
  977. lemin = ngpmin;
  978. /* ( Non twos-complement machines, no gradual underflow; */
  979. /* e.g., VAX ) */
  980. } else if (gpmin - ngpmin == 3) {
  981. lemin = ngpmin - 1 + lt;
  982. ieee = TRUE_;
  983. /* ( Non twos-complement machines, with gradual underflow; */
  984. /* e.g., IEEE standard followers ) */
  985. } else {
  986. lemin = f2cmin(ngpmin,gpmin);
  987. /* ( A guess; no known machine ) */
  988. iwarn = TRUE_;
  989. }
  990. } else if (ngpmin == gpmin && ngnmin == gnmin) {
  991. if ((i__1 = ngpmin - ngnmin, abs(i__1)) == 1) {
  992. lemin = f2cmax(ngpmin,ngnmin);
  993. /* ( Twos-complement machines, no gradual underflow; */
  994. /* e.g., CYBER 205 ) */
  995. } else {
  996. lemin = f2cmin(ngpmin,ngnmin);
  997. /* ( A guess; no known machine ) */
  998. iwarn = TRUE_;
  999. }
  1000. } else if ((i__1 = ngpmin - ngnmin, abs(i__1)) == 1 && gpmin == gnmin)
  1001. {
  1002. if (gpmin - f2cmin(ngpmin,ngnmin) == 3) {
  1003. lemin = f2cmax(ngpmin,ngnmin) - 1 + lt;
  1004. /* ( Twos-complement machines with gradual underflow; */
  1005. /* no known machine ) */
  1006. } else {
  1007. lemin = f2cmin(ngpmin,ngnmin);
  1008. /* ( A guess; no known machine ) */
  1009. iwarn = TRUE_;
  1010. }
  1011. } else {
  1012. /* Computing MIN */
  1013. i__1 = f2cmin(ngpmin,ngnmin), i__1 = f2cmin(i__1,gpmin);
  1014. lemin = f2cmin(i__1,gnmin);
  1015. /* ( A guess; no known machine ) */
  1016. iwarn = TRUE_;
  1017. }
  1018. first = FALSE_;
  1019. /* ** */
  1020. /* Comment out this if block if EMIN is ok */
  1021. /*
  1022. if (iwarn) {
  1023. first = TRUE_;
  1024. s_wsfe(&io___58);
  1025. do_fio(&c__1, (char *)&lemin, (ftnlen)sizeof(integer));
  1026. e_wsfe();
  1027. }
  1028. */
  1029. /* ** */
  1030. /* Assume IEEE arithmetic if we found denormalised numbers above, */
  1031. /* or if arithmetic seems to round in the IEEE style, determined */
  1032. /* in routine SLAMC1. A true IEEE machine should have both things */
  1033. /* true; however, faulty machines may have one or the other. */
  1034. ieee = ieee || lieee1;
  1035. /* Compute RMIN by successive division by BETA. We could compute */
  1036. /* RMIN as BASE**( EMIN - 1 ), but some machines underflow during */
  1037. /* this computation. */
  1038. lrmin = 1.f;
  1039. i__1 = 1 - lemin;
  1040. for (i__ = 1; i__ <= i__1; ++i__) {
  1041. r__1 = lrmin * rbase;
  1042. lrmin = slamc3_(&r__1, &zero);
  1043. /* L30: */
  1044. }
  1045. /* Finally, call SLAMC5 to compute EMAX and RMAX. */
  1046. slamc5_(&lbeta, &lt, &lemin, &ieee, &lemax, &lrmax);
  1047. }
  1048. *beta = lbeta;
  1049. *t = lt;
  1050. *rnd = lrnd;
  1051. *eps = leps;
  1052. *emin = lemin;
  1053. *rmin = lrmin;
  1054. *emax = lemax;
  1055. *rmax = lrmax;
  1056. return 0;
  1057. /* End of SLAMC2 */
  1058. } /* slamc2_ */
  1059. /* *********************************************************************** */
  1060. /* > \brief \b SLAMC3 */
  1061. /* > \details */
  1062. /* > \b Purpose: */
  1063. /* > \verbatim */
  1064. /* > SLAMC3 is intended to force A and B to be stored prior to doing */
  1065. /* > the addition of A and B , for use in situations where optimizers */
  1066. /* > might hold one of these in a register. */
  1067. /* > \endverbatim */
  1068. /* > */
  1069. /* > \param[in] A */
  1070. /* > */
  1071. /* > \param[in] B */
  1072. /* > \verbatim */
  1073. /* > The values A and B. */
  1074. /* > \endverbatim */
  1075. real slamc3_(real *a, real *b)
  1076. {
  1077. /* System generated locals */
  1078. real ret_val;
  1079. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  1080. /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
  1081. /* November 2010 */
  1082. /* ===================================================================== */
  1083. ret_val = *a + *b;
  1084. return ret_val;
  1085. /* End of SLAMC3 */
  1086. } /* slamc3_ */
  1087. /* *********************************************************************** */
  1088. /* > \brief \b SLAMC4 */
  1089. /* > \details */
  1090. /* > \b Purpose: */
  1091. /* > \verbatim */
  1092. /* > SLAMC4 is a service routine for SLAMC2. */
  1093. /* > \endverbatim */
  1094. /* > */
  1095. /* > \param[out] EMIN */
  1096. /* > \verbatim */
  1097. /* > The minimum exponent before (gradual) underflow, computed by */
  1098. /* > setting A = START and dividing by BASE until the previous A */
  1099. /* > can not be recovered. */
  1100. /* > \endverbatim */
  1101. /* > */
  1102. /* > \param[in] START */
  1103. /* > \verbatim */
  1104. /* > The starting point for determining EMIN. */
  1105. /* > \endverbatim */
  1106. /* > */
  1107. /* > \param[in] BASE */
  1108. /* > \verbatim */
  1109. /* > The base of the machine. */
  1110. /* > \endverbatim */
  1111. /* > */
  1112. /* Subroutine */ int slamc4_(integer *emin, real *start, integer *base)
  1113. {
  1114. /* System generated locals */
  1115. integer i__1;
  1116. real r__1;
  1117. /* Local variables */
  1118. real zero, a;
  1119. integer i__;
  1120. real rbase, b1, b2, c1, c2, d1, d2;
  1121. extern real slamc3_(real *, real *);
  1122. real one;
  1123. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  1124. /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
  1125. /* November 2010 */
  1126. /* ===================================================================== */
  1127. a = *start;
  1128. one = 1.f;
  1129. rbase = one / *base;
  1130. zero = 0.f;
  1131. *emin = 1;
  1132. r__1 = a * rbase;
  1133. b1 = slamc3_(&r__1, &zero);
  1134. c1 = a;
  1135. c2 = a;
  1136. d1 = a;
  1137. d2 = a;
  1138. /* + WHILE( ( C1.EQ.A ).AND.( C2.EQ.A ).AND. */
  1139. /* $ ( D1.EQ.A ).AND.( D2.EQ.A ) )LOOP */
  1140. L10:
  1141. if (c1 == a && c2 == a && d1 == a && d2 == a) {
  1142. --(*emin);
  1143. a = b1;
  1144. r__1 = a / *base;
  1145. b1 = slamc3_(&r__1, &zero);
  1146. r__1 = b1 * *base;
  1147. c1 = slamc3_(&r__1, &zero);
  1148. d1 = zero;
  1149. i__1 = *base;
  1150. for (i__ = 1; i__ <= i__1; ++i__) {
  1151. d1 += b1;
  1152. /* L20: */
  1153. }
  1154. r__1 = a * rbase;
  1155. b2 = slamc3_(&r__1, &zero);
  1156. r__1 = b2 / rbase;
  1157. c2 = slamc3_(&r__1, &zero);
  1158. d2 = zero;
  1159. i__1 = *base;
  1160. for (i__ = 1; i__ <= i__1; ++i__) {
  1161. d2 += b2;
  1162. /* L30: */
  1163. }
  1164. goto L10;
  1165. }
  1166. /* + END WHILE */
  1167. return 0;
  1168. /* End of SLAMC4 */
  1169. } /* slamc4_ */
  1170. /* *********************************************************************** */
  1171. /* > \brief \b SLAMC5 */
  1172. /* > \details */
  1173. /* > \b Purpose: */
  1174. /* > \verbatim */
  1175. /* > SLAMC5 attempts to compute RMAX, the largest machine floating-point */
  1176. /* > number, without overflow. It assumes that EMAX + abs(EMIN) sum */
  1177. /* > approximately to a power of 2. It will fail on machines where this */
  1178. /* > assumption does not hold, for example, the Cyber 205 (EMIN = -28625, */
  1179. /* > EMAX = 28718). It will also fail if the value supplied for EMIN is */
  1180. /* > too large (i.e. too close to zero), probably with overflow. */
  1181. /* > \endverbatim */
  1182. /* > */
  1183. /* > \param[in] BETA */
  1184. /* > \verbatim */
  1185. /* > The base of floating-point arithmetic. */
  1186. /* > \endverbatim */
  1187. /* > */
  1188. /* > \param[in] P */
  1189. /* > \verbatim */
  1190. /* > The number of base BETA digits in the mantissa of a */
  1191. /* > floating-point value. */
  1192. /* > \endverbatim */
  1193. /* > */
  1194. /* > \param[in] EMIN */
  1195. /* > \verbatim */
  1196. /* > The minimum exponent before (gradual) underflow. */
  1197. /* > \endverbatim */
  1198. /* > */
  1199. /* > \param[in] IEEE */
  1200. /* > \verbatim */
  1201. /* > A logical flag specifying whether or not the arithmetic */
  1202. /* > system is thought to comply with the IEEE standard. */
  1203. /* > \endverbatim */
  1204. /* > */
  1205. /* > \param[out] EMAX */
  1206. /* > \verbatim */
  1207. /* > The largest exponent before overflow */
  1208. /* > \endverbatim */
  1209. /* > */
  1210. /* > \param[out] RMAX */
  1211. /* > \verbatim */
  1212. /* > The largest machine floating-point number. */
  1213. /* > \endverbatim */
  1214. /* > */
  1215. /* Subroutine */ int slamc5_(integer *beta, integer *p, integer *emin,
  1216. logical *ieee, integer *emax, real *rmax)
  1217. {
  1218. /* System generated locals */
  1219. integer i__1;
  1220. real r__1;
  1221. /* Local variables */
  1222. integer lexp;
  1223. real oldy;
  1224. integer uexp, i__;
  1225. real y, z__;
  1226. integer nbits;
  1227. extern real slamc3_(real *, real *);
  1228. real recbas;
  1229. integer exbits, expsum, try__;
  1230. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  1231. /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
  1232. /* November 2010 */
  1233. /* ===================================================================== */
  1234. /* First compute LEXP and UEXP, two powers of 2 that bound */
  1235. /* abs(EMIN). We then assume that EMAX + abs(EMIN) will sum */
  1236. /* approximately to the bound that is closest to abs(EMIN). */
  1237. /* (EMAX is the exponent of the required number RMAX). */
  1238. lexp = 1;
  1239. exbits = 1;
  1240. L10:
  1241. try__ = lexp << 1;
  1242. if (try__ <= -(*emin)) {
  1243. lexp = try__;
  1244. ++exbits;
  1245. goto L10;
  1246. }
  1247. if (lexp == -(*emin)) {
  1248. uexp = lexp;
  1249. } else {
  1250. uexp = try__;
  1251. ++exbits;
  1252. }
  1253. /* Now -LEXP is less than or equal to EMIN, and -UEXP is greater */
  1254. /* than or equal to EMIN. EXBITS is the number of bits needed to */
  1255. /* store the exponent. */
  1256. if (uexp + *emin > -lexp - *emin) {
  1257. expsum = lexp << 1;
  1258. } else {
  1259. expsum = uexp << 1;
  1260. }
  1261. /* EXPSUM is the exponent range, approximately equal to */
  1262. /* EMAX - EMIN + 1 . */
  1263. *emax = expsum + *emin - 1;
  1264. nbits = exbits + 1 + *p;
  1265. /* NBITS is the total number of bits needed to store a */
  1266. /* floating-point number. */
  1267. if (nbits % 2 == 1 && *beta == 2) {
  1268. /* Either there are an odd number of bits used to store a */
  1269. /* floating-point number, which is unlikely, or some bits are */
  1270. /* not used in the representation of numbers, which is possible, */
  1271. /* (e.g. Cray machines) or the mantissa has an implicit bit, */
  1272. /* (e.g. IEEE machines, Dec Vax machines), which is perhaps the */
  1273. /* most likely. We have to assume the last alternative. */
  1274. /* If this is true, then we need to reduce EMAX by one because */
  1275. /* there must be some way of representing zero in an implicit-bit */
  1276. /* system. On machines like Cray, we are reducing EMAX by one */
  1277. /* unnecessarily. */
  1278. --(*emax);
  1279. }
  1280. if (*ieee) {
  1281. /* Assume we are on an IEEE machine which reserves one exponent */
  1282. /* for infinity and NaN. */
  1283. --(*emax);
  1284. }
  1285. /* Now create RMAX, the largest machine number, which should */
  1286. /* be equal to (1.0 - BETA**(-P)) * BETA**EMAX . */
  1287. /* First compute 1.0 - BETA**(-P), being careful that the */
  1288. /* result is less than 1.0 . */
  1289. recbas = 1.f / *beta;
  1290. z__ = *beta - 1.f;
  1291. y = 0.f;
  1292. i__1 = *p;
  1293. for (i__ = 1; i__ <= i__1; ++i__) {
  1294. z__ *= recbas;
  1295. if (y < 1.f) {
  1296. oldy = y;
  1297. }
  1298. y = slamc3_(&y, &z__);
  1299. /* L20: */
  1300. }
  1301. if (y >= 1.f) {
  1302. y = oldy;
  1303. }
  1304. /* Now multiply by BETA**EMAX to get RMAX. */
  1305. i__1 = *emax;
  1306. for (i__ = 1; i__ <= i__1; ++i__) {
  1307. r__1 = y * *beta;
  1308. y = slamc3_(&r__1, &c_b32);
  1309. /* L30: */
  1310. }
  1311. *rmax = y;
  1312. return 0;
  1313. /* End of SLAMC5 */
  1314. } /* slamc5_ */