You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dstedc.c 30 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__9 = 9;
  487. static integer c__0 = 0;
  488. static integer c__2 = 2;
  489. static doublereal c_b17 = 0.;
  490. static doublereal c_b18 = 1.;
  491. static integer c__1 = 1;
  492. /* > \brief \b DSTEDC */
  493. /* =========== DOCUMENTATION =========== */
  494. /* Online html documentation available at */
  495. /* http://www.netlib.org/lapack/explore-html/ */
  496. /* > \htmlonly */
  497. /* > Download DSTEDC + dependencies */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstedc.
  499. f"> */
  500. /* > [TGZ]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstedc.
  502. f"> */
  503. /* > [ZIP]</a> */
  504. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstedc.
  505. f"> */
  506. /* > [TXT]</a> */
  507. /* > \endhtmlonly */
  508. /* Definition: */
  509. /* =========== */
  510. /* SUBROUTINE DSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK, */
  511. /* LIWORK, INFO ) */
  512. /* CHARACTER COMPZ */
  513. /* INTEGER INFO, LDZ, LIWORK, LWORK, N */
  514. /* INTEGER IWORK( * ) */
  515. /* DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * ) */
  516. /* > \par Purpose: */
  517. /* ============= */
  518. /* > */
  519. /* > \verbatim */
  520. /* > */
  521. /* > DSTEDC computes all eigenvalues and, optionally, eigenvectors of a */
  522. /* > symmetric tridiagonal matrix using the divide and conquer method. */
  523. /* > The eigenvectors of a full or band real symmetric matrix can also be */
  524. /* > found if DSYTRD or DSPTRD or DSBTRD has been used to reduce this */
  525. /* > matrix to tridiagonal form. */
  526. /* > */
  527. /* > This code makes very mild assumptions about floating point */
  528. /* > arithmetic. It will work on machines with a guard digit in */
  529. /* > add/subtract, or on those binary machines without guard digits */
  530. /* > which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. */
  531. /* > It could conceivably fail on hexadecimal or decimal machines */
  532. /* > without guard digits, but we know of none. See DLAED3 for details. */
  533. /* > \endverbatim */
  534. /* Arguments: */
  535. /* ========== */
  536. /* > \param[in] COMPZ */
  537. /* > \verbatim */
  538. /* > COMPZ is CHARACTER*1 */
  539. /* > = 'N': Compute eigenvalues only. */
  540. /* > = 'I': Compute eigenvectors of tridiagonal matrix also. */
  541. /* > = 'V': Compute eigenvectors of original dense symmetric */
  542. /* > matrix also. On entry, Z contains the orthogonal */
  543. /* > matrix used to reduce the original matrix to */
  544. /* > tridiagonal form. */
  545. /* > \endverbatim */
  546. /* > */
  547. /* > \param[in] N */
  548. /* > \verbatim */
  549. /* > N is INTEGER */
  550. /* > The dimension of the symmetric tridiagonal matrix. N >= 0. */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[in,out] D */
  554. /* > \verbatim */
  555. /* > D is DOUBLE PRECISION array, dimension (N) */
  556. /* > On entry, the diagonal elements of the tridiagonal matrix. */
  557. /* > On exit, if INFO = 0, the eigenvalues in ascending order. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[in,out] E */
  561. /* > \verbatim */
  562. /* > E is DOUBLE PRECISION array, dimension (N-1) */
  563. /* > On entry, the subdiagonal elements of the tridiagonal matrix. */
  564. /* > On exit, E has been destroyed. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in,out] Z */
  568. /* > \verbatim */
  569. /* > Z is DOUBLE PRECISION array, dimension (LDZ,N) */
  570. /* > On entry, if COMPZ = 'V', then Z contains the orthogonal */
  571. /* > matrix used in the reduction to tridiagonal form. */
  572. /* > On exit, if INFO = 0, then if COMPZ = 'V', Z contains the */
  573. /* > orthonormal eigenvectors of the original symmetric matrix, */
  574. /* > and if COMPZ = 'I', Z contains the orthonormal eigenvectors */
  575. /* > of the symmetric tridiagonal matrix. */
  576. /* > If COMPZ = 'N', then Z is not referenced. */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[in] LDZ */
  580. /* > \verbatim */
  581. /* > LDZ is INTEGER */
  582. /* > The leading dimension of the array Z. LDZ >= 1. */
  583. /* > If eigenvectors are desired, then LDZ >= f2cmax(1,N). */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[out] WORK */
  587. /* > \verbatim */
  588. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  589. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[in] LWORK */
  593. /* > \verbatim */
  594. /* > LWORK is INTEGER */
  595. /* > The dimension of the array WORK. */
  596. /* > If COMPZ = 'N' or N <= 1 then LWORK must be at least 1. */
  597. /* > If COMPZ = 'V' and N > 1 then LWORK must be at least */
  598. /* > ( 1 + 3*N + 2*N*lg N + 4*N**2 ), */
  599. /* > where lg( N ) = smallest integer k such */
  600. /* > that 2**k >= N. */
  601. /* > If COMPZ = 'I' and N > 1 then LWORK must be at least */
  602. /* > ( 1 + 4*N + N**2 ). */
  603. /* > Note that for COMPZ = 'I' or 'V', then if N is less than or */
  604. /* > equal to the minimum divide size, usually 25, then LWORK need */
  605. /* > only be f2cmax(1,2*(N-1)). */
  606. /* > */
  607. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  608. /* > only calculates the optimal size of the WORK array, returns */
  609. /* > this value as the first entry of the WORK array, and no error */
  610. /* > message related to LWORK is issued by XERBLA. */
  611. /* > \endverbatim */
  612. /* > */
  613. /* > \param[out] IWORK */
  614. /* > \verbatim */
  615. /* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
  616. /* > On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[in] LIWORK */
  620. /* > \verbatim */
  621. /* > LIWORK is INTEGER */
  622. /* > The dimension of the array IWORK. */
  623. /* > If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1. */
  624. /* > If COMPZ = 'V' and N > 1 then LIWORK must be at least */
  625. /* > ( 6 + 6*N + 5*N*lg N ). */
  626. /* > If COMPZ = 'I' and N > 1 then LIWORK must be at least */
  627. /* > ( 3 + 5*N ). */
  628. /* > Note that for COMPZ = 'I' or 'V', then if N is less than or */
  629. /* > equal to the minimum divide size, usually 25, then LIWORK */
  630. /* > need only be 1. */
  631. /* > */
  632. /* > If LIWORK = -1, then a workspace query is assumed; the */
  633. /* > routine only calculates the optimal size of the IWORK array, */
  634. /* > returns this value as the first entry of the IWORK array, and */
  635. /* > no error message related to LIWORK is issued by XERBLA. */
  636. /* > \endverbatim */
  637. /* > */
  638. /* > \param[out] INFO */
  639. /* > \verbatim */
  640. /* > INFO is INTEGER */
  641. /* > = 0: successful exit. */
  642. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  643. /* > > 0: The algorithm failed to compute an eigenvalue while */
  644. /* > working on the submatrix lying in rows and columns */
  645. /* > INFO/(N+1) through mod(INFO,N+1). */
  646. /* > \endverbatim */
  647. /* Authors: */
  648. /* ======== */
  649. /* > \author Univ. of Tennessee */
  650. /* > \author Univ. of California Berkeley */
  651. /* > \author Univ. of Colorado Denver */
  652. /* > \author NAG Ltd. */
  653. /* > \date June 2017 */
  654. /* > \ingroup auxOTHERcomputational */
  655. /* > \par Contributors: */
  656. /* ================== */
  657. /* > */
  658. /* > Jeff Rutter, Computer Science Division, University of California */
  659. /* > at Berkeley, USA \n */
  660. /* > Modified by Francoise Tisseur, University of Tennessee */
  661. /* > */
  662. /* ===================================================================== */
  663. /* Subroutine */ void dstedc_(char *compz, integer *n, doublereal *d__,
  664. doublereal *e, doublereal *z__, integer *ldz, doublereal *work,
  665. integer *lwork, integer *iwork, integer *liwork, integer *info)
  666. {
  667. /* System generated locals */
  668. integer z_dim1, z_offset, i__1, i__2;
  669. doublereal d__1, d__2;
  670. /* Local variables */
  671. doublereal tiny;
  672. integer i__, j, k, m;
  673. doublereal p;
  674. extern /* Subroutine */ void dgemm_(char *, char *, integer *, integer *,
  675. integer *, doublereal *, doublereal *, integer *, doublereal *,
  676. integer *, doublereal *, doublereal *, integer *);
  677. extern logical lsame_(char *, char *);
  678. extern /* Subroutine */ void dswap_(integer *, doublereal *, integer *,
  679. doublereal *, integer *);
  680. integer lwmin;
  681. extern /* Subroutine */ void dlaed0_(integer *, integer *, integer *,
  682. doublereal *, doublereal *, doublereal *, integer *, doublereal *,
  683. integer *, doublereal *, integer *, integer *);
  684. integer start, ii;
  685. extern doublereal dlamch_(char *);
  686. extern /* Subroutine */ void dlascl_(char *, integer *, integer *,
  687. doublereal *, doublereal *, integer *, integer *, doublereal *,
  688. integer *, integer *), dlacpy_(char *, integer *, integer
  689. *, doublereal *, integer *, doublereal *, integer *),
  690. dlaset_(char *, integer *, integer *, doublereal *, doublereal *,
  691. doublereal *, integer *);
  692. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  693. integer *, integer *, ftnlen, ftnlen);
  694. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  695. integer finish;
  696. extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
  697. extern /* Subroutine */ void dsterf_(integer *, doublereal *, doublereal *,
  698. integer *), dlasrt_(char *, integer *, doublereal *, integer *);
  699. integer liwmin, icompz;
  700. extern /* Subroutine */ void dsteqr_(char *, integer *, doublereal *,
  701. doublereal *, doublereal *, integer *, doublereal *, integer *);
  702. doublereal orgnrm;
  703. logical lquery;
  704. integer smlsiz, storez, strtrw, lgn;
  705. doublereal eps;
  706. /* -- LAPACK computational routine (version 3.7.1) -- */
  707. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  708. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  709. /* June 2017 */
  710. /* ===================================================================== */
  711. /* Test the input parameters. */
  712. /* Parameter adjustments */
  713. --d__;
  714. --e;
  715. z_dim1 = *ldz;
  716. z_offset = 1 + z_dim1 * 1;
  717. z__ -= z_offset;
  718. --work;
  719. --iwork;
  720. /* Function Body */
  721. *info = 0;
  722. lquery = *lwork == -1 || *liwork == -1;
  723. if (lsame_(compz, "N")) {
  724. icompz = 0;
  725. } else if (lsame_(compz, "V")) {
  726. icompz = 1;
  727. } else if (lsame_(compz, "I")) {
  728. icompz = 2;
  729. } else {
  730. icompz = -1;
  731. }
  732. if (icompz < 0) {
  733. *info = -1;
  734. } else if (*n < 0) {
  735. *info = -2;
  736. } else if (*ldz < 1 || icompz > 0 && *ldz < f2cmax(1,*n)) {
  737. *info = -6;
  738. }
  739. if (*info == 0) {
  740. /* Compute the workspace requirements */
  741. smlsiz = ilaenv_(&c__9, "DSTEDC", " ", &c__0, &c__0, &c__0, &c__0, (
  742. ftnlen)6, (ftnlen)1);
  743. if (*n <= 1 || icompz == 0) {
  744. liwmin = 1;
  745. lwmin = 1;
  746. } else if (*n <= smlsiz) {
  747. liwmin = 1;
  748. lwmin = *n - 1 << 1;
  749. } else {
  750. lgn = (integer) (log((doublereal) (*n)) / log(2.));
  751. if (pow_ii(c__2, lgn) < *n) {
  752. ++lgn;
  753. }
  754. if (pow_ii(c__2, lgn) < *n) {
  755. ++lgn;
  756. }
  757. if (icompz == 1) {
  758. /* Computing 2nd power */
  759. i__1 = *n;
  760. lwmin = *n * 3 + 1 + (*n << 1) * lgn + (i__1 * i__1 << 2);
  761. liwmin = *n * 6 + 6 + *n * 5 * lgn;
  762. } else if (icompz == 2) {
  763. /* Computing 2nd power */
  764. i__1 = *n;
  765. lwmin = (*n << 2) + 1 + i__1 * i__1;
  766. liwmin = *n * 5 + 3;
  767. }
  768. }
  769. work[1] = (doublereal) lwmin;
  770. iwork[1] = liwmin;
  771. if (*lwork < lwmin && ! lquery) {
  772. *info = -8;
  773. } else if (*liwork < liwmin && ! lquery) {
  774. *info = -10;
  775. }
  776. }
  777. if (*info != 0) {
  778. i__1 = -(*info);
  779. xerbla_("DSTEDC", &i__1, (ftnlen)6);
  780. return;
  781. } else if (lquery) {
  782. return;
  783. }
  784. /* Quick return if possible */
  785. if (*n == 0) {
  786. return;
  787. }
  788. if (*n == 1) {
  789. if (icompz != 0) {
  790. z__[z_dim1 + 1] = 1.;
  791. }
  792. return;
  793. }
  794. /* If the following conditional clause is removed, then the routine */
  795. /* will use the Divide and Conquer routine to compute only the */
  796. /* eigenvalues, which requires (3N + 3N**2) real workspace and */
  797. /* (2 + 5N + 2N lg(N)) integer workspace. */
  798. /* Since on many architectures DSTERF is much faster than any other */
  799. /* algorithm for finding eigenvalues only, it is used here */
  800. /* as the default. If the conditional clause is removed, then */
  801. /* information on the size of workspace needs to be changed. */
  802. /* If COMPZ = 'N', use DSTERF to compute the eigenvalues. */
  803. if (icompz == 0) {
  804. dsterf_(n, &d__[1], &e[1], info);
  805. goto L50;
  806. }
  807. /* If N is smaller than the minimum divide size (SMLSIZ+1), then */
  808. /* solve the problem with another solver. */
  809. if (*n <= smlsiz) {
  810. dsteqr_(compz, n, &d__[1], &e[1], &z__[z_offset], ldz, &work[1], info);
  811. } else {
  812. /* If COMPZ = 'V', the Z matrix must be stored elsewhere for later */
  813. /* use. */
  814. if (icompz == 1) {
  815. storez = *n * *n + 1;
  816. } else {
  817. storez = 1;
  818. }
  819. if (icompz == 2) {
  820. dlaset_("Full", n, n, &c_b17, &c_b18, &z__[z_offset], ldz);
  821. }
  822. /* Scale. */
  823. orgnrm = dlanst_("M", n, &d__[1], &e[1]);
  824. if (orgnrm == 0.) {
  825. goto L50;
  826. }
  827. eps = dlamch_("Epsilon");
  828. start = 1;
  829. /* while ( START <= N ) */
  830. L10:
  831. if (start <= *n) {
  832. /* Let FINISH be the position of the next subdiagonal entry */
  833. /* such that E( FINISH ) <= TINY or FINISH = N if no such */
  834. /* subdiagonal exists. The matrix identified by the elements */
  835. /* between START and FINISH constitutes an independent */
  836. /* sub-problem. */
  837. finish = start;
  838. L20:
  839. if (finish < *n) {
  840. tiny = eps * sqrt((d__1 = d__[finish], abs(d__1))) * sqrt((
  841. d__2 = d__[finish + 1], abs(d__2)));
  842. if ((d__1 = e[finish], abs(d__1)) > tiny) {
  843. ++finish;
  844. goto L20;
  845. }
  846. }
  847. /* (Sub) Problem determined. Compute its size and solve it. */
  848. m = finish - start + 1;
  849. if (m == 1) {
  850. start = finish + 1;
  851. goto L10;
  852. }
  853. if (m > smlsiz) {
  854. /* Scale. */
  855. orgnrm = dlanst_("M", &m, &d__[start], &e[start]);
  856. dlascl_("G", &c__0, &c__0, &orgnrm, &c_b18, &m, &c__1, &d__[
  857. start], &m, info);
  858. i__1 = m - 1;
  859. i__2 = m - 1;
  860. dlascl_("G", &c__0, &c__0, &orgnrm, &c_b18, &i__1, &c__1, &e[
  861. start], &i__2, info);
  862. if (icompz == 1) {
  863. strtrw = 1;
  864. } else {
  865. strtrw = start;
  866. }
  867. dlaed0_(&icompz, n, &m, &d__[start], &e[start], &z__[strtrw +
  868. start * z_dim1], ldz, &work[1], n, &work[storez], &
  869. iwork[1], info);
  870. if (*info != 0) {
  871. *info = (*info / (m + 1) + start - 1) * (*n + 1) + *info %
  872. (m + 1) + start - 1;
  873. goto L50;
  874. }
  875. /* Scale back. */
  876. dlascl_("G", &c__0, &c__0, &c_b18, &orgnrm, &m, &c__1, &d__[
  877. start], &m, info);
  878. } else {
  879. if (icompz == 1) {
  880. /* Since QR won't update a Z matrix which is larger than */
  881. /* the length of D, we must solve the sub-problem in a */
  882. /* workspace and then multiply back into Z. */
  883. dsteqr_("I", &m, &d__[start], &e[start], &work[1], &m, &
  884. work[m * m + 1], info);
  885. dlacpy_("A", n, &m, &z__[start * z_dim1 + 1], ldz, &work[
  886. storez], n);
  887. dgemm_("N", "N", n, &m, &m, &c_b18, &work[storez], n, &
  888. work[1], &m, &c_b17, &z__[start * z_dim1 + 1],
  889. ldz);
  890. } else if (icompz == 2) {
  891. dsteqr_("I", &m, &d__[start], &e[start], &z__[start +
  892. start * z_dim1], ldz, &work[1], info);
  893. } else {
  894. dsterf_(&m, &d__[start], &e[start], info);
  895. }
  896. if (*info != 0) {
  897. *info = start * (*n + 1) + finish;
  898. goto L50;
  899. }
  900. }
  901. start = finish + 1;
  902. goto L10;
  903. }
  904. /* endwhile */
  905. if (icompz == 0) {
  906. /* Use Quick Sort */
  907. dlasrt_("I", n, &d__[1], info);
  908. } else {
  909. /* Use Selection Sort to minimize swaps of eigenvectors */
  910. i__1 = *n;
  911. for (ii = 2; ii <= i__1; ++ii) {
  912. i__ = ii - 1;
  913. k = i__;
  914. p = d__[i__];
  915. i__2 = *n;
  916. for (j = ii; j <= i__2; ++j) {
  917. if (d__[j] < p) {
  918. k = j;
  919. p = d__[j];
  920. }
  921. /* L30: */
  922. }
  923. if (k != i__) {
  924. d__[k] = d__[i__];
  925. d__[i__] = p;
  926. dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * z_dim1
  927. + 1], &c__1);
  928. }
  929. /* L40: */
  930. }
  931. }
  932. }
  933. L50:
  934. work[1] = (doublereal) lwmin;
  935. iwork[1] = liwmin;
  936. return;
  937. /* End of DSTEDC */
  938. } /* dstedc_ */