You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

strsna.c 35 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static logical c_true = TRUE_;
  488. static logical c_false = FALSE_;
  489. /* > \brief \b STRSNA */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download STRSNA + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/strsna.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/strsna.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/strsna.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE STRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, */
  508. /* LDVR, S, SEP, MM, M, WORK, LDWORK, IWORK, */
  509. /* INFO ) */
  510. /* CHARACTER HOWMNY, JOB */
  511. /* INTEGER INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N */
  512. /* LOGICAL SELECT( * ) */
  513. /* INTEGER IWORK( * ) */
  514. /* REAL S( * ), SEP( * ), T( LDT, * ), VL( LDVL, * ), */
  515. /* $ VR( LDVR, * ), WORK( LDWORK, * ) */
  516. /* > \par Purpose: */
  517. /* ============= */
  518. /* > */
  519. /* > \verbatim */
  520. /* > */
  521. /* > STRSNA estimates reciprocal condition numbers for specified */
  522. /* > eigenvalues and/or right eigenvectors of a real upper */
  523. /* > quasi-triangular matrix T (or of any matrix Q*T*Q**T with Q */
  524. /* > orthogonal). */
  525. /* > */
  526. /* > T must be in Schur canonical form (as returned by SHSEQR), that is, */
  527. /* > block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each */
  528. /* > 2-by-2 diagonal block has its diagonal elements equal and its */
  529. /* > off-diagonal elements of opposite sign. */
  530. /* > \endverbatim */
  531. /* Arguments: */
  532. /* ========== */
  533. /* > \param[in] JOB */
  534. /* > \verbatim */
  535. /* > JOB is CHARACTER*1 */
  536. /* > Specifies whether condition numbers are required for */
  537. /* > eigenvalues (S) or eigenvectors (SEP): */
  538. /* > = 'E': for eigenvalues only (S); */
  539. /* > = 'V': for eigenvectors only (SEP); */
  540. /* > = 'B': for both eigenvalues and eigenvectors (S and SEP). */
  541. /* > \endverbatim */
  542. /* > */
  543. /* > \param[in] HOWMNY */
  544. /* > \verbatim */
  545. /* > HOWMNY is CHARACTER*1 */
  546. /* > = 'A': compute condition numbers for all eigenpairs; */
  547. /* > = 'S': compute condition numbers for selected eigenpairs */
  548. /* > specified by the array SELECT. */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[in] SELECT */
  552. /* > \verbatim */
  553. /* > SELECT is LOGICAL array, dimension (N) */
  554. /* > If HOWMNY = 'S', SELECT specifies the eigenpairs for which */
  555. /* > condition numbers are required. To select condition numbers */
  556. /* > for the eigenpair corresponding to a real eigenvalue w(j), */
  557. /* > SELECT(j) must be set to .TRUE.. To select condition numbers */
  558. /* > corresponding to a complex conjugate pair of eigenvalues w(j) */
  559. /* > and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be */
  560. /* > set to .TRUE.. */
  561. /* > If HOWMNY = 'A', SELECT is not referenced. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] N */
  565. /* > \verbatim */
  566. /* > N is INTEGER */
  567. /* > The order of the matrix T. N >= 0. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] T */
  571. /* > \verbatim */
  572. /* > T is REAL array, dimension (LDT,N) */
  573. /* > The upper quasi-triangular matrix T, in Schur canonical form. */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[in] LDT */
  577. /* > \verbatim */
  578. /* > LDT is INTEGER */
  579. /* > The leading dimension of the array T. LDT >= f2cmax(1,N). */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[in] VL */
  583. /* > \verbatim */
  584. /* > VL is REAL array, dimension (LDVL,M) */
  585. /* > If JOB = 'E' or 'B', VL must contain left eigenvectors of T */
  586. /* > (or of any Q*T*Q**T with Q orthogonal), corresponding to the */
  587. /* > eigenpairs specified by HOWMNY and SELECT. The eigenvectors */
  588. /* > must be stored in consecutive columns of VL, as returned by */
  589. /* > SHSEIN or STREVC. */
  590. /* > If JOB = 'V', VL is not referenced. */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[in] LDVL */
  594. /* > \verbatim */
  595. /* > LDVL is INTEGER */
  596. /* > The leading dimension of the array VL. */
  597. /* > LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N. */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[in] VR */
  601. /* > \verbatim */
  602. /* > VR is REAL array, dimension (LDVR,M) */
  603. /* > If JOB = 'E' or 'B', VR must contain right eigenvectors of T */
  604. /* > (or of any Q*T*Q**T with Q orthogonal), corresponding to the */
  605. /* > eigenpairs specified by HOWMNY and SELECT. The eigenvectors */
  606. /* > must be stored in consecutive columns of VR, as returned by */
  607. /* > SHSEIN or STREVC. */
  608. /* > If JOB = 'V', VR is not referenced. */
  609. /* > \endverbatim */
  610. /* > */
  611. /* > \param[in] LDVR */
  612. /* > \verbatim */
  613. /* > LDVR is INTEGER */
  614. /* > The leading dimension of the array VR. */
  615. /* > LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N. */
  616. /* > \endverbatim */
  617. /* > */
  618. /* > \param[out] S */
  619. /* > \verbatim */
  620. /* > S is REAL array, dimension (MM) */
  621. /* > If JOB = 'E' or 'B', the reciprocal condition numbers of the */
  622. /* > selected eigenvalues, stored in consecutive elements of the */
  623. /* > array. For a complex conjugate pair of eigenvalues two */
  624. /* > consecutive elements of S are set to the same value. Thus */
  625. /* > S(j), SEP(j), and the j-th columns of VL and VR all */
  626. /* > correspond to the same eigenpair (but not in general the */
  627. /* > j-th eigenpair, unless all eigenpairs are selected). */
  628. /* > If JOB = 'V', S is not referenced. */
  629. /* > \endverbatim */
  630. /* > */
  631. /* > \param[out] SEP */
  632. /* > \verbatim */
  633. /* > SEP is REAL array, dimension (MM) */
  634. /* > If JOB = 'V' or 'B', the estimated reciprocal condition */
  635. /* > numbers of the selected eigenvectors, stored in consecutive */
  636. /* > elements of the array. For a complex eigenvector two */
  637. /* > consecutive elements of SEP are set to the same value. If */
  638. /* > the eigenvalues cannot be reordered to compute SEP(j), SEP(j) */
  639. /* > is set to 0; this can only occur when the true value would be */
  640. /* > very small anyway. */
  641. /* > If JOB = 'E', SEP is not referenced. */
  642. /* > \endverbatim */
  643. /* > */
  644. /* > \param[in] MM */
  645. /* > \verbatim */
  646. /* > MM is INTEGER */
  647. /* > The number of elements in the arrays S (if JOB = 'E' or 'B') */
  648. /* > and/or SEP (if JOB = 'V' or 'B'). MM >= M. */
  649. /* > \endverbatim */
  650. /* > */
  651. /* > \param[out] M */
  652. /* > \verbatim */
  653. /* > M is INTEGER */
  654. /* > The number of elements of the arrays S and/or SEP actually */
  655. /* > used to store the estimated condition numbers. */
  656. /* > If HOWMNY = 'A', M is set to N. */
  657. /* > \endverbatim */
  658. /* > */
  659. /* > \param[out] WORK */
  660. /* > \verbatim */
  661. /* > WORK is REAL array, dimension (LDWORK,N+6) */
  662. /* > If JOB = 'E', WORK is not referenced. */
  663. /* > \endverbatim */
  664. /* > */
  665. /* > \param[in] LDWORK */
  666. /* > \verbatim */
  667. /* > LDWORK is INTEGER */
  668. /* > The leading dimension of the array WORK. */
  669. /* > LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N. */
  670. /* > \endverbatim */
  671. /* > */
  672. /* > \param[out] IWORK */
  673. /* > \verbatim */
  674. /* > IWORK is INTEGER array, dimension (2*(N-1)) */
  675. /* > If JOB = 'E', IWORK is not referenced. */
  676. /* > \endverbatim */
  677. /* > */
  678. /* > \param[out] INFO */
  679. /* > \verbatim */
  680. /* > INFO is INTEGER */
  681. /* > = 0: successful exit */
  682. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  683. /* > \endverbatim */
  684. /* Authors: */
  685. /* ======== */
  686. /* > \author Univ. of Tennessee */
  687. /* > \author Univ. of California Berkeley */
  688. /* > \author Univ. of Colorado Denver */
  689. /* > \author NAG Ltd. */
  690. /* > \date December 2016 */
  691. /* > \ingroup realOTHERcomputational */
  692. /* > \par Further Details: */
  693. /* ===================== */
  694. /* > */
  695. /* > \verbatim */
  696. /* > */
  697. /* > The reciprocal of the condition number of an eigenvalue lambda is */
  698. /* > defined as */
  699. /* > */
  700. /* > S(lambda) = |v**T*u| / (norm(u)*norm(v)) */
  701. /* > */
  702. /* > where u and v are the right and left eigenvectors of T corresponding */
  703. /* > to lambda; v**T denotes the transpose of v, and norm(u) */
  704. /* > denotes the Euclidean norm. These reciprocal condition numbers always */
  705. /* > lie between zero (very badly conditioned) and one (very well */
  706. /* > conditioned). If n = 1, S(lambda) is defined to be 1. */
  707. /* > */
  708. /* > An approximate error bound for a computed eigenvalue W(i) is given by */
  709. /* > */
  710. /* > EPS * norm(T) / S(i) */
  711. /* > */
  712. /* > where EPS is the machine precision. */
  713. /* > */
  714. /* > The reciprocal of the condition number of the right eigenvector u */
  715. /* > corresponding to lambda is defined as follows. Suppose */
  716. /* > */
  717. /* > T = ( lambda c ) */
  718. /* > ( 0 T22 ) */
  719. /* > */
  720. /* > Then the reciprocal condition number is */
  721. /* > */
  722. /* > SEP( lambda, T22 ) = sigma-f2cmin( T22 - lambda*I ) */
  723. /* > */
  724. /* > where sigma-f2cmin denotes the smallest singular value. We approximate */
  725. /* > the smallest singular value by the reciprocal of an estimate of the */
  726. /* > one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is */
  727. /* > defined to be abs(T(1,1)). */
  728. /* > */
  729. /* > An approximate error bound for a computed right eigenvector VR(i) */
  730. /* > is given by */
  731. /* > */
  732. /* > EPS * norm(T) / SEP(i) */
  733. /* > \endverbatim */
  734. /* > */
  735. /* ===================================================================== */
  736. /* Subroutine */ void strsna_(char *job, char *howmny, logical *select,
  737. integer *n, real *t, integer *ldt, real *vl, integer *ldvl, real *vr,
  738. integer *ldvr, real *s, real *sep, integer *mm, integer *m, real *
  739. work, integer *ldwork, integer *iwork, integer *info)
  740. {
  741. /* System generated locals */
  742. integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset,
  743. work_dim1, work_offset, i__1, i__2;
  744. real r__1, r__2;
  745. /* Local variables */
  746. integer kase;
  747. real cond;
  748. logical pair;
  749. integer ierr;
  750. real dumm, prod;
  751. integer ifst;
  752. real lnrm;
  753. extern real sdot_(integer *, real *, integer *, real *, integer *);
  754. integer ilst;
  755. real rnrm, prod1, prod2;
  756. extern real snrm2_(integer *, real *, integer *);
  757. integer i__, j, k;
  758. real scale, delta;
  759. extern logical lsame_(char *, char *);
  760. integer isave[3];
  761. logical wants;
  762. real dummy[1];
  763. integer n2;
  764. extern /* Subroutine */ void slacn2_(integer *, real *, real *, integer *,
  765. real *, integer *, integer *);
  766. extern real slapy2_(real *, real *);
  767. real cs;
  768. extern /* Subroutine */ void slabad_(real *, real *);
  769. integer nn, ks;
  770. real sn, mu;
  771. extern real slamch_(char *);
  772. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  773. real bignum;
  774. logical wantbh;
  775. extern /* Subroutine */ void slacpy_(char *, integer *, integer *, real *,
  776. integer *, real *, integer *);
  777. logical somcon;
  778. extern /* Subroutine */ void slaqtr_(logical *, logical *, integer *, real
  779. *, integer *, real *, real *, real *, real *, real *, integer *),
  780. strexc_(char *, integer *, real *, integer *, real *, integer *,
  781. integer *, integer *, real *, integer *);
  782. real smlnum;
  783. logical wantsp;
  784. real eps, est;
  785. /* -- LAPACK computational routine (version 3.7.0) -- */
  786. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  787. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  788. /* December 2016 */
  789. /* ===================================================================== */
  790. /* Decode and test the input parameters */
  791. /* Parameter adjustments */
  792. --select;
  793. t_dim1 = *ldt;
  794. t_offset = 1 + t_dim1 * 1;
  795. t -= t_offset;
  796. vl_dim1 = *ldvl;
  797. vl_offset = 1 + vl_dim1 * 1;
  798. vl -= vl_offset;
  799. vr_dim1 = *ldvr;
  800. vr_offset = 1 + vr_dim1 * 1;
  801. vr -= vr_offset;
  802. --s;
  803. --sep;
  804. work_dim1 = *ldwork;
  805. work_offset = 1 + work_dim1 * 1;
  806. work -= work_offset;
  807. --iwork;
  808. /* Function Body */
  809. wantbh = lsame_(job, "B");
  810. wants = lsame_(job, "E") || wantbh;
  811. wantsp = lsame_(job, "V") || wantbh;
  812. somcon = lsame_(howmny, "S");
  813. *info = 0;
  814. if (! wants && ! wantsp) {
  815. *info = -1;
  816. } else if (! lsame_(howmny, "A") && ! somcon) {
  817. *info = -2;
  818. } else if (*n < 0) {
  819. *info = -4;
  820. } else if (*ldt < f2cmax(1,*n)) {
  821. *info = -6;
  822. } else if (*ldvl < 1 || wants && *ldvl < *n) {
  823. *info = -8;
  824. } else if (*ldvr < 1 || wants && *ldvr < *n) {
  825. *info = -10;
  826. } else {
  827. /* Set M to the number of eigenpairs for which condition numbers */
  828. /* are required, and test MM. */
  829. if (somcon) {
  830. *m = 0;
  831. pair = FALSE_;
  832. i__1 = *n;
  833. for (k = 1; k <= i__1; ++k) {
  834. if (pair) {
  835. pair = FALSE_;
  836. } else {
  837. if (k < *n) {
  838. if (t[k + 1 + k * t_dim1] == 0.f) {
  839. if (select[k]) {
  840. ++(*m);
  841. }
  842. } else {
  843. pair = TRUE_;
  844. if (select[k] || select[k + 1]) {
  845. *m += 2;
  846. }
  847. }
  848. } else {
  849. if (select[*n]) {
  850. ++(*m);
  851. }
  852. }
  853. }
  854. /* L10: */
  855. }
  856. } else {
  857. *m = *n;
  858. }
  859. if (*mm < *m) {
  860. *info = -13;
  861. } else if (*ldwork < 1 || wantsp && *ldwork < *n) {
  862. *info = -16;
  863. }
  864. }
  865. if (*info != 0) {
  866. i__1 = -(*info);
  867. xerbla_("STRSNA", &i__1, (ftnlen)6);
  868. return;
  869. }
  870. /* Quick return if possible */
  871. if (*n == 0) {
  872. return;
  873. }
  874. if (*n == 1) {
  875. if (somcon) {
  876. if (! select[1]) {
  877. return;
  878. }
  879. }
  880. if (wants) {
  881. s[1] = 1.f;
  882. }
  883. if (wantsp) {
  884. sep[1] = (r__1 = t[t_dim1 + 1], abs(r__1));
  885. }
  886. return;
  887. }
  888. /* Get machine constants */
  889. eps = slamch_("P");
  890. smlnum = slamch_("S") / eps;
  891. bignum = 1.f / smlnum;
  892. slabad_(&smlnum, &bignum);
  893. ks = 0;
  894. pair = FALSE_;
  895. i__1 = *n;
  896. for (k = 1; k <= i__1; ++k) {
  897. /* Determine whether T(k,k) begins a 1-by-1 or 2-by-2 block. */
  898. if (pair) {
  899. pair = FALSE_;
  900. goto L60;
  901. } else {
  902. if (k < *n) {
  903. pair = t[k + 1 + k * t_dim1] != 0.f;
  904. }
  905. }
  906. /* Determine whether condition numbers are required for the k-th */
  907. /* eigenpair. */
  908. if (somcon) {
  909. if (pair) {
  910. if (! select[k] && ! select[k + 1]) {
  911. goto L60;
  912. }
  913. } else {
  914. if (! select[k]) {
  915. goto L60;
  916. }
  917. }
  918. }
  919. ++ks;
  920. if (wants) {
  921. /* Compute the reciprocal condition number of the k-th */
  922. /* eigenvalue. */
  923. if (! pair) {
  924. /* Real eigenvalue. */
  925. prod = sdot_(n, &vr[ks * vr_dim1 + 1], &c__1, &vl[ks *
  926. vl_dim1 + 1], &c__1);
  927. rnrm = snrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
  928. lnrm = snrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
  929. s[ks] = abs(prod) / (rnrm * lnrm);
  930. } else {
  931. /* Complex eigenvalue. */
  932. prod1 = sdot_(n, &vr[ks * vr_dim1 + 1], &c__1, &vl[ks *
  933. vl_dim1 + 1], &c__1);
  934. prod1 += sdot_(n, &vr[(ks + 1) * vr_dim1 + 1], &c__1, &vl[(ks
  935. + 1) * vl_dim1 + 1], &c__1);
  936. prod2 = sdot_(n, &vl[ks * vl_dim1 + 1], &c__1, &vr[(ks + 1) *
  937. vr_dim1 + 1], &c__1);
  938. prod2 -= sdot_(n, &vl[(ks + 1) * vl_dim1 + 1], &c__1, &vr[ks *
  939. vr_dim1 + 1], &c__1);
  940. r__1 = snrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
  941. r__2 = snrm2_(n, &vr[(ks + 1) * vr_dim1 + 1], &c__1);
  942. rnrm = slapy2_(&r__1, &r__2);
  943. r__1 = snrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
  944. r__2 = snrm2_(n, &vl[(ks + 1) * vl_dim1 + 1], &c__1);
  945. lnrm = slapy2_(&r__1, &r__2);
  946. cond = slapy2_(&prod1, &prod2) / (rnrm * lnrm);
  947. s[ks] = cond;
  948. s[ks + 1] = cond;
  949. }
  950. }
  951. if (wantsp) {
  952. /* Estimate the reciprocal condition number of the k-th */
  953. /* eigenvector. */
  954. /* Copy the matrix T to the array WORK and swap the diagonal */
  955. /* block beginning at T(k,k) to the (1,1) position. */
  956. slacpy_("Full", n, n, &t[t_offset], ldt, &work[work_offset],
  957. ldwork);
  958. ifst = k;
  959. ilst = 1;
  960. strexc_("No Q", n, &work[work_offset], ldwork, dummy, &c__1, &
  961. ifst, &ilst, &work[(*n + 1) * work_dim1 + 1], &ierr);
  962. if (ierr == 1 || ierr == 2) {
  963. /* Could not swap because blocks not well separated */
  964. scale = 1.f;
  965. est = bignum;
  966. } else {
  967. /* Reordering successful */
  968. if (work[work_dim1 + 2] == 0.f) {
  969. /* Form C = T22 - lambda*I in WORK(2:N,2:N). */
  970. i__2 = *n;
  971. for (i__ = 2; i__ <= i__2; ++i__) {
  972. work[i__ + i__ * work_dim1] -= work[work_dim1 + 1];
  973. /* L20: */
  974. }
  975. n2 = 1;
  976. nn = *n - 1;
  977. } else {
  978. /* Triangularize the 2 by 2 block by unitary */
  979. /* transformation U = [ cs i*ss ] */
  980. /* [ i*ss cs ]. */
  981. /* such that the (1,1) position of WORK is complex */
  982. /* eigenvalue lambda with positive imaginary part. (2,2) */
  983. /* position of WORK is the complex eigenvalue lambda */
  984. /* with negative imaginary part. */
  985. mu = sqrt((r__1 = work[(work_dim1 << 1) + 1], abs(r__1)))
  986. * sqrt((r__2 = work[work_dim1 + 2], abs(r__2)));
  987. delta = slapy2_(&mu, &work[work_dim1 + 2]);
  988. cs = mu / delta;
  989. sn = -work[work_dim1 + 2] / delta;
  990. /* Form */
  991. /* C**T = WORK(2:N,2:N) + i*[rwork(1) ..... rwork(n-1) ] */
  992. /* [ mu ] */
  993. /* [ .. ] */
  994. /* [ .. ] */
  995. /* [ mu ] */
  996. /* where C**T is transpose of matrix C, */
  997. /* and RWORK is stored starting in the N+1-st column of */
  998. /* WORK. */
  999. i__2 = *n;
  1000. for (j = 3; j <= i__2; ++j) {
  1001. work[j * work_dim1 + 2] = cs * work[j * work_dim1 + 2]
  1002. ;
  1003. work[j + j * work_dim1] -= work[work_dim1 + 1];
  1004. /* L30: */
  1005. }
  1006. work[(work_dim1 << 1) + 2] = 0.f;
  1007. work[(*n + 1) * work_dim1 + 1] = mu * 2.f;
  1008. i__2 = *n - 1;
  1009. for (i__ = 2; i__ <= i__2; ++i__) {
  1010. work[i__ + (*n + 1) * work_dim1] = sn * work[(i__ + 1)
  1011. * work_dim1 + 1];
  1012. /* L40: */
  1013. }
  1014. n2 = 2;
  1015. nn = *n - 1 << 1;
  1016. }
  1017. /* Estimate norm(inv(C**T)) */
  1018. est = 0.f;
  1019. kase = 0;
  1020. L50:
  1021. slacn2_(&nn, &work[(*n + 2) * work_dim1 + 1], &work[(*n + 4) *
  1022. work_dim1 + 1], &iwork[1], &est, &kase, isave);
  1023. if (kase != 0) {
  1024. if (kase == 1) {
  1025. if (n2 == 1) {
  1026. /* Real eigenvalue: solve C**T*x = scale*c. */
  1027. i__2 = *n - 1;
  1028. slaqtr_(&c_true, &c_true, &i__2, &work[(work_dim1
  1029. << 1) + 2], ldwork, dummy, &dumm, &scale,
  1030. &work[(*n + 4) * work_dim1 + 1], &work[(*
  1031. n + 6) * work_dim1 + 1], &ierr);
  1032. } else {
  1033. /* Complex eigenvalue: solve */
  1034. /* C**T*(p+iq) = scale*(c+id) in real arithmetic. */
  1035. i__2 = *n - 1;
  1036. slaqtr_(&c_true, &c_false, &i__2, &work[(
  1037. work_dim1 << 1) + 2], ldwork, &work[(*n +
  1038. 1) * work_dim1 + 1], &mu, &scale, &work[(*
  1039. n + 4) * work_dim1 + 1], &work[(*n + 6) *
  1040. work_dim1 + 1], &ierr);
  1041. }
  1042. } else {
  1043. if (n2 == 1) {
  1044. /* Real eigenvalue: solve C*x = scale*c. */
  1045. i__2 = *n - 1;
  1046. slaqtr_(&c_false, &c_true, &i__2, &work[(
  1047. work_dim1 << 1) + 2], ldwork, dummy, &
  1048. dumm, &scale, &work[(*n + 4) * work_dim1
  1049. + 1], &work[(*n + 6) * work_dim1 + 1], &
  1050. ierr);
  1051. } else {
  1052. /* Complex eigenvalue: solve */
  1053. /* C*(p+iq) = scale*(c+id) in real arithmetic. */
  1054. i__2 = *n - 1;
  1055. slaqtr_(&c_false, &c_false, &i__2, &work[(
  1056. work_dim1 << 1) + 2], ldwork, &work[(*n +
  1057. 1) * work_dim1 + 1], &mu, &scale, &work[(*
  1058. n + 4) * work_dim1 + 1], &work[(*n + 6) *
  1059. work_dim1 + 1], &ierr);
  1060. }
  1061. }
  1062. goto L50;
  1063. }
  1064. }
  1065. sep[ks] = scale / f2cmax(est,smlnum);
  1066. if (pair) {
  1067. sep[ks + 1] = sep[ks];
  1068. }
  1069. }
  1070. if (pair) {
  1071. ++ks;
  1072. }
  1073. L60:
  1074. ;
  1075. }
  1076. return;
  1077. /* End of STRSNA */
  1078. } /* strsna_ */