You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssbgst.c 65 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static real c_b8 = 0.f;
  487. static real c_b9 = 1.f;
  488. static integer c__1 = 1;
  489. static real c_b20 = -1.f;
  490. /* > \brief \b SSBGST */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download SSBGST + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssbgst.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssbgst.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssbgst.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE SSBGST( VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X, */
  509. /* LDX, WORK, INFO ) */
  510. /* CHARACTER UPLO, VECT */
  511. /* INTEGER INFO, KA, KB, LDAB, LDBB, LDX, N */
  512. /* REAL AB( LDAB, * ), BB( LDBB, * ), WORK( * ), */
  513. /* $ X( LDX, * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > SSBGST reduces a real symmetric-definite banded generalized */
  520. /* > eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y, */
  521. /* > such that C has the same bandwidth as A. */
  522. /* > */
  523. /* > B must have been previously factorized as S**T*S by SPBSTF, using a */
  524. /* > split Cholesky factorization. A is overwritten by C = X**T*A*X, where */
  525. /* > X = S**(-1)*Q and Q is an orthogonal matrix chosen to preserve the */
  526. /* > bandwidth of A. */
  527. /* > \endverbatim */
  528. /* Arguments: */
  529. /* ========== */
  530. /* > \param[in] VECT */
  531. /* > \verbatim */
  532. /* > VECT is CHARACTER*1 */
  533. /* > = 'N': do not form the transformation matrix X; */
  534. /* > = 'V': form X. */
  535. /* > \endverbatim */
  536. /* > */
  537. /* > \param[in] UPLO */
  538. /* > \verbatim */
  539. /* > UPLO is CHARACTER*1 */
  540. /* > = 'U': Upper triangle of A is stored; */
  541. /* > = 'L': Lower triangle of A is stored. */
  542. /* > \endverbatim */
  543. /* > */
  544. /* > \param[in] N */
  545. /* > \verbatim */
  546. /* > N is INTEGER */
  547. /* > The order of the matrices A and B. N >= 0. */
  548. /* > \endverbatim */
  549. /* > */
  550. /* > \param[in] KA */
  551. /* > \verbatim */
  552. /* > KA is INTEGER */
  553. /* > The number of superdiagonals of the matrix A if UPLO = 'U', */
  554. /* > or the number of subdiagonals if UPLO = 'L'. KA >= 0. */
  555. /* > \endverbatim */
  556. /* > */
  557. /* > \param[in] KB */
  558. /* > \verbatim */
  559. /* > KB is INTEGER */
  560. /* > The number of superdiagonals of the matrix B if UPLO = 'U', */
  561. /* > or the number of subdiagonals if UPLO = 'L'. KA >= KB >= 0. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in,out] AB */
  565. /* > \verbatim */
  566. /* > AB is REAL array, dimension (LDAB,N) */
  567. /* > On entry, the upper or lower triangle of the symmetric band */
  568. /* > matrix A, stored in the first ka+1 rows of the array. The */
  569. /* > j-th column of A is stored in the j-th column of the array AB */
  570. /* > as follows: */
  571. /* > if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for f2cmax(1,j-ka)<=i<=j; */
  572. /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+ka). */
  573. /* > */
  574. /* > On exit, the transformed matrix X**T*A*X, stored in the same */
  575. /* > format as A. */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[in] LDAB */
  579. /* > \verbatim */
  580. /* > LDAB is INTEGER */
  581. /* > The leading dimension of the array AB. LDAB >= KA+1. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in] BB */
  585. /* > \verbatim */
  586. /* > BB is REAL array, dimension (LDBB,N) */
  587. /* > The banded factor S from the split Cholesky factorization of */
  588. /* > B, as returned by SPBSTF, stored in the first KB+1 rows of */
  589. /* > the array. */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[in] LDBB */
  593. /* > \verbatim */
  594. /* > LDBB is INTEGER */
  595. /* > The leading dimension of the array BB. LDBB >= KB+1. */
  596. /* > \endverbatim */
  597. /* > */
  598. /* > \param[out] X */
  599. /* > \verbatim */
  600. /* > X is REAL array, dimension (LDX,N) */
  601. /* > If VECT = 'V', the n-by-n matrix X. */
  602. /* > If VECT = 'N', the array X is not referenced. */
  603. /* > \endverbatim */
  604. /* > */
  605. /* > \param[in] LDX */
  606. /* > \verbatim */
  607. /* > LDX is INTEGER */
  608. /* > The leading dimension of the array X. */
  609. /* > LDX >= f2cmax(1,N) if VECT = 'V'; LDX >= 1 otherwise. */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[out] WORK */
  613. /* > \verbatim */
  614. /* > WORK is REAL array, dimension (2*N) */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[out] INFO */
  618. /* > \verbatim */
  619. /* > INFO is INTEGER */
  620. /* > = 0: successful exit */
  621. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  622. /* > \endverbatim */
  623. /* Authors: */
  624. /* ======== */
  625. /* > \author Univ. of Tennessee */
  626. /* > \author Univ. of California Berkeley */
  627. /* > \author Univ. of Colorado Denver */
  628. /* > \author NAG Ltd. */
  629. /* > \date December 2016 */
  630. /* > \ingroup realOTHERcomputational */
  631. /* ===================================================================== */
  632. /* Subroutine */ void ssbgst_(char *vect, char *uplo, integer *n, integer *ka,
  633. integer *kb, real *ab, integer *ldab, real *bb, integer *ldbb, real *
  634. x, integer *ldx, real *work, integer *info)
  635. {
  636. /* System generated locals */
  637. integer ab_dim1, ab_offset, bb_dim1, bb_offset, x_dim1, x_offset, i__1,
  638. i__2, i__3, i__4;
  639. real r__1;
  640. /* Local variables */
  641. integer inca;
  642. extern /* Subroutine */ void sger_(integer *, integer *, real *, real *,
  643. integer *, real *, integer *, real *, integer *), srot_(integer *,
  644. real *, integer *, real *, integer *, real *, real *);
  645. integer i__, j, k, l, m;
  646. real t;
  647. extern logical lsame_(char *, char *);
  648. extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
  649. integer i0, i1;
  650. logical upper;
  651. integer i2, j1, j2;
  652. logical wantx;
  653. extern /* Subroutine */ void slar2v_(integer *, real *, real *, real *,
  654. integer *, real *, real *, integer *);
  655. real ra;
  656. integer nr, nx;
  657. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  658. logical update;
  659. extern /* Subroutine */ void slaset_(char *, integer *, integer *, real *,
  660. real *, real *, integer *), slartg_(real *, real *, real *
  661. , real *, real *);
  662. integer ka1, kb1;
  663. extern /* Subroutine */ void slargv_(integer *, real *, integer *, real *,
  664. integer *, real *, integer *);
  665. real ra1;
  666. extern /* Subroutine */ void slartv_(integer *, real *, integer *, real *,
  667. integer *, real *, real *, integer *);
  668. integer j1t, j2t;
  669. real bii;
  670. integer kbt, nrt;
  671. /* -- LAPACK computational routine (version 3.7.0) -- */
  672. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  673. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  674. /* December 2016 */
  675. /* ===================================================================== */
  676. /* Test the input parameters */
  677. /* Parameter adjustments */
  678. ab_dim1 = *ldab;
  679. ab_offset = 1 + ab_dim1 * 1;
  680. ab -= ab_offset;
  681. bb_dim1 = *ldbb;
  682. bb_offset = 1 + bb_dim1 * 1;
  683. bb -= bb_offset;
  684. x_dim1 = *ldx;
  685. x_offset = 1 + x_dim1 * 1;
  686. x -= x_offset;
  687. --work;
  688. /* Function Body */
  689. wantx = lsame_(vect, "V");
  690. upper = lsame_(uplo, "U");
  691. ka1 = *ka + 1;
  692. kb1 = *kb + 1;
  693. *info = 0;
  694. if (! wantx && ! lsame_(vect, "N")) {
  695. *info = -1;
  696. } else if (! upper && ! lsame_(uplo, "L")) {
  697. *info = -2;
  698. } else if (*n < 0) {
  699. *info = -3;
  700. } else if (*ka < 0) {
  701. *info = -4;
  702. } else if (*kb < 0 || *kb > *ka) {
  703. *info = -5;
  704. } else if (*ldab < *ka + 1) {
  705. *info = -7;
  706. } else if (*ldbb < *kb + 1) {
  707. *info = -9;
  708. } else if (*ldx < 1 || wantx && *ldx < f2cmax(1,*n)) {
  709. *info = -11;
  710. }
  711. if (*info != 0) {
  712. i__1 = -(*info);
  713. xerbla_("SSBGST", &i__1, (ftnlen)6);
  714. return;
  715. }
  716. /* Quick return if possible */
  717. if (*n == 0) {
  718. return;
  719. }
  720. inca = *ldab * ka1;
  721. /* Initialize X to the unit matrix, if needed */
  722. if (wantx) {
  723. slaset_("Full", n, n, &c_b8, &c_b9, &x[x_offset], ldx);
  724. }
  725. /* Set M to the splitting point m. It must be the same value as is */
  726. /* used in SPBSTF. The chosen value allows the arrays WORK and RWORK */
  727. /* to be of dimension (N). */
  728. m = (*n + *kb) / 2;
  729. /* The routine works in two phases, corresponding to the two halves */
  730. /* of the split Cholesky factorization of B as S**T*S where */
  731. /* S = ( U ) */
  732. /* ( M L ) */
  733. /* with U upper triangular of order m, and L lower triangular of */
  734. /* order n-m. S has the same bandwidth as B. */
  735. /* S is treated as a product of elementary matrices: */
  736. /* S = S(m)*S(m-1)*...*S(2)*S(1)*S(m+1)*S(m+2)*...*S(n-1)*S(n) */
  737. /* where S(i) is determined by the i-th row of S. */
  738. /* In phase 1, the index i takes the values n, n-1, ... , m+1; */
  739. /* in phase 2, it takes the values 1, 2, ... , m. */
  740. /* For each value of i, the current matrix A is updated by forming */
  741. /* inv(S(i))**T*A*inv(S(i)). This creates a triangular bulge outside */
  742. /* the band of A. The bulge is then pushed down toward the bottom of */
  743. /* A in phase 1, and up toward the top of A in phase 2, by applying */
  744. /* plane rotations. */
  745. /* There are kb*(kb+1)/2 elements in the bulge, but at most 2*kb-1 */
  746. /* of them are linearly independent, so annihilating a bulge requires */
  747. /* only 2*kb-1 plane rotations. The rotations are divided into a 1st */
  748. /* set of kb-1 rotations, and a 2nd set of kb rotations. */
  749. /* Wherever possible, rotations are generated and applied in vector */
  750. /* operations of length NR between the indices J1 and J2 (sometimes */
  751. /* replaced by modified values NRT, J1T or J2T). */
  752. /* The cosines and sines of the rotations are stored in the array */
  753. /* WORK. The cosines of the 1st set of rotations are stored in */
  754. /* elements n+2:n+m-kb-1 and the sines of the 1st set in elements */
  755. /* 2:m-kb-1; the cosines of the 2nd set are stored in elements */
  756. /* n+m-kb+1:2*n and the sines of the second set in elements m-kb+1:n. */
  757. /* The bulges are not formed explicitly; nonzero elements outside the */
  758. /* band are created only when they are required for generating new */
  759. /* rotations; they are stored in the array WORK, in positions where */
  760. /* they are later overwritten by the sines of the rotations which */
  761. /* annihilate them. */
  762. /* **************************** Phase 1 ***************************** */
  763. /* The logical structure of this phase is: */
  764. /* UPDATE = .TRUE. */
  765. /* DO I = N, M + 1, -1 */
  766. /* use S(i) to update A and create a new bulge */
  767. /* apply rotations to push all bulges KA positions downward */
  768. /* END DO */
  769. /* UPDATE = .FALSE. */
  770. /* DO I = M + KA + 1, N - 1 */
  771. /* apply rotations to push all bulges KA positions downward */
  772. /* END DO */
  773. /* To avoid duplicating code, the two loops are merged. */
  774. update = TRUE_;
  775. i__ = *n + 1;
  776. L10:
  777. if (update) {
  778. --i__;
  779. /* Computing MIN */
  780. i__1 = *kb, i__2 = i__ - 1;
  781. kbt = f2cmin(i__1,i__2);
  782. i0 = i__ - 1;
  783. /* Computing MIN */
  784. i__1 = *n, i__2 = i__ + *ka;
  785. i1 = f2cmin(i__1,i__2);
  786. i2 = i__ - kbt + ka1;
  787. if (i__ < m + 1) {
  788. update = FALSE_;
  789. ++i__;
  790. i0 = m;
  791. if (*ka == 0) {
  792. goto L480;
  793. }
  794. goto L10;
  795. }
  796. } else {
  797. i__ += *ka;
  798. if (i__ > *n - 1) {
  799. goto L480;
  800. }
  801. }
  802. if (upper) {
  803. /* Transform A, working with the upper triangle */
  804. if (update) {
  805. /* Form inv(S(i))**T * A * inv(S(i)) */
  806. bii = bb[kb1 + i__ * bb_dim1];
  807. i__1 = i1;
  808. for (j = i__; j <= i__1; ++j) {
  809. ab[i__ - j + ka1 + j * ab_dim1] /= bii;
  810. /* L20: */
  811. }
  812. /* Computing MAX */
  813. i__1 = 1, i__2 = i__ - *ka;
  814. i__3 = i__;
  815. for (j = f2cmax(i__1,i__2); j <= i__3; ++j) {
  816. ab[j - i__ + ka1 + i__ * ab_dim1] /= bii;
  817. /* L30: */
  818. }
  819. i__3 = i__ - 1;
  820. for (k = i__ - kbt; k <= i__3; ++k) {
  821. i__1 = k;
  822. for (j = i__ - kbt; j <= i__1; ++j) {
  823. ab[j - k + ka1 + k * ab_dim1] = ab[j - k + ka1 + k *
  824. ab_dim1] - bb[j - i__ + kb1 + i__ * bb_dim1] * ab[
  825. k - i__ + ka1 + i__ * ab_dim1] - bb[k - i__ + kb1
  826. + i__ * bb_dim1] * ab[j - i__ + ka1 + i__ *
  827. ab_dim1] + ab[ka1 + i__ * ab_dim1] * bb[j - i__ +
  828. kb1 + i__ * bb_dim1] * bb[k - i__ + kb1 + i__ *
  829. bb_dim1];
  830. /* L40: */
  831. }
  832. /* Computing MAX */
  833. i__1 = 1, i__2 = i__ - *ka;
  834. i__4 = i__ - kbt - 1;
  835. for (j = f2cmax(i__1,i__2); j <= i__4; ++j) {
  836. ab[j - k + ka1 + k * ab_dim1] -= bb[k - i__ + kb1 + i__ *
  837. bb_dim1] * ab[j - i__ + ka1 + i__ * ab_dim1];
  838. /* L50: */
  839. }
  840. /* L60: */
  841. }
  842. i__3 = i1;
  843. for (j = i__; j <= i__3; ++j) {
  844. /* Computing MAX */
  845. i__4 = j - *ka, i__1 = i__ - kbt;
  846. i__2 = i__ - 1;
  847. for (k = f2cmax(i__4,i__1); k <= i__2; ++k) {
  848. ab[k - j + ka1 + j * ab_dim1] -= bb[k - i__ + kb1 + i__ *
  849. bb_dim1] * ab[i__ - j + ka1 + j * ab_dim1];
  850. /* L70: */
  851. }
  852. /* L80: */
  853. }
  854. if (wantx) {
  855. /* post-multiply X by inv(S(i)) */
  856. i__3 = *n - m;
  857. r__1 = 1.f / bii;
  858. sscal_(&i__3, &r__1, &x[m + 1 + i__ * x_dim1], &c__1);
  859. if (kbt > 0) {
  860. i__3 = *n - m;
  861. sger_(&i__3, &kbt, &c_b20, &x[m + 1 + i__ * x_dim1], &
  862. c__1, &bb[kb1 - kbt + i__ * bb_dim1], &c__1, &x[m
  863. + 1 + (i__ - kbt) * x_dim1], ldx);
  864. }
  865. }
  866. /* store a(i,i1) in RA1 for use in next loop over K */
  867. ra1 = ab[i__ - i1 + ka1 + i1 * ab_dim1];
  868. }
  869. /* Generate and apply vectors of rotations to chase all the */
  870. /* existing bulges KA positions down toward the bottom of the */
  871. /* band */
  872. i__3 = *kb - 1;
  873. for (k = 1; k <= i__3; ++k) {
  874. if (update) {
  875. /* Determine the rotations which would annihilate the bulge */
  876. /* which has in theory just been created */
  877. if (i__ - k + *ka < *n && i__ - k > 1) {
  878. /* generate rotation to annihilate a(i,i-k+ka+1) */
  879. slartg_(&ab[k + 1 + (i__ - k + *ka) * ab_dim1], &ra1, &
  880. work[*n + i__ - k + *ka - m], &work[i__ - k + *ka
  881. - m], &ra);
  882. /* create nonzero element a(i-k,i-k+ka+1) outside the */
  883. /* band and store it in WORK(i-k) */
  884. t = -bb[kb1 - k + i__ * bb_dim1] * ra1;
  885. work[i__ - k] = work[*n + i__ - k + *ka - m] * t - work[
  886. i__ - k + *ka - m] * ab[(i__ - k + *ka) * ab_dim1
  887. + 1];
  888. ab[(i__ - k + *ka) * ab_dim1 + 1] = work[i__ - k + *ka -
  889. m] * t + work[*n + i__ - k + *ka - m] * ab[(i__ -
  890. k + *ka) * ab_dim1 + 1];
  891. ra1 = ra;
  892. }
  893. }
  894. /* Computing MAX */
  895. i__2 = 1, i__4 = k - i0 + 2;
  896. j2 = i__ - k - 1 + f2cmax(i__2,i__4) * ka1;
  897. nr = (*n - j2 + *ka) / ka1;
  898. j1 = j2 + (nr - 1) * ka1;
  899. if (update) {
  900. /* Computing MAX */
  901. i__2 = j2, i__4 = i__ + (*ka << 1) - k + 1;
  902. j2t = f2cmax(i__2,i__4);
  903. } else {
  904. j2t = j2;
  905. }
  906. nrt = (*n - j2t + *ka) / ka1;
  907. i__2 = j1;
  908. i__4 = ka1;
  909. for (j = j2t; i__4 < 0 ? j >= i__2 : j <= i__2; j += i__4) {
  910. /* create nonzero element a(j-ka,j+1) outside the band */
  911. /* and store it in WORK(j-m) */
  912. work[j - m] *= ab[(j + 1) * ab_dim1 + 1];
  913. ab[(j + 1) * ab_dim1 + 1] = work[*n + j - m] * ab[(j + 1) *
  914. ab_dim1 + 1];
  915. /* L90: */
  916. }
  917. /* generate rotations in 1st set to annihilate elements which */
  918. /* have been created outside the band */
  919. if (nrt > 0) {
  920. slargv_(&nrt, &ab[j2t * ab_dim1 + 1], &inca, &work[j2t - m], &
  921. ka1, &work[*n + j2t - m], &ka1);
  922. }
  923. if (nr > 0) {
  924. /* apply rotations in 1st set from the right */
  925. i__4 = *ka - 1;
  926. for (l = 1; l <= i__4; ++l) {
  927. slartv_(&nr, &ab[ka1 - l + j2 * ab_dim1], &inca, &ab[*ka
  928. - l + (j2 + 1) * ab_dim1], &inca, &work[*n + j2 -
  929. m], &work[j2 - m], &ka1);
  930. /* L100: */
  931. }
  932. /* apply rotations in 1st set from both sides to diagonal */
  933. /* blocks */
  934. slar2v_(&nr, &ab[ka1 + j2 * ab_dim1], &ab[ka1 + (j2 + 1) *
  935. ab_dim1], &ab[*ka + (j2 + 1) * ab_dim1], &inca, &work[
  936. *n + j2 - m], &work[j2 - m], &ka1);
  937. }
  938. /* start applying rotations in 1st set from the left */
  939. i__4 = *kb - k + 1;
  940. for (l = *ka - 1; l >= i__4; --l) {
  941. nrt = (*n - j2 + l) / ka1;
  942. if (nrt > 0) {
  943. slartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
  944. ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
  945. work[*n + j2 - m], &work[j2 - m], &ka1);
  946. }
  947. /* L110: */
  948. }
  949. if (wantx) {
  950. /* post-multiply X by product of rotations in 1st set */
  951. i__4 = j1;
  952. i__2 = ka1;
  953. for (j = j2; i__2 < 0 ? j >= i__4 : j <= i__4; j += i__2) {
  954. i__1 = *n - m;
  955. srot_(&i__1, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  956. + 1) * x_dim1], &c__1, &work[*n + j - m], &work[j
  957. - m]);
  958. /* L120: */
  959. }
  960. }
  961. /* L130: */
  962. }
  963. if (update) {
  964. if (i2 <= *n && kbt > 0) {
  965. /* create nonzero element a(i-kbt,i-kbt+ka+1) outside the */
  966. /* band and store it in WORK(i-kbt) */
  967. work[i__ - kbt] = -bb[kb1 - kbt + i__ * bb_dim1] * ra1;
  968. }
  969. }
  970. for (k = *kb; k >= 1; --k) {
  971. if (update) {
  972. /* Computing MAX */
  973. i__3 = 2, i__2 = k - i0 + 1;
  974. j2 = i__ - k - 1 + f2cmax(i__3,i__2) * ka1;
  975. } else {
  976. /* Computing MAX */
  977. i__3 = 1, i__2 = k - i0 + 1;
  978. j2 = i__ - k - 1 + f2cmax(i__3,i__2) * ka1;
  979. }
  980. /* finish applying rotations in 2nd set from the left */
  981. for (l = *kb - k; l >= 1; --l) {
  982. nrt = (*n - j2 + *ka + l) / ka1;
  983. if (nrt > 0) {
  984. slartv_(&nrt, &ab[l + (j2 - l + 1) * ab_dim1], &inca, &ab[
  985. l + 1 + (j2 - l + 1) * ab_dim1], &inca, &work[*n
  986. + j2 - *ka], &work[j2 - *ka], &ka1);
  987. }
  988. /* L140: */
  989. }
  990. nr = (*n - j2 + *ka) / ka1;
  991. j1 = j2 + (nr - 1) * ka1;
  992. i__3 = j2;
  993. i__2 = -ka1;
  994. for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2) {
  995. work[j] = work[j - *ka];
  996. work[*n + j] = work[*n + j - *ka];
  997. /* L150: */
  998. }
  999. i__2 = j1;
  1000. i__3 = ka1;
  1001. for (j = j2; i__3 < 0 ? j >= i__2 : j <= i__2; j += i__3) {
  1002. /* create nonzero element a(j-ka,j+1) outside the band */
  1003. /* and store it in WORK(j) */
  1004. work[j] *= ab[(j + 1) * ab_dim1 + 1];
  1005. ab[(j + 1) * ab_dim1 + 1] = work[*n + j] * ab[(j + 1) *
  1006. ab_dim1 + 1];
  1007. /* L160: */
  1008. }
  1009. if (update) {
  1010. if (i__ - k < *n - *ka && k <= kbt) {
  1011. work[i__ - k + *ka] = work[i__ - k];
  1012. }
  1013. }
  1014. /* L170: */
  1015. }
  1016. for (k = *kb; k >= 1; --k) {
  1017. /* Computing MAX */
  1018. i__3 = 1, i__2 = k - i0 + 1;
  1019. j2 = i__ - k - 1 + f2cmax(i__3,i__2) * ka1;
  1020. nr = (*n - j2 + *ka) / ka1;
  1021. j1 = j2 + (nr - 1) * ka1;
  1022. if (nr > 0) {
  1023. /* generate rotations in 2nd set to annihilate elements */
  1024. /* which have been created outside the band */
  1025. slargv_(&nr, &ab[j2 * ab_dim1 + 1], &inca, &work[j2], &ka1, &
  1026. work[*n + j2], &ka1);
  1027. /* apply rotations in 2nd set from the right */
  1028. i__3 = *ka - 1;
  1029. for (l = 1; l <= i__3; ++l) {
  1030. slartv_(&nr, &ab[ka1 - l + j2 * ab_dim1], &inca, &ab[*ka
  1031. - l + (j2 + 1) * ab_dim1], &inca, &work[*n + j2],
  1032. &work[j2], &ka1);
  1033. /* L180: */
  1034. }
  1035. /* apply rotations in 2nd set from both sides to diagonal */
  1036. /* blocks */
  1037. slar2v_(&nr, &ab[ka1 + j2 * ab_dim1], &ab[ka1 + (j2 + 1) *
  1038. ab_dim1], &ab[*ka + (j2 + 1) * ab_dim1], &inca, &work[
  1039. *n + j2], &work[j2], &ka1);
  1040. }
  1041. /* start applying rotations in 2nd set from the left */
  1042. i__3 = *kb - k + 1;
  1043. for (l = *ka - 1; l >= i__3; --l) {
  1044. nrt = (*n - j2 + l) / ka1;
  1045. if (nrt > 0) {
  1046. slartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
  1047. ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
  1048. work[*n + j2], &work[j2], &ka1);
  1049. }
  1050. /* L190: */
  1051. }
  1052. if (wantx) {
  1053. /* post-multiply X by product of rotations in 2nd set */
  1054. i__3 = j1;
  1055. i__2 = ka1;
  1056. for (j = j2; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2) {
  1057. i__4 = *n - m;
  1058. srot_(&i__4, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  1059. + 1) * x_dim1], &c__1, &work[*n + j], &work[j]);
  1060. /* L200: */
  1061. }
  1062. }
  1063. /* L210: */
  1064. }
  1065. i__2 = *kb - 1;
  1066. for (k = 1; k <= i__2; ++k) {
  1067. /* Computing MAX */
  1068. i__3 = 1, i__4 = k - i0 + 2;
  1069. j2 = i__ - k - 1 + f2cmax(i__3,i__4) * ka1;
  1070. /* finish applying rotations in 1st set from the left */
  1071. for (l = *kb - k; l >= 1; --l) {
  1072. nrt = (*n - j2 + l) / ka1;
  1073. if (nrt > 0) {
  1074. slartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
  1075. ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
  1076. work[*n + j2 - m], &work[j2 - m], &ka1);
  1077. }
  1078. /* L220: */
  1079. }
  1080. /* L230: */
  1081. }
  1082. if (*kb > 1) {
  1083. i__2 = i__ - *kb + (*ka << 1) + 1;
  1084. for (j = *n - 1; j >= i__2; --j) {
  1085. work[*n + j - m] = work[*n + j - *ka - m];
  1086. work[j - m] = work[j - *ka - m];
  1087. /* L240: */
  1088. }
  1089. }
  1090. } else {
  1091. /* Transform A, working with the lower triangle */
  1092. if (update) {
  1093. /* Form inv(S(i))**T * A * inv(S(i)) */
  1094. bii = bb[i__ * bb_dim1 + 1];
  1095. i__2 = i1;
  1096. for (j = i__; j <= i__2; ++j) {
  1097. ab[j - i__ + 1 + i__ * ab_dim1] /= bii;
  1098. /* L250: */
  1099. }
  1100. /* Computing MAX */
  1101. i__2 = 1, i__3 = i__ - *ka;
  1102. i__4 = i__;
  1103. for (j = f2cmax(i__2,i__3); j <= i__4; ++j) {
  1104. ab[i__ - j + 1 + j * ab_dim1] /= bii;
  1105. /* L260: */
  1106. }
  1107. i__4 = i__ - 1;
  1108. for (k = i__ - kbt; k <= i__4; ++k) {
  1109. i__2 = k;
  1110. for (j = i__ - kbt; j <= i__2; ++j) {
  1111. ab[k - j + 1 + j * ab_dim1] = ab[k - j + 1 + j * ab_dim1]
  1112. - bb[i__ - j + 1 + j * bb_dim1] * ab[i__ - k + 1
  1113. + k * ab_dim1] - bb[i__ - k + 1 + k * bb_dim1] *
  1114. ab[i__ - j + 1 + j * ab_dim1] + ab[i__ * ab_dim1
  1115. + 1] * bb[i__ - j + 1 + j * bb_dim1] * bb[i__ - k
  1116. + 1 + k * bb_dim1];
  1117. /* L270: */
  1118. }
  1119. /* Computing MAX */
  1120. i__2 = 1, i__3 = i__ - *ka;
  1121. i__1 = i__ - kbt - 1;
  1122. for (j = f2cmax(i__2,i__3); j <= i__1; ++j) {
  1123. ab[k - j + 1 + j * ab_dim1] -= bb[i__ - k + 1 + k *
  1124. bb_dim1] * ab[i__ - j + 1 + j * ab_dim1];
  1125. /* L280: */
  1126. }
  1127. /* L290: */
  1128. }
  1129. i__4 = i1;
  1130. for (j = i__; j <= i__4; ++j) {
  1131. /* Computing MAX */
  1132. i__1 = j - *ka, i__2 = i__ - kbt;
  1133. i__3 = i__ - 1;
  1134. for (k = f2cmax(i__1,i__2); k <= i__3; ++k) {
  1135. ab[j - k + 1 + k * ab_dim1] -= bb[i__ - k + 1 + k *
  1136. bb_dim1] * ab[j - i__ + 1 + i__ * ab_dim1];
  1137. /* L300: */
  1138. }
  1139. /* L310: */
  1140. }
  1141. if (wantx) {
  1142. /* post-multiply X by inv(S(i)) */
  1143. i__4 = *n - m;
  1144. r__1 = 1.f / bii;
  1145. sscal_(&i__4, &r__1, &x[m + 1 + i__ * x_dim1], &c__1);
  1146. if (kbt > 0) {
  1147. i__4 = *n - m;
  1148. i__3 = *ldbb - 1;
  1149. sger_(&i__4, &kbt, &c_b20, &x[m + 1 + i__ * x_dim1], &
  1150. c__1, &bb[kbt + 1 + (i__ - kbt) * bb_dim1], &i__3,
  1151. &x[m + 1 + (i__ - kbt) * x_dim1], ldx);
  1152. }
  1153. }
  1154. /* store a(i1,i) in RA1 for use in next loop over K */
  1155. ra1 = ab[i1 - i__ + 1 + i__ * ab_dim1];
  1156. }
  1157. /* Generate and apply vectors of rotations to chase all the */
  1158. /* existing bulges KA positions down toward the bottom of the */
  1159. /* band */
  1160. i__4 = *kb - 1;
  1161. for (k = 1; k <= i__4; ++k) {
  1162. if (update) {
  1163. /* Determine the rotations which would annihilate the bulge */
  1164. /* which has in theory just been created */
  1165. if (i__ - k + *ka < *n && i__ - k > 1) {
  1166. /* generate rotation to annihilate a(i-k+ka+1,i) */
  1167. slartg_(&ab[ka1 - k + i__ * ab_dim1], &ra1, &work[*n +
  1168. i__ - k + *ka - m], &work[i__ - k + *ka - m], &ra)
  1169. ;
  1170. /* create nonzero element a(i-k+ka+1,i-k) outside the */
  1171. /* band and store it in WORK(i-k) */
  1172. t = -bb[k + 1 + (i__ - k) * bb_dim1] * ra1;
  1173. work[i__ - k] = work[*n + i__ - k + *ka - m] * t - work[
  1174. i__ - k + *ka - m] * ab[ka1 + (i__ - k) * ab_dim1]
  1175. ;
  1176. ab[ka1 + (i__ - k) * ab_dim1] = work[i__ - k + *ka - m] *
  1177. t + work[*n + i__ - k + *ka - m] * ab[ka1 + (i__
  1178. - k) * ab_dim1];
  1179. ra1 = ra;
  1180. }
  1181. }
  1182. /* Computing MAX */
  1183. i__3 = 1, i__1 = k - i0 + 2;
  1184. j2 = i__ - k - 1 + f2cmax(i__3,i__1) * ka1;
  1185. nr = (*n - j2 + *ka) / ka1;
  1186. j1 = j2 + (nr - 1) * ka1;
  1187. if (update) {
  1188. /* Computing MAX */
  1189. i__3 = j2, i__1 = i__ + (*ka << 1) - k + 1;
  1190. j2t = f2cmax(i__3,i__1);
  1191. } else {
  1192. j2t = j2;
  1193. }
  1194. nrt = (*n - j2t + *ka) / ka1;
  1195. i__3 = j1;
  1196. i__1 = ka1;
  1197. for (j = j2t; i__1 < 0 ? j >= i__3 : j <= i__3; j += i__1) {
  1198. /* create nonzero element a(j+1,j-ka) outside the band */
  1199. /* and store it in WORK(j-m) */
  1200. work[j - m] *= ab[ka1 + (j - *ka + 1) * ab_dim1];
  1201. ab[ka1 + (j - *ka + 1) * ab_dim1] = work[*n + j - m] * ab[ka1
  1202. + (j - *ka + 1) * ab_dim1];
  1203. /* L320: */
  1204. }
  1205. /* generate rotations in 1st set to annihilate elements which */
  1206. /* have been created outside the band */
  1207. if (nrt > 0) {
  1208. slargv_(&nrt, &ab[ka1 + (j2t - *ka) * ab_dim1], &inca, &work[
  1209. j2t - m], &ka1, &work[*n + j2t - m], &ka1);
  1210. }
  1211. if (nr > 0) {
  1212. /* apply rotations in 1st set from the left */
  1213. i__1 = *ka - 1;
  1214. for (l = 1; l <= i__1; ++l) {
  1215. slartv_(&nr, &ab[l + 1 + (j2 - l) * ab_dim1], &inca, &ab[
  1216. l + 2 + (j2 - l) * ab_dim1], &inca, &work[*n + j2
  1217. - m], &work[j2 - m], &ka1);
  1218. /* L330: */
  1219. }
  1220. /* apply rotations in 1st set from both sides to diagonal */
  1221. /* blocks */
  1222. slar2v_(&nr, &ab[j2 * ab_dim1 + 1], &ab[(j2 + 1) * ab_dim1 +
  1223. 1], &ab[j2 * ab_dim1 + 2], &inca, &work[*n + j2 - m],
  1224. &work[j2 - m], &ka1);
  1225. }
  1226. /* start applying rotations in 1st set from the right */
  1227. i__1 = *kb - k + 1;
  1228. for (l = *ka - 1; l >= i__1; --l) {
  1229. nrt = (*n - j2 + l) / ka1;
  1230. if (nrt > 0) {
  1231. slartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
  1232. ka1 - l + (j2 + 1) * ab_dim1], &inca, &work[*n +
  1233. j2 - m], &work[j2 - m], &ka1);
  1234. }
  1235. /* L340: */
  1236. }
  1237. if (wantx) {
  1238. /* post-multiply X by product of rotations in 1st set */
  1239. i__1 = j1;
  1240. i__3 = ka1;
  1241. for (j = j2; i__3 < 0 ? j >= i__1 : j <= i__1; j += i__3) {
  1242. i__2 = *n - m;
  1243. srot_(&i__2, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  1244. + 1) * x_dim1], &c__1, &work[*n + j - m], &work[j
  1245. - m]);
  1246. /* L350: */
  1247. }
  1248. }
  1249. /* L360: */
  1250. }
  1251. if (update) {
  1252. if (i2 <= *n && kbt > 0) {
  1253. /* create nonzero element a(i-kbt+ka+1,i-kbt) outside the */
  1254. /* band and store it in WORK(i-kbt) */
  1255. work[i__ - kbt] = -bb[kbt + 1 + (i__ - kbt) * bb_dim1] * ra1;
  1256. }
  1257. }
  1258. for (k = *kb; k >= 1; --k) {
  1259. if (update) {
  1260. /* Computing MAX */
  1261. i__4 = 2, i__3 = k - i0 + 1;
  1262. j2 = i__ - k - 1 + f2cmax(i__4,i__3) * ka1;
  1263. } else {
  1264. /* Computing MAX */
  1265. i__4 = 1, i__3 = k - i0 + 1;
  1266. j2 = i__ - k - 1 + f2cmax(i__4,i__3) * ka1;
  1267. }
  1268. /* finish applying rotations in 2nd set from the right */
  1269. for (l = *kb - k; l >= 1; --l) {
  1270. nrt = (*n - j2 + *ka + l) / ka1;
  1271. if (nrt > 0) {
  1272. slartv_(&nrt, &ab[ka1 - l + 1 + (j2 - *ka) * ab_dim1], &
  1273. inca, &ab[ka1 - l + (j2 - *ka + 1) * ab_dim1], &
  1274. inca, &work[*n + j2 - *ka], &work[j2 - *ka], &ka1)
  1275. ;
  1276. }
  1277. /* L370: */
  1278. }
  1279. nr = (*n - j2 + *ka) / ka1;
  1280. j1 = j2 + (nr - 1) * ka1;
  1281. i__4 = j2;
  1282. i__3 = -ka1;
  1283. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  1284. work[j] = work[j - *ka];
  1285. work[*n + j] = work[*n + j - *ka];
  1286. /* L380: */
  1287. }
  1288. i__3 = j1;
  1289. i__4 = ka1;
  1290. for (j = j2; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  1291. /* create nonzero element a(j+1,j-ka) outside the band */
  1292. /* and store it in WORK(j) */
  1293. work[j] *= ab[ka1 + (j - *ka + 1) * ab_dim1];
  1294. ab[ka1 + (j - *ka + 1) * ab_dim1] = work[*n + j] * ab[ka1 + (
  1295. j - *ka + 1) * ab_dim1];
  1296. /* L390: */
  1297. }
  1298. if (update) {
  1299. if (i__ - k < *n - *ka && k <= kbt) {
  1300. work[i__ - k + *ka] = work[i__ - k];
  1301. }
  1302. }
  1303. /* L400: */
  1304. }
  1305. for (k = *kb; k >= 1; --k) {
  1306. /* Computing MAX */
  1307. i__4 = 1, i__3 = k - i0 + 1;
  1308. j2 = i__ - k - 1 + f2cmax(i__4,i__3) * ka1;
  1309. nr = (*n - j2 + *ka) / ka1;
  1310. j1 = j2 + (nr - 1) * ka1;
  1311. if (nr > 0) {
  1312. /* generate rotations in 2nd set to annihilate elements */
  1313. /* which have been created outside the band */
  1314. slargv_(&nr, &ab[ka1 + (j2 - *ka) * ab_dim1], &inca, &work[j2]
  1315. , &ka1, &work[*n + j2], &ka1);
  1316. /* apply rotations in 2nd set from the left */
  1317. i__4 = *ka - 1;
  1318. for (l = 1; l <= i__4; ++l) {
  1319. slartv_(&nr, &ab[l + 1 + (j2 - l) * ab_dim1], &inca, &ab[
  1320. l + 2 + (j2 - l) * ab_dim1], &inca, &work[*n + j2]
  1321. , &work[j2], &ka1);
  1322. /* L410: */
  1323. }
  1324. /* apply rotations in 2nd set from both sides to diagonal */
  1325. /* blocks */
  1326. slar2v_(&nr, &ab[j2 * ab_dim1 + 1], &ab[(j2 + 1) * ab_dim1 +
  1327. 1], &ab[j2 * ab_dim1 + 2], &inca, &work[*n + j2], &
  1328. work[j2], &ka1);
  1329. }
  1330. /* start applying rotations in 2nd set from the right */
  1331. i__4 = *kb - k + 1;
  1332. for (l = *ka - 1; l >= i__4; --l) {
  1333. nrt = (*n - j2 + l) / ka1;
  1334. if (nrt > 0) {
  1335. slartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
  1336. ka1 - l + (j2 + 1) * ab_dim1], &inca, &work[*n +
  1337. j2], &work[j2], &ka1);
  1338. }
  1339. /* L420: */
  1340. }
  1341. if (wantx) {
  1342. /* post-multiply X by product of rotations in 2nd set */
  1343. i__4 = j1;
  1344. i__3 = ka1;
  1345. for (j = j2; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  1346. i__1 = *n - m;
  1347. srot_(&i__1, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  1348. + 1) * x_dim1], &c__1, &work[*n + j], &work[j]);
  1349. /* L430: */
  1350. }
  1351. }
  1352. /* L440: */
  1353. }
  1354. i__3 = *kb - 1;
  1355. for (k = 1; k <= i__3; ++k) {
  1356. /* Computing MAX */
  1357. i__4 = 1, i__1 = k - i0 + 2;
  1358. j2 = i__ - k - 1 + f2cmax(i__4,i__1) * ka1;
  1359. /* finish applying rotations in 1st set from the right */
  1360. for (l = *kb - k; l >= 1; --l) {
  1361. nrt = (*n - j2 + l) / ka1;
  1362. if (nrt > 0) {
  1363. slartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
  1364. ka1 - l + (j2 + 1) * ab_dim1], &inca, &work[*n +
  1365. j2 - m], &work[j2 - m], &ka1);
  1366. }
  1367. /* L450: */
  1368. }
  1369. /* L460: */
  1370. }
  1371. if (*kb > 1) {
  1372. i__3 = i__ - *kb + (*ka << 1) + 1;
  1373. for (j = *n - 1; j >= i__3; --j) {
  1374. work[*n + j - m] = work[*n + j - *ka - m];
  1375. work[j - m] = work[j - *ka - m];
  1376. /* L470: */
  1377. }
  1378. }
  1379. }
  1380. goto L10;
  1381. L480:
  1382. /* **************************** Phase 2 ***************************** */
  1383. /* The logical structure of this phase is: */
  1384. /* UPDATE = .TRUE. */
  1385. /* DO I = 1, M */
  1386. /* use S(i) to update A and create a new bulge */
  1387. /* apply rotations to push all bulges KA positions upward */
  1388. /* END DO */
  1389. /* UPDATE = .FALSE. */
  1390. /* DO I = M - KA - 1, 2, -1 */
  1391. /* apply rotations to push all bulges KA positions upward */
  1392. /* END DO */
  1393. /* To avoid duplicating code, the two loops are merged. */
  1394. update = TRUE_;
  1395. i__ = 0;
  1396. L490:
  1397. if (update) {
  1398. ++i__;
  1399. /* Computing MIN */
  1400. i__3 = *kb, i__4 = m - i__;
  1401. kbt = f2cmin(i__3,i__4);
  1402. i0 = i__ + 1;
  1403. /* Computing MAX */
  1404. i__3 = 1, i__4 = i__ - *ka;
  1405. i1 = f2cmax(i__3,i__4);
  1406. i2 = i__ + kbt - ka1;
  1407. if (i__ > m) {
  1408. update = FALSE_;
  1409. --i__;
  1410. i0 = m + 1;
  1411. if (*ka == 0) {
  1412. return;
  1413. }
  1414. goto L490;
  1415. }
  1416. } else {
  1417. i__ -= *ka;
  1418. if (i__ < 2) {
  1419. return;
  1420. }
  1421. }
  1422. if (i__ < m - kbt) {
  1423. nx = m;
  1424. } else {
  1425. nx = *n;
  1426. }
  1427. if (upper) {
  1428. /* Transform A, working with the upper triangle */
  1429. if (update) {
  1430. /* Form inv(S(i))**T * A * inv(S(i)) */
  1431. bii = bb[kb1 + i__ * bb_dim1];
  1432. i__3 = i__;
  1433. for (j = i1; j <= i__3; ++j) {
  1434. ab[j - i__ + ka1 + i__ * ab_dim1] /= bii;
  1435. /* L500: */
  1436. }
  1437. /* Computing MIN */
  1438. i__4 = *n, i__1 = i__ + *ka;
  1439. i__3 = f2cmin(i__4,i__1);
  1440. for (j = i__; j <= i__3; ++j) {
  1441. ab[i__ - j + ka1 + j * ab_dim1] /= bii;
  1442. /* L510: */
  1443. }
  1444. i__3 = i__ + kbt;
  1445. for (k = i__ + 1; k <= i__3; ++k) {
  1446. i__4 = i__ + kbt;
  1447. for (j = k; j <= i__4; ++j) {
  1448. ab[k - j + ka1 + j * ab_dim1] = ab[k - j + ka1 + j *
  1449. ab_dim1] - bb[i__ - j + kb1 + j * bb_dim1] * ab[
  1450. i__ - k + ka1 + k * ab_dim1] - bb[i__ - k + kb1 +
  1451. k * bb_dim1] * ab[i__ - j + ka1 + j * ab_dim1] +
  1452. ab[ka1 + i__ * ab_dim1] * bb[i__ - j + kb1 + j *
  1453. bb_dim1] * bb[i__ - k + kb1 + k * bb_dim1];
  1454. /* L520: */
  1455. }
  1456. /* Computing MIN */
  1457. i__1 = *n, i__2 = i__ + *ka;
  1458. i__4 = f2cmin(i__1,i__2);
  1459. for (j = i__ + kbt + 1; j <= i__4; ++j) {
  1460. ab[k - j + ka1 + j * ab_dim1] -= bb[i__ - k + kb1 + k *
  1461. bb_dim1] * ab[i__ - j + ka1 + j * ab_dim1];
  1462. /* L530: */
  1463. }
  1464. /* L540: */
  1465. }
  1466. i__3 = i__;
  1467. for (j = i1; j <= i__3; ++j) {
  1468. /* Computing MIN */
  1469. i__1 = j + *ka, i__2 = i__ + kbt;
  1470. i__4 = f2cmin(i__1,i__2);
  1471. for (k = i__ + 1; k <= i__4; ++k) {
  1472. ab[j - k + ka1 + k * ab_dim1] -= bb[i__ - k + kb1 + k *
  1473. bb_dim1] * ab[j - i__ + ka1 + i__ * ab_dim1];
  1474. /* L550: */
  1475. }
  1476. /* L560: */
  1477. }
  1478. if (wantx) {
  1479. /* post-multiply X by inv(S(i)) */
  1480. r__1 = 1.f / bii;
  1481. sscal_(&nx, &r__1, &x[i__ * x_dim1 + 1], &c__1);
  1482. if (kbt > 0) {
  1483. i__3 = *ldbb - 1;
  1484. sger_(&nx, &kbt, &c_b20, &x[i__ * x_dim1 + 1], &c__1, &bb[
  1485. *kb + (i__ + 1) * bb_dim1], &i__3, &x[(i__ + 1) *
  1486. x_dim1 + 1], ldx);
  1487. }
  1488. }
  1489. /* store a(i1,i) in RA1 for use in next loop over K */
  1490. ra1 = ab[i1 - i__ + ka1 + i__ * ab_dim1];
  1491. }
  1492. /* Generate and apply vectors of rotations to chase all the */
  1493. /* existing bulges KA positions up toward the top of the band */
  1494. i__3 = *kb - 1;
  1495. for (k = 1; k <= i__3; ++k) {
  1496. if (update) {
  1497. /* Determine the rotations which would annihilate the bulge */
  1498. /* which has in theory just been created */
  1499. if (i__ + k - ka1 > 0 && i__ + k < m) {
  1500. /* generate rotation to annihilate a(i+k-ka-1,i) */
  1501. slartg_(&ab[k + 1 + i__ * ab_dim1], &ra1, &work[*n + i__
  1502. + k - *ka], &work[i__ + k - *ka], &ra);
  1503. /* create nonzero element a(i+k-ka-1,i+k) outside the */
  1504. /* band and store it in WORK(m-kb+i+k) */
  1505. t = -bb[kb1 - k + (i__ + k) * bb_dim1] * ra1;
  1506. work[m - *kb + i__ + k] = work[*n + i__ + k - *ka] * t -
  1507. work[i__ + k - *ka] * ab[(i__ + k) * ab_dim1 + 1];
  1508. ab[(i__ + k) * ab_dim1 + 1] = work[i__ + k - *ka] * t +
  1509. work[*n + i__ + k - *ka] * ab[(i__ + k) * ab_dim1
  1510. + 1];
  1511. ra1 = ra;
  1512. }
  1513. }
  1514. /* Computing MAX */
  1515. i__4 = 1, i__1 = k + i0 - m + 1;
  1516. j2 = i__ + k + 1 - f2cmax(i__4,i__1) * ka1;
  1517. nr = (j2 + *ka - 1) / ka1;
  1518. j1 = j2 - (nr - 1) * ka1;
  1519. if (update) {
  1520. /* Computing MIN */
  1521. i__4 = j2, i__1 = i__ - (*ka << 1) + k - 1;
  1522. j2t = f2cmin(i__4,i__1);
  1523. } else {
  1524. j2t = j2;
  1525. }
  1526. nrt = (j2t + *ka - 1) / ka1;
  1527. i__4 = j2t;
  1528. i__1 = ka1;
  1529. for (j = j1; i__1 < 0 ? j >= i__4 : j <= i__4; j += i__1) {
  1530. /* create nonzero element a(j-1,j+ka) outside the band */
  1531. /* and store it in WORK(j) */
  1532. work[j] *= ab[(j + *ka - 1) * ab_dim1 + 1];
  1533. ab[(j + *ka - 1) * ab_dim1 + 1] = work[*n + j] * ab[(j + *ka
  1534. - 1) * ab_dim1 + 1];
  1535. /* L570: */
  1536. }
  1537. /* generate rotations in 1st set to annihilate elements which */
  1538. /* have been created outside the band */
  1539. if (nrt > 0) {
  1540. slargv_(&nrt, &ab[(j1 + *ka) * ab_dim1 + 1], &inca, &work[j1],
  1541. &ka1, &work[*n + j1], &ka1);
  1542. }
  1543. if (nr > 0) {
  1544. /* apply rotations in 1st set from the left */
  1545. i__1 = *ka - 1;
  1546. for (l = 1; l <= i__1; ++l) {
  1547. slartv_(&nr, &ab[ka1 - l + (j1 + l) * ab_dim1], &inca, &
  1548. ab[*ka - l + (j1 + l) * ab_dim1], &inca, &work[*n
  1549. + j1], &work[j1], &ka1);
  1550. /* L580: */
  1551. }
  1552. /* apply rotations in 1st set from both sides to diagonal */
  1553. /* blocks */
  1554. slar2v_(&nr, &ab[ka1 + j1 * ab_dim1], &ab[ka1 + (j1 - 1) *
  1555. ab_dim1], &ab[*ka + j1 * ab_dim1], &inca, &work[*n +
  1556. j1], &work[j1], &ka1);
  1557. }
  1558. /* start applying rotations in 1st set from the right */
  1559. i__1 = *kb - k + 1;
  1560. for (l = *ka - 1; l >= i__1; --l) {
  1561. nrt = (j2 + l - 1) / ka1;
  1562. j1t = j2 - (nrt - 1) * ka1;
  1563. if (nrt > 0) {
  1564. slartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
  1565. j1t - 1) * ab_dim1], &inca, &work[*n + j1t], &
  1566. work[j1t], &ka1);
  1567. }
  1568. /* L590: */
  1569. }
  1570. if (wantx) {
  1571. /* post-multiply X by product of rotations in 1st set */
  1572. i__1 = j2;
  1573. i__4 = ka1;
  1574. for (j = j1; i__4 < 0 ? j >= i__1 : j <= i__1; j += i__4) {
  1575. srot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  1576. + 1], &c__1, &work[*n + j], &work[j]);
  1577. /* L600: */
  1578. }
  1579. }
  1580. /* L610: */
  1581. }
  1582. if (update) {
  1583. if (i2 > 0 && kbt > 0) {
  1584. /* create nonzero element a(i+kbt-ka-1,i+kbt) outside the */
  1585. /* band and store it in WORK(m-kb+i+kbt) */
  1586. work[m - *kb + i__ + kbt] = -bb[kb1 - kbt + (i__ + kbt) *
  1587. bb_dim1] * ra1;
  1588. }
  1589. }
  1590. for (k = *kb; k >= 1; --k) {
  1591. if (update) {
  1592. /* Computing MAX */
  1593. i__3 = 2, i__4 = k + i0 - m;
  1594. j2 = i__ + k + 1 - f2cmax(i__3,i__4) * ka1;
  1595. } else {
  1596. /* Computing MAX */
  1597. i__3 = 1, i__4 = k + i0 - m;
  1598. j2 = i__ + k + 1 - f2cmax(i__3,i__4) * ka1;
  1599. }
  1600. /* finish applying rotations in 2nd set from the right */
  1601. for (l = *kb - k; l >= 1; --l) {
  1602. nrt = (j2 + *ka + l - 1) / ka1;
  1603. j1t = j2 - (nrt - 1) * ka1;
  1604. if (nrt > 0) {
  1605. slartv_(&nrt, &ab[l + (j1t + *ka) * ab_dim1], &inca, &ab[
  1606. l + 1 + (j1t + *ka - 1) * ab_dim1], &inca, &work[*
  1607. n + m - *kb + j1t + *ka], &work[m - *kb + j1t + *
  1608. ka], &ka1);
  1609. }
  1610. /* L620: */
  1611. }
  1612. nr = (j2 + *ka - 1) / ka1;
  1613. j1 = j2 - (nr - 1) * ka1;
  1614. i__3 = j2;
  1615. i__4 = ka1;
  1616. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  1617. work[m - *kb + j] = work[m - *kb + j + *ka];
  1618. work[*n + m - *kb + j] = work[*n + m - *kb + j + *ka];
  1619. /* L630: */
  1620. }
  1621. i__4 = j2;
  1622. i__3 = ka1;
  1623. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  1624. /* create nonzero element a(j-1,j+ka) outside the band */
  1625. /* and store it in WORK(m-kb+j) */
  1626. work[m - *kb + j] *= ab[(j + *ka - 1) * ab_dim1 + 1];
  1627. ab[(j + *ka - 1) * ab_dim1 + 1] = work[*n + m - *kb + j] * ab[
  1628. (j + *ka - 1) * ab_dim1 + 1];
  1629. /* L640: */
  1630. }
  1631. if (update) {
  1632. if (i__ + k > ka1 && k <= kbt) {
  1633. work[m - *kb + i__ + k - *ka] = work[m - *kb + i__ + k];
  1634. }
  1635. }
  1636. /* L650: */
  1637. }
  1638. for (k = *kb; k >= 1; --k) {
  1639. /* Computing MAX */
  1640. i__3 = 1, i__4 = k + i0 - m;
  1641. j2 = i__ + k + 1 - f2cmax(i__3,i__4) * ka1;
  1642. nr = (j2 + *ka - 1) / ka1;
  1643. j1 = j2 - (nr - 1) * ka1;
  1644. if (nr > 0) {
  1645. /* generate rotations in 2nd set to annihilate elements */
  1646. /* which have been created outside the band */
  1647. slargv_(&nr, &ab[(j1 + *ka) * ab_dim1 + 1], &inca, &work[m - *
  1648. kb + j1], &ka1, &work[*n + m - *kb + j1], &ka1);
  1649. /* apply rotations in 2nd set from the left */
  1650. i__3 = *ka - 1;
  1651. for (l = 1; l <= i__3; ++l) {
  1652. slartv_(&nr, &ab[ka1 - l + (j1 + l) * ab_dim1], &inca, &
  1653. ab[*ka - l + (j1 + l) * ab_dim1], &inca, &work[*n
  1654. + m - *kb + j1], &work[m - *kb + j1], &ka1);
  1655. /* L660: */
  1656. }
  1657. /* apply rotations in 2nd set from both sides to diagonal */
  1658. /* blocks */
  1659. slar2v_(&nr, &ab[ka1 + j1 * ab_dim1], &ab[ka1 + (j1 - 1) *
  1660. ab_dim1], &ab[*ka + j1 * ab_dim1], &inca, &work[*n +
  1661. m - *kb + j1], &work[m - *kb + j1], &ka1);
  1662. }
  1663. /* start applying rotations in 2nd set from the right */
  1664. i__3 = *kb - k + 1;
  1665. for (l = *ka - 1; l >= i__3; --l) {
  1666. nrt = (j2 + l - 1) / ka1;
  1667. j1t = j2 - (nrt - 1) * ka1;
  1668. if (nrt > 0) {
  1669. slartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
  1670. j1t - 1) * ab_dim1], &inca, &work[*n + m - *kb +
  1671. j1t], &work[m - *kb + j1t], &ka1);
  1672. }
  1673. /* L670: */
  1674. }
  1675. if (wantx) {
  1676. /* post-multiply X by product of rotations in 2nd set */
  1677. i__3 = j2;
  1678. i__4 = ka1;
  1679. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  1680. srot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  1681. + 1], &c__1, &work[*n + m - *kb + j], &work[m - *
  1682. kb + j]);
  1683. /* L680: */
  1684. }
  1685. }
  1686. /* L690: */
  1687. }
  1688. i__4 = *kb - 1;
  1689. for (k = 1; k <= i__4; ++k) {
  1690. /* Computing MAX */
  1691. i__3 = 1, i__1 = k + i0 - m + 1;
  1692. j2 = i__ + k + 1 - f2cmax(i__3,i__1) * ka1;
  1693. /* finish applying rotations in 1st set from the right */
  1694. for (l = *kb - k; l >= 1; --l) {
  1695. nrt = (j2 + l - 1) / ka1;
  1696. j1t = j2 - (nrt - 1) * ka1;
  1697. if (nrt > 0) {
  1698. slartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
  1699. j1t - 1) * ab_dim1], &inca, &work[*n + j1t], &
  1700. work[j1t], &ka1);
  1701. }
  1702. /* L700: */
  1703. }
  1704. /* L710: */
  1705. }
  1706. if (*kb > 1) {
  1707. /* Computing MIN */
  1708. i__3 = i__ + *kb;
  1709. i__4 = f2cmin(i__3,m) - (*ka << 1) - 1;
  1710. for (j = 2; j <= i__4; ++j) {
  1711. work[*n + j] = work[*n + j + *ka];
  1712. work[j] = work[j + *ka];
  1713. /* L720: */
  1714. }
  1715. }
  1716. } else {
  1717. /* Transform A, working with the lower triangle */
  1718. if (update) {
  1719. /* Form inv(S(i))**T * A * inv(S(i)) */
  1720. bii = bb[i__ * bb_dim1 + 1];
  1721. i__4 = i__;
  1722. for (j = i1; j <= i__4; ++j) {
  1723. ab[i__ - j + 1 + j * ab_dim1] /= bii;
  1724. /* L730: */
  1725. }
  1726. /* Computing MIN */
  1727. i__3 = *n, i__1 = i__ + *ka;
  1728. i__4 = f2cmin(i__3,i__1);
  1729. for (j = i__; j <= i__4; ++j) {
  1730. ab[j - i__ + 1 + i__ * ab_dim1] /= bii;
  1731. /* L740: */
  1732. }
  1733. i__4 = i__ + kbt;
  1734. for (k = i__ + 1; k <= i__4; ++k) {
  1735. i__3 = i__ + kbt;
  1736. for (j = k; j <= i__3; ++j) {
  1737. ab[j - k + 1 + k * ab_dim1] = ab[j - k + 1 + k * ab_dim1]
  1738. - bb[j - i__ + 1 + i__ * bb_dim1] * ab[k - i__ +
  1739. 1 + i__ * ab_dim1] - bb[k - i__ + 1 + i__ *
  1740. bb_dim1] * ab[j - i__ + 1 + i__ * ab_dim1] + ab[
  1741. i__ * ab_dim1 + 1] * bb[j - i__ + 1 + i__ *
  1742. bb_dim1] * bb[k - i__ + 1 + i__ * bb_dim1];
  1743. /* L750: */
  1744. }
  1745. /* Computing MIN */
  1746. i__1 = *n, i__2 = i__ + *ka;
  1747. i__3 = f2cmin(i__1,i__2);
  1748. for (j = i__ + kbt + 1; j <= i__3; ++j) {
  1749. ab[j - k + 1 + k * ab_dim1] -= bb[k - i__ + 1 + i__ *
  1750. bb_dim1] * ab[j - i__ + 1 + i__ * ab_dim1];
  1751. /* L760: */
  1752. }
  1753. /* L770: */
  1754. }
  1755. i__4 = i__;
  1756. for (j = i1; j <= i__4; ++j) {
  1757. /* Computing MIN */
  1758. i__1 = j + *ka, i__2 = i__ + kbt;
  1759. i__3 = f2cmin(i__1,i__2);
  1760. for (k = i__ + 1; k <= i__3; ++k) {
  1761. ab[k - j + 1 + j * ab_dim1] -= bb[k - i__ + 1 + i__ *
  1762. bb_dim1] * ab[i__ - j + 1 + j * ab_dim1];
  1763. /* L780: */
  1764. }
  1765. /* L790: */
  1766. }
  1767. if (wantx) {
  1768. /* post-multiply X by inv(S(i)) */
  1769. r__1 = 1.f / bii;
  1770. sscal_(&nx, &r__1, &x[i__ * x_dim1 + 1], &c__1);
  1771. if (kbt > 0) {
  1772. sger_(&nx, &kbt, &c_b20, &x[i__ * x_dim1 + 1], &c__1, &bb[
  1773. i__ * bb_dim1 + 2], &c__1, &x[(i__ + 1) * x_dim1
  1774. + 1], ldx);
  1775. }
  1776. }
  1777. /* store a(i,i1) in RA1 for use in next loop over K */
  1778. ra1 = ab[i__ - i1 + 1 + i1 * ab_dim1];
  1779. }
  1780. /* Generate and apply vectors of rotations to chase all the */
  1781. /* existing bulges KA positions up toward the top of the band */
  1782. i__4 = *kb - 1;
  1783. for (k = 1; k <= i__4; ++k) {
  1784. if (update) {
  1785. /* Determine the rotations which would annihilate the bulge */
  1786. /* which has in theory just been created */
  1787. if (i__ + k - ka1 > 0 && i__ + k < m) {
  1788. /* generate rotation to annihilate a(i,i+k-ka-1) */
  1789. slartg_(&ab[ka1 - k + (i__ + k - *ka) * ab_dim1], &ra1, &
  1790. work[*n + i__ + k - *ka], &work[i__ + k - *ka], &
  1791. ra);
  1792. /* create nonzero element a(i+k,i+k-ka-1) outside the */
  1793. /* band and store it in WORK(m-kb+i+k) */
  1794. t = -bb[k + 1 + i__ * bb_dim1] * ra1;
  1795. work[m - *kb + i__ + k] = work[*n + i__ + k - *ka] * t -
  1796. work[i__ + k - *ka] * ab[ka1 + (i__ + k - *ka) *
  1797. ab_dim1];
  1798. ab[ka1 + (i__ + k - *ka) * ab_dim1] = work[i__ + k - *ka]
  1799. * t + work[*n + i__ + k - *ka] * ab[ka1 + (i__ +
  1800. k - *ka) * ab_dim1];
  1801. ra1 = ra;
  1802. }
  1803. }
  1804. /* Computing MAX */
  1805. i__3 = 1, i__1 = k + i0 - m + 1;
  1806. j2 = i__ + k + 1 - f2cmax(i__3,i__1) * ka1;
  1807. nr = (j2 + *ka - 1) / ka1;
  1808. j1 = j2 - (nr - 1) * ka1;
  1809. if (update) {
  1810. /* Computing MIN */
  1811. i__3 = j2, i__1 = i__ - (*ka << 1) + k - 1;
  1812. j2t = f2cmin(i__3,i__1);
  1813. } else {
  1814. j2t = j2;
  1815. }
  1816. nrt = (j2t + *ka - 1) / ka1;
  1817. i__3 = j2t;
  1818. i__1 = ka1;
  1819. for (j = j1; i__1 < 0 ? j >= i__3 : j <= i__3; j += i__1) {
  1820. /* create nonzero element a(j+ka,j-1) outside the band */
  1821. /* and store it in WORK(j) */
  1822. work[j] *= ab[ka1 + (j - 1) * ab_dim1];
  1823. ab[ka1 + (j - 1) * ab_dim1] = work[*n + j] * ab[ka1 + (j - 1)
  1824. * ab_dim1];
  1825. /* L800: */
  1826. }
  1827. /* generate rotations in 1st set to annihilate elements which */
  1828. /* have been created outside the band */
  1829. if (nrt > 0) {
  1830. slargv_(&nrt, &ab[ka1 + j1 * ab_dim1], &inca, &work[j1], &ka1,
  1831. &work[*n + j1], &ka1);
  1832. }
  1833. if (nr > 0) {
  1834. /* apply rotations in 1st set from the right */
  1835. i__1 = *ka - 1;
  1836. for (l = 1; l <= i__1; ++l) {
  1837. slartv_(&nr, &ab[l + 1 + j1 * ab_dim1], &inca, &ab[l + 2
  1838. + (j1 - 1) * ab_dim1], &inca, &work[*n + j1], &
  1839. work[j1], &ka1);
  1840. /* L810: */
  1841. }
  1842. /* apply rotations in 1st set from both sides to diagonal */
  1843. /* blocks */
  1844. slar2v_(&nr, &ab[j1 * ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 +
  1845. 1], &ab[(j1 - 1) * ab_dim1 + 2], &inca, &work[*n + j1]
  1846. , &work[j1], &ka1);
  1847. }
  1848. /* start applying rotations in 1st set from the left */
  1849. i__1 = *kb - k + 1;
  1850. for (l = *ka - 1; l >= i__1; --l) {
  1851. nrt = (j2 + l - 1) / ka1;
  1852. j1t = j2 - (nrt - 1) * ka1;
  1853. if (nrt > 0) {
  1854. slartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
  1855. , &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
  1856. &inca, &work[*n + j1t], &work[j1t], &ka1);
  1857. }
  1858. /* L820: */
  1859. }
  1860. if (wantx) {
  1861. /* post-multiply X by product of rotations in 1st set */
  1862. i__1 = j2;
  1863. i__3 = ka1;
  1864. for (j = j1; i__3 < 0 ? j >= i__1 : j <= i__1; j += i__3) {
  1865. srot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  1866. + 1], &c__1, &work[*n + j], &work[j]);
  1867. /* L830: */
  1868. }
  1869. }
  1870. /* L840: */
  1871. }
  1872. if (update) {
  1873. if (i2 > 0 && kbt > 0) {
  1874. /* create nonzero element a(i+kbt,i+kbt-ka-1) outside the */
  1875. /* band and store it in WORK(m-kb+i+kbt) */
  1876. work[m - *kb + i__ + kbt] = -bb[kbt + 1 + i__ * bb_dim1] *
  1877. ra1;
  1878. }
  1879. }
  1880. for (k = *kb; k >= 1; --k) {
  1881. if (update) {
  1882. /* Computing MAX */
  1883. i__4 = 2, i__3 = k + i0 - m;
  1884. j2 = i__ + k + 1 - f2cmax(i__4,i__3) * ka1;
  1885. } else {
  1886. /* Computing MAX */
  1887. i__4 = 1, i__3 = k + i0 - m;
  1888. j2 = i__ + k + 1 - f2cmax(i__4,i__3) * ka1;
  1889. }
  1890. /* finish applying rotations in 2nd set from the left */
  1891. for (l = *kb - k; l >= 1; --l) {
  1892. nrt = (j2 + *ka + l - 1) / ka1;
  1893. j1t = j2 - (nrt - 1) * ka1;
  1894. if (nrt > 0) {
  1895. slartv_(&nrt, &ab[ka1 - l + 1 + (j1t + l - 1) * ab_dim1],
  1896. &inca, &ab[ka1 - l + (j1t + l - 1) * ab_dim1], &
  1897. inca, &work[*n + m - *kb + j1t + *ka], &work[m - *
  1898. kb + j1t + *ka], &ka1);
  1899. }
  1900. /* L850: */
  1901. }
  1902. nr = (j2 + *ka - 1) / ka1;
  1903. j1 = j2 - (nr - 1) * ka1;
  1904. i__4 = j2;
  1905. i__3 = ka1;
  1906. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  1907. work[m - *kb + j] = work[m - *kb + j + *ka];
  1908. work[*n + m - *kb + j] = work[*n + m - *kb + j + *ka];
  1909. /* L860: */
  1910. }
  1911. i__3 = j2;
  1912. i__4 = ka1;
  1913. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  1914. /* create nonzero element a(j+ka,j-1) outside the band */
  1915. /* and store it in WORK(m-kb+j) */
  1916. work[m - *kb + j] *= ab[ka1 + (j - 1) * ab_dim1];
  1917. ab[ka1 + (j - 1) * ab_dim1] = work[*n + m - *kb + j] * ab[ka1
  1918. + (j - 1) * ab_dim1];
  1919. /* L870: */
  1920. }
  1921. if (update) {
  1922. if (i__ + k > ka1 && k <= kbt) {
  1923. work[m - *kb + i__ + k - *ka] = work[m - *kb + i__ + k];
  1924. }
  1925. }
  1926. /* L880: */
  1927. }
  1928. for (k = *kb; k >= 1; --k) {
  1929. /* Computing MAX */
  1930. i__4 = 1, i__3 = k + i0 - m;
  1931. j2 = i__ + k + 1 - f2cmax(i__4,i__3) * ka1;
  1932. nr = (j2 + *ka - 1) / ka1;
  1933. j1 = j2 - (nr - 1) * ka1;
  1934. if (nr > 0) {
  1935. /* generate rotations in 2nd set to annihilate elements */
  1936. /* which have been created outside the band */
  1937. slargv_(&nr, &ab[ka1 + j1 * ab_dim1], &inca, &work[m - *kb +
  1938. j1], &ka1, &work[*n + m - *kb + j1], &ka1);
  1939. /* apply rotations in 2nd set from the right */
  1940. i__4 = *ka - 1;
  1941. for (l = 1; l <= i__4; ++l) {
  1942. slartv_(&nr, &ab[l + 1 + j1 * ab_dim1], &inca, &ab[l + 2
  1943. + (j1 - 1) * ab_dim1], &inca, &work[*n + m - *kb
  1944. + j1], &work[m - *kb + j1], &ka1);
  1945. /* L890: */
  1946. }
  1947. /* apply rotations in 2nd set from both sides to diagonal */
  1948. /* blocks */
  1949. slar2v_(&nr, &ab[j1 * ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 +
  1950. 1], &ab[(j1 - 1) * ab_dim1 + 2], &inca, &work[*n + m
  1951. - *kb + j1], &work[m - *kb + j1], &ka1);
  1952. }
  1953. /* start applying rotations in 2nd set from the left */
  1954. i__4 = *kb - k + 1;
  1955. for (l = *ka - 1; l >= i__4; --l) {
  1956. nrt = (j2 + l - 1) / ka1;
  1957. j1t = j2 - (nrt - 1) * ka1;
  1958. if (nrt > 0) {
  1959. slartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
  1960. , &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
  1961. &inca, &work[*n + m - *kb + j1t], &work[m - *kb
  1962. + j1t], &ka1);
  1963. }
  1964. /* L900: */
  1965. }
  1966. if (wantx) {
  1967. /* post-multiply X by product of rotations in 2nd set */
  1968. i__4 = j2;
  1969. i__3 = ka1;
  1970. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  1971. srot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  1972. + 1], &c__1, &work[*n + m - *kb + j], &work[m - *
  1973. kb + j]);
  1974. /* L910: */
  1975. }
  1976. }
  1977. /* L920: */
  1978. }
  1979. i__3 = *kb - 1;
  1980. for (k = 1; k <= i__3; ++k) {
  1981. /* Computing MAX */
  1982. i__4 = 1, i__1 = k + i0 - m + 1;
  1983. j2 = i__ + k + 1 - f2cmax(i__4,i__1) * ka1;
  1984. /* finish applying rotations in 1st set from the left */
  1985. for (l = *kb - k; l >= 1; --l) {
  1986. nrt = (j2 + l - 1) / ka1;
  1987. j1t = j2 - (nrt - 1) * ka1;
  1988. if (nrt > 0) {
  1989. slartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
  1990. , &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
  1991. &inca, &work[*n + j1t], &work[j1t], &ka1);
  1992. }
  1993. /* L930: */
  1994. }
  1995. /* L940: */
  1996. }
  1997. if (*kb > 1) {
  1998. /* Computing MIN */
  1999. i__4 = i__ + *kb;
  2000. i__3 = f2cmin(i__4,m) - (*ka << 1) - 1;
  2001. for (j = 2; j <= i__3; ++j) {
  2002. work[*n + j] = work[*n + j + *ka];
  2003. work[j] = work[j + *ka];
  2004. /* L950: */
  2005. }
  2006. }
  2007. }
  2008. goto L490;
  2009. /* End of SSBGST */
  2010. } /* ssbgst_ */