You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgeevx.c 42 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c__0 = 0;
  488. static integer c_n1 = -1;
  489. /* > \brief <b> DGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE mat
  490. rices</b> */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download DGEEVX + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeevx.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeevx.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeevx.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE DGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, WR, WI, */
  509. /* VL, LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM, */
  510. /* RCONDE, RCONDV, WORK, LWORK, IWORK, INFO ) */
  511. /* CHARACTER BALANC, JOBVL, JOBVR, SENSE */
  512. /* INTEGER IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N */
  513. /* DOUBLE PRECISION ABNRM */
  514. /* INTEGER IWORK( * ) */
  515. /* DOUBLE PRECISION A( LDA, * ), RCONDE( * ), RCONDV( * ), */
  516. /* $ SCALE( * ), VL( LDVL, * ), VR( LDVR, * ), */
  517. /* $ WI( * ), WORK( * ), WR( * ) */
  518. /* > \par Purpose: */
  519. /* ============= */
  520. /* > */
  521. /* > \verbatim */
  522. /* > */
  523. /* > DGEEVX computes for an N-by-N real nonsymmetric matrix A, the */
  524. /* > eigenvalues and, optionally, the left and/or right eigenvectors. */
  525. /* > */
  526. /* > Optionally also, it computes a balancing transformation to improve */
  527. /* > the conditioning of the eigenvalues and eigenvectors (ILO, IHI, */
  528. /* > SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues */
  529. /* > (RCONDE), and reciprocal condition numbers for the right */
  530. /* > eigenvectors (RCONDV). */
  531. /* > */
  532. /* > The right eigenvector v(j) of A satisfies */
  533. /* > A * v(j) = lambda(j) * v(j) */
  534. /* > where lambda(j) is its eigenvalue. */
  535. /* > The left eigenvector u(j) of A satisfies */
  536. /* > u(j)**H * A = lambda(j) * u(j)**H */
  537. /* > where u(j)**H denotes the conjugate-transpose of u(j). */
  538. /* > */
  539. /* > The computed eigenvectors are normalized to have Euclidean norm */
  540. /* > equal to 1 and largest component real. */
  541. /* > */
  542. /* > Balancing a matrix means permuting the rows and columns to make it */
  543. /* > more nearly upper triangular, and applying a diagonal similarity */
  544. /* > transformation D * A * D**(-1), where D is a diagonal matrix, to */
  545. /* > make its rows and columns closer in norm and the condition numbers */
  546. /* > of its eigenvalues and eigenvectors smaller. The computed */
  547. /* > reciprocal condition numbers correspond to the balanced matrix. */
  548. /* > Permuting rows and columns will not change the condition numbers */
  549. /* > (in exact arithmetic) but diagonal scaling will. For further */
  550. /* > explanation of balancing, see section 4.10.2 of the LAPACK */
  551. /* > Users' Guide. */
  552. /* > \endverbatim */
  553. /* Arguments: */
  554. /* ========== */
  555. /* > \param[in] BALANC */
  556. /* > \verbatim */
  557. /* > BALANC is CHARACTER*1 */
  558. /* > Indicates how the input matrix should be diagonally scaled */
  559. /* > and/or permuted to improve the conditioning of its */
  560. /* > eigenvalues. */
  561. /* > = 'N': Do not diagonally scale or permute; */
  562. /* > = 'P': Perform permutations to make the matrix more nearly */
  563. /* > upper triangular. Do not diagonally scale; */
  564. /* > = 'S': Diagonally scale the matrix, i.e. replace A by */
  565. /* > D*A*D**(-1), where D is a diagonal matrix chosen */
  566. /* > to make the rows and columns of A more equal in */
  567. /* > norm. Do not permute; */
  568. /* > = 'B': Both diagonally scale and permute A. */
  569. /* > */
  570. /* > Computed reciprocal condition numbers will be for the matrix */
  571. /* > after balancing and/or permuting. Permuting does not change */
  572. /* > condition numbers (in exact arithmetic), but balancing does. */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[in] JOBVL */
  576. /* > \verbatim */
  577. /* > JOBVL is CHARACTER*1 */
  578. /* > = 'N': left eigenvectors of A are not computed; */
  579. /* > = 'V': left eigenvectors of A are computed. */
  580. /* > If SENSE = 'E' or 'B', JOBVL must = 'V'. */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[in] JOBVR */
  584. /* > \verbatim */
  585. /* > JOBVR is CHARACTER*1 */
  586. /* > = 'N': right eigenvectors of A are not computed; */
  587. /* > = 'V': right eigenvectors of A are computed. */
  588. /* > If SENSE = 'E' or 'B', JOBVR must = 'V'. */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[in] SENSE */
  592. /* > \verbatim */
  593. /* > SENSE is CHARACTER*1 */
  594. /* > Determines which reciprocal condition numbers are computed. */
  595. /* > = 'N': None are computed; */
  596. /* > = 'E': Computed for eigenvalues only; */
  597. /* > = 'V': Computed for right eigenvectors only; */
  598. /* > = 'B': Computed for eigenvalues and right eigenvectors. */
  599. /* > */
  600. /* > If SENSE = 'E' or 'B', both left and right eigenvectors */
  601. /* > must also be computed (JOBVL = 'V' and JOBVR = 'V'). */
  602. /* > \endverbatim */
  603. /* > */
  604. /* > \param[in] N */
  605. /* > \verbatim */
  606. /* > N is INTEGER */
  607. /* > The order of the matrix A. N >= 0. */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[in,out] A */
  611. /* > \verbatim */
  612. /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
  613. /* > On entry, the N-by-N matrix A. */
  614. /* > On exit, A has been overwritten. If JOBVL = 'V' or */
  615. /* > JOBVR = 'V', A contains the real Schur form of the balanced */
  616. /* > version of the input matrix A. */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[in] LDA */
  620. /* > \verbatim */
  621. /* > LDA is INTEGER */
  622. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[out] WR */
  626. /* > \verbatim */
  627. /* > WR is DOUBLE PRECISION array, dimension (N) */
  628. /* > \endverbatim */
  629. /* > */
  630. /* > \param[out] WI */
  631. /* > \verbatim */
  632. /* > WI is DOUBLE PRECISION array, dimension (N) */
  633. /* > WR and WI contain the real and imaginary parts, */
  634. /* > respectively, of the computed eigenvalues. Complex */
  635. /* > conjugate pairs of eigenvalues will appear consecutively */
  636. /* > with the eigenvalue having the positive imaginary part */
  637. /* > first. */
  638. /* > \endverbatim */
  639. /* > */
  640. /* > \param[out] VL */
  641. /* > \verbatim */
  642. /* > VL is DOUBLE PRECISION array, dimension (LDVL,N) */
  643. /* > If JOBVL = 'V', the left eigenvectors u(j) are stored one */
  644. /* > after another in the columns of VL, in the same order */
  645. /* > as their eigenvalues. */
  646. /* > If JOBVL = 'N', VL is not referenced. */
  647. /* > If the j-th eigenvalue is real, then u(j) = VL(:,j), */
  648. /* > the j-th column of VL. */
  649. /* > If the j-th and (j+1)-st eigenvalues form a complex */
  650. /* > conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and */
  651. /* > u(j+1) = VL(:,j) - i*VL(:,j+1). */
  652. /* > \endverbatim */
  653. /* > */
  654. /* > \param[in] LDVL */
  655. /* > \verbatim */
  656. /* > LDVL is INTEGER */
  657. /* > The leading dimension of the array VL. LDVL >= 1; if */
  658. /* > JOBVL = 'V', LDVL >= N. */
  659. /* > \endverbatim */
  660. /* > */
  661. /* > \param[out] VR */
  662. /* > \verbatim */
  663. /* > VR is DOUBLE PRECISION array, dimension (LDVR,N) */
  664. /* > If JOBVR = 'V', the right eigenvectors v(j) are stored one */
  665. /* > after another in the columns of VR, in the same order */
  666. /* > as their eigenvalues. */
  667. /* > If JOBVR = 'N', VR is not referenced. */
  668. /* > If the j-th eigenvalue is real, then v(j) = VR(:,j), */
  669. /* > the j-th column of VR. */
  670. /* > If the j-th and (j+1)-st eigenvalues form a complex */
  671. /* > conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and */
  672. /* > v(j+1) = VR(:,j) - i*VR(:,j+1). */
  673. /* > \endverbatim */
  674. /* > */
  675. /* > \param[in] LDVR */
  676. /* > \verbatim */
  677. /* > LDVR is INTEGER */
  678. /* > The leading dimension of the array VR. LDVR >= 1, and if */
  679. /* > JOBVR = 'V', LDVR >= N. */
  680. /* > \endverbatim */
  681. /* > */
  682. /* > \param[out] ILO */
  683. /* > \verbatim */
  684. /* > ILO is INTEGER */
  685. /* > \endverbatim */
  686. /* > */
  687. /* > \param[out] IHI */
  688. /* > \verbatim */
  689. /* > IHI is INTEGER */
  690. /* > ILO and IHI are integer values determined when A was */
  691. /* > balanced. The balanced A(i,j) = 0 if I > J and */
  692. /* > J = 1,...,ILO-1 or I = IHI+1,...,N. */
  693. /* > \endverbatim */
  694. /* > */
  695. /* > \param[out] SCALE */
  696. /* > \verbatim */
  697. /* > SCALE is DOUBLE PRECISION array, dimension (N) */
  698. /* > Details of the permutations and scaling factors applied */
  699. /* > when balancing A. If P(j) is the index of the row and column */
  700. /* > interchanged with row and column j, and D(j) is the scaling */
  701. /* > factor applied to row and column j, then */
  702. /* > SCALE(J) = P(J), for J = 1,...,ILO-1 */
  703. /* > = D(J), for J = ILO,...,IHI */
  704. /* > = P(J) for J = IHI+1,...,N. */
  705. /* > The order in which the interchanges are made is N to IHI+1, */
  706. /* > then 1 to ILO-1. */
  707. /* > \endverbatim */
  708. /* > */
  709. /* > \param[out] ABNRM */
  710. /* > \verbatim */
  711. /* > ABNRM is DOUBLE PRECISION */
  712. /* > The one-norm of the balanced matrix (the maximum */
  713. /* > of the sum of absolute values of elements of any column). */
  714. /* > \endverbatim */
  715. /* > */
  716. /* > \param[out] RCONDE */
  717. /* > \verbatim */
  718. /* > RCONDE is DOUBLE PRECISION array, dimension (N) */
  719. /* > RCONDE(j) is the reciprocal condition number of the j-th */
  720. /* > eigenvalue. */
  721. /* > \endverbatim */
  722. /* > */
  723. /* > \param[out] RCONDV */
  724. /* > \verbatim */
  725. /* > RCONDV is DOUBLE PRECISION array, dimension (N) */
  726. /* > RCONDV(j) is the reciprocal condition number of the j-th */
  727. /* > right eigenvector. */
  728. /* > \endverbatim */
  729. /* > */
  730. /* > \param[out] WORK */
  731. /* > \verbatim */
  732. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  733. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  734. /* > \endverbatim */
  735. /* > */
  736. /* > \param[in] LWORK */
  737. /* > \verbatim */
  738. /* > LWORK is INTEGER */
  739. /* > The dimension of the array WORK. If SENSE = 'N' or 'E', */
  740. /* > LWORK >= f2cmax(1,2*N), and if JOBVL = 'V' or JOBVR = 'V', */
  741. /* > LWORK >= 3*N. If SENSE = 'V' or 'B', LWORK >= N*(N+6). */
  742. /* > For good performance, LWORK must generally be larger. */
  743. /* > */
  744. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  745. /* > only calculates the optimal size of the WORK array, returns */
  746. /* > this value as the first entry of the WORK array, and no error */
  747. /* > message related to LWORK is issued by XERBLA. */
  748. /* > \endverbatim */
  749. /* > */
  750. /* > \param[out] IWORK */
  751. /* > \verbatim */
  752. /* > IWORK is INTEGER array, dimension (2*N-2) */
  753. /* > If SENSE = 'N' or 'E', not referenced. */
  754. /* > \endverbatim */
  755. /* > */
  756. /* > \param[out] INFO */
  757. /* > \verbatim */
  758. /* > INFO is INTEGER */
  759. /* > = 0: successful exit */
  760. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  761. /* > > 0: if INFO = i, the QR algorithm failed to compute all the */
  762. /* > eigenvalues, and no eigenvectors or condition numbers */
  763. /* > have been computed; elements 1:ILO-1 and i+1:N of WR */
  764. /* > and WI contain eigenvalues which have converged. */
  765. /* > \endverbatim */
  766. /* Authors: */
  767. /* ======== */
  768. /* > \author Univ. of Tennessee */
  769. /* > \author Univ. of California Berkeley */
  770. /* > \author Univ. of Colorado Denver */
  771. /* > \author NAG Ltd. */
  772. /* > \date June 2016 */
  773. /* @precisions fortran d -> s */
  774. /* > \ingroup doubleGEeigen */
  775. /* ===================================================================== */
  776. /* Subroutine */ void dgeevx_(char *balanc, char *jobvl, char *jobvr, char *
  777. sense, integer *n, doublereal *a, integer *lda, doublereal *wr,
  778. doublereal *wi, doublereal *vl, integer *ldvl, doublereal *vr,
  779. integer *ldvr, integer *ilo, integer *ihi, doublereal *scale,
  780. doublereal *abnrm, doublereal *rconde, doublereal *rcondv, doublereal
  781. *work, integer *lwork, integer *iwork, integer *info)
  782. {
  783. /* System generated locals */
  784. integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
  785. i__2, i__3;
  786. doublereal d__1, d__2;
  787. /* Local variables */
  788. char side[1];
  789. doublereal anrm;
  790. integer ierr, itau;
  791. extern /* Subroutine */ void drot_(integer *, doublereal *, integer *,
  792. doublereal *, integer *, doublereal *, doublereal *);
  793. integer iwrk, nout;
  794. extern doublereal dnrm2_(integer *, doublereal *, integer *);
  795. integer i__, k;
  796. doublereal r__;
  797. extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
  798. integer *);
  799. integer icond;
  800. extern logical lsame_(char *, char *);
  801. extern doublereal dlapy2_(doublereal *, doublereal *);
  802. extern /* Subroutine */ void dlabad_(doublereal *, doublereal *), dgebak_(
  803. char *, char *, integer *, integer *, integer *, doublereal *,
  804. integer *, doublereal *, integer *, integer *),
  805. dgebal_(char *, integer *, doublereal *, integer *, integer *,
  806. integer *, doublereal *, integer *);
  807. doublereal cs;
  808. logical scalea;
  809. extern doublereal dlamch_(char *);
  810. doublereal cscale;
  811. extern doublereal dlange_(char *, integer *, integer *, doublereal *,
  812. integer *, doublereal *);
  813. extern /* Subroutine */ void dgehrd_(integer *, integer *, integer *,
  814. doublereal *, integer *, doublereal *, doublereal *, integer *,
  815. integer *);
  816. doublereal sn;
  817. extern /* Subroutine */ void dlascl_(char *, integer *, integer *,
  818. doublereal *, doublereal *, integer *, integer *, doublereal *,
  819. integer *, integer *);
  820. extern integer idamax_(integer *, doublereal *, integer *);
  821. extern /* Subroutine */ void dlacpy_(char *, integer *, integer *,
  822. doublereal *, integer *, doublereal *, integer *),
  823. dlartg_(doublereal *, doublereal *, doublereal *, doublereal *,
  824. doublereal *);
  825. extern int xerbla_(char *, integer *, ftnlen);
  826. logical select[1];
  827. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  828. integer *, integer *, ftnlen, ftnlen);
  829. doublereal bignum;
  830. extern /* Subroutine */ void dorghr_(integer *, integer *, integer *,
  831. doublereal *, integer *, doublereal *, doublereal *, integer *,
  832. integer *), dhseqr_(char *, char *, integer *, integer *, integer
  833. *, doublereal *, integer *, doublereal *, doublereal *,
  834. doublereal *, integer *, doublereal *, integer *, integer *), dtrsna_(char *, char *, logical *, integer *,
  835. doublereal *, integer *, doublereal *, integer *, doublereal *,
  836. integer *, doublereal *, doublereal *, integer *, integer *,
  837. doublereal *, integer *, integer *, integer *);
  838. integer minwrk, maxwrk;
  839. logical wantvl, wntsnb;
  840. integer hswork;
  841. logical wntsne;
  842. doublereal smlnum;
  843. logical lquery, wantvr, wntsnn, wntsnv;
  844. extern /* Subroutine */ void dtrevc3_(char *, char *, logical *, integer *,
  845. doublereal *, integer *, doublereal *, integer *, doublereal *,
  846. integer *, integer *, integer *, doublereal *, integer *, integer
  847. *);
  848. char job[1];
  849. doublereal scl, dum[1], eps;
  850. integer lwork_trevc__;
  851. /* -- LAPACK driver routine (version 3.7.0) -- */
  852. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  853. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  854. /* June 2016 */
  855. /* ===================================================================== */
  856. /* Test the input arguments */
  857. /* Parameter adjustments */
  858. a_dim1 = *lda;
  859. a_offset = 1 + a_dim1 * 1;
  860. a -= a_offset;
  861. --wr;
  862. --wi;
  863. vl_dim1 = *ldvl;
  864. vl_offset = 1 + vl_dim1 * 1;
  865. vl -= vl_offset;
  866. vr_dim1 = *ldvr;
  867. vr_offset = 1 + vr_dim1 * 1;
  868. vr -= vr_offset;
  869. --scale;
  870. --rconde;
  871. --rcondv;
  872. --work;
  873. --iwork;
  874. /* Function Body */
  875. *info = 0;
  876. lquery = *lwork == -1;
  877. wantvl = lsame_(jobvl, "V");
  878. wantvr = lsame_(jobvr, "V");
  879. wntsnn = lsame_(sense, "N");
  880. wntsne = lsame_(sense, "E");
  881. wntsnv = lsame_(sense, "V");
  882. wntsnb = lsame_(sense, "B");
  883. if (! (lsame_(balanc, "N") || lsame_(balanc, "S") || lsame_(balanc, "P")
  884. || lsame_(balanc, "B"))) {
  885. *info = -1;
  886. } else if (! wantvl && ! lsame_(jobvl, "N")) {
  887. *info = -2;
  888. } else if (! wantvr && ! lsame_(jobvr, "N")) {
  889. *info = -3;
  890. } else if (! (wntsnn || wntsne || wntsnb || wntsnv) || (wntsne || wntsnb)
  891. && ! (wantvl && wantvr)) {
  892. *info = -4;
  893. } else if (*n < 0) {
  894. *info = -5;
  895. } else if (*lda < f2cmax(1,*n)) {
  896. *info = -7;
  897. } else if (*ldvl < 1 || wantvl && *ldvl < *n) {
  898. *info = -11;
  899. } else if (*ldvr < 1 || wantvr && *ldvr < *n) {
  900. *info = -13;
  901. }
  902. /* Compute workspace */
  903. /* (Note: Comments in the code beginning "Workspace:" describe the */
  904. /* minimal amount of workspace needed at that point in the code, */
  905. /* as well as the preferred amount for good performance. */
  906. /* NB refers to the optimal block size for the immediately */
  907. /* following subroutine, as returned by ILAENV. */
  908. /* HSWORK refers to the workspace preferred by DHSEQR, as */
  909. /* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
  910. /* the worst case.) */
  911. if (*info == 0) {
  912. if (*n == 0) {
  913. minwrk = 1;
  914. maxwrk = 1;
  915. } else {
  916. maxwrk = *n + *n * ilaenv_(&c__1, "DGEHRD", " ", n, &c__1, n, &
  917. c__0, (ftnlen)6, (ftnlen)1);
  918. if (wantvl) {
  919. dtrevc3_("L", "B", select, n, &a[a_offset], lda, &vl[
  920. vl_offset], ldvl, &vr[vr_offset], ldvr, n, &nout, &
  921. work[1], &c_n1, &ierr);
  922. lwork_trevc__ = (integer) work[1];
  923. /* Computing MAX */
  924. i__1 = maxwrk, i__2 = *n + lwork_trevc__;
  925. maxwrk = f2cmax(i__1,i__2);
  926. dhseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[
  927. 1], &vl[vl_offset], ldvl, &work[1], &c_n1, info);
  928. } else if (wantvr) {
  929. dtrevc3_("R", "B", select, n, &a[a_offset], lda, &vl[
  930. vl_offset], ldvl, &vr[vr_offset], ldvr, n, &nout, &
  931. work[1], &c_n1, &ierr);
  932. lwork_trevc__ = (integer) work[1];
  933. /* Computing MAX */
  934. i__1 = maxwrk, i__2 = *n + lwork_trevc__;
  935. maxwrk = f2cmax(i__1,i__2);
  936. dhseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[
  937. 1], &vr[vr_offset], ldvr, &work[1], &c_n1, info);
  938. } else {
  939. if (wntsnn) {
  940. dhseqr_("E", "N", n, &c__1, n, &a[a_offset], lda, &wr[1],
  941. &wi[1], &vr[vr_offset], ldvr, &work[1], &c_n1,
  942. info);
  943. } else {
  944. dhseqr_("S", "N", n, &c__1, n, &a[a_offset], lda, &wr[1],
  945. &wi[1], &vr[vr_offset], ldvr, &work[1], &c_n1,
  946. info);
  947. }
  948. }
  949. hswork = (integer) work[1];
  950. if (! wantvl && ! wantvr) {
  951. minwrk = *n << 1;
  952. if (! wntsnn) {
  953. /* Computing MAX */
  954. i__1 = minwrk, i__2 = *n * *n + *n * 6;
  955. minwrk = f2cmax(i__1,i__2);
  956. }
  957. maxwrk = f2cmax(maxwrk,hswork);
  958. if (! wntsnn) {
  959. /* Computing MAX */
  960. i__1 = maxwrk, i__2 = *n * *n + *n * 6;
  961. maxwrk = f2cmax(i__1,i__2);
  962. }
  963. } else {
  964. minwrk = *n * 3;
  965. if (! wntsnn && ! wntsne) {
  966. /* Computing MAX */
  967. i__1 = minwrk, i__2 = *n * *n + *n * 6;
  968. minwrk = f2cmax(i__1,i__2);
  969. }
  970. maxwrk = f2cmax(maxwrk,hswork);
  971. /* Computing MAX */
  972. i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "DORGHR",
  973. " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
  974. maxwrk = f2cmax(i__1,i__2);
  975. if (! wntsnn && ! wntsne) {
  976. /* Computing MAX */
  977. i__1 = maxwrk, i__2 = *n * *n + *n * 6;
  978. maxwrk = f2cmax(i__1,i__2);
  979. }
  980. /* Computing MAX */
  981. i__1 = maxwrk, i__2 = *n * 3;
  982. maxwrk = f2cmax(i__1,i__2);
  983. }
  984. maxwrk = f2cmax(maxwrk,minwrk);
  985. }
  986. work[1] = (doublereal) maxwrk;
  987. if (*lwork < minwrk && ! lquery) {
  988. *info = -21;
  989. }
  990. }
  991. if (*info != 0) {
  992. i__1 = -(*info);
  993. xerbla_("DGEEVX", &i__1, (ftnlen)6);
  994. return;
  995. } else if (lquery) {
  996. return;
  997. }
  998. /* Quick return if possible */
  999. if (*n == 0) {
  1000. return;
  1001. }
  1002. /* Get machine constants */
  1003. eps = dlamch_("P");
  1004. smlnum = dlamch_("S");
  1005. bignum = 1. / smlnum;
  1006. dlabad_(&smlnum, &bignum);
  1007. smlnum = sqrt(smlnum) / eps;
  1008. bignum = 1. / smlnum;
  1009. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  1010. icond = 0;
  1011. anrm = dlange_("M", n, n, &a[a_offset], lda, dum);
  1012. scalea = FALSE_;
  1013. if (anrm > 0. && anrm < smlnum) {
  1014. scalea = TRUE_;
  1015. cscale = smlnum;
  1016. } else if (anrm > bignum) {
  1017. scalea = TRUE_;
  1018. cscale = bignum;
  1019. }
  1020. if (scalea) {
  1021. dlascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
  1022. ierr);
  1023. }
  1024. /* Balance the matrix and compute ABNRM */
  1025. dgebal_(balanc, n, &a[a_offset], lda, ilo, ihi, &scale[1], &ierr);
  1026. *abnrm = dlange_("1", n, n, &a[a_offset], lda, dum);
  1027. if (scalea) {
  1028. dum[0] = *abnrm;
  1029. dlascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &c__1, &
  1030. ierr);
  1031. *abnrm = dum[0];
  1032. }
  1033. /* Reduce to upper Hessenberg form */
  1034. /* (Workspace: need 2*N, prefer N+N*NB) */
  1035. itau = 1;
  1036. iwrk = itau + *n;
  1037. i__1 = *lwork - iwrk + 1;
  1038. dgehrd_(n, ilo, ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, &
  1039. ierr);
  1040. if (wantvl) {
  1041. /* Want left eigenvectors */
  1042. /* Copy Householder vectors to VL */
  1043. *(unsigned char *)side = 'L';
  1044. dlacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl)
  1045. ;
  1046. /* Generate orthogonal matrix in VL */
  1047. /* (Workspace: need 2*N-1, prefer N+(N-1)*NB) */
  1048. i__1 = *lwork - iwrk + 1;
  1049. dorghr_(n, ilo, ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk], &
  1050. i__1, &ierr);
  1051. /* Perform QR iteration, accumulating Schur vectors in VL */
  1052. /* (Workspace: need 1, prefer HSWORK (see comments) ) */
  1053. iwrk = itau;
  1054. i__1 = *lwork - iwrk + 1;
  1055. dhseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vl[
  1056. vl_offset], ldvl, &work[iwrk], &i__1, info);
  1057. if (wantvr) {
  1058. /* Want left and right eigenvectors */
  1059. /* Copy Schur vectors to VR */
  1060. *(unsigned char *)side = 'B';
  1061. dlacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr);
  1062. }
  1063. } else if (wantvr) {
  1064. /* Want right eigenvectors */
  1065. /* Copy Householder vectors to VR */
  1066. *(unsigned char *)side = 'R';
  1067. dlacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr)
  1068. ;
  1069. /* Generate orthogonal matrix in VR */
  1070. /* (Workspace: need 2*N-1, prefer N+(N-1)*NB) */
  1071. i__1 = *lwork - iwrk + 1;
  1072. dorghr_(n, ilo, ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk], &
  1073. i__1, &ierr);
  1074. /* Perform QR iteration, accumulating Schur vectors in VR */
  1075. /* (Workspace: need 1, prefer HSWORK (see comments) ) */
  1076. iwrk = itau;
  1077. i__1 = *lwork - iwrk + 1;
  1078. dhseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vr[
  1079. vr_offset], ldvr, &work[iwrk], &i__1, info);
  1080. } else {
  1081. /* Compute eigenvalues only */
  1082. /* If condition numbers desired, compute Schur form */
  1083. if (wntsnn) {
  1084. *(unsigned char *)job = 'E';
  1085. } else {
  1086. *(unsigned char *)job = 'S';
  1087. }
  1088. /* (Workspace: need 1, prefer HSWORK (see comments) ) */
  1089. iwrk = itau;
  1090. i__1 = *lwork - iwrk + 1;
  1091. dhseqr_(job, "N", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vr[
  1092. vr_offset], ldvr, &work[iwrk], &i__1, info);
  1093. }
  1094. /* If INFO .NE. 0 from DHSEQR, then quit */
  1095. if (*info != 0) {
  1096. goto L50;
  1097. }
  1098. if (wantvl || wantvr) {
  1099. /* Compute left and/or right eigenvectors */
  1100. /* (Workspace: need 3*N, prefer N + 2*N*NB) */
  1101. i__1 = *lwork - iwrk + 1;
  1102. dtrevc3_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset],
  1103. ldvl, &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &i__1, &
  1104. ierr);
  1105. }
  1106. /* Compute condition numbers if desired */
  1107. /* (Workspace: need N*N+6*N unless SENSE = 'E') */
  1108. if (! wntsnn) {
  1109. dtrsna_(sense, "A", select, n, &a[a_offset], lda, &vl[vl_offset],
  1110. ldvl, &vr[vr_offset], ldvr, &rconde[1], &rcondv[1], n, &nout,
  1111. &work[iwrk], n, &iwork[1], &icond);
  1112. }
  1113. if (wantvl) {
  1114. /* Undo balancing of left eigenvectors */
  1115. dgebak_(balanc, "L", n, ilo, ihi, &scale[1], n, &vl[vl_offset], ldvl,
  1116. &ierr);
  1117. /* Normalize left eigenvectors and make largest component real */
  1118. i__1 = *n;
  1119. for (i__ = 1; i__ <= i__1; ++i__) {
  1120. if (wi[i__] == 0.) {
  1121. scl = 1. / dnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
  1122. dscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
  1123. } else if (wi[i__] > 0.) {
  1124. d__1 = dnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
  1125. d__2 = dnrm2_(n, &vl[(i__ + 1) * vl_dim1 + 1], &c__1);
  1126. scl = 1. / dlapy2_(&d__1, &d__2);
  1127. dscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
  1128. dscal_(n, &scl, &vl[(i__ + 1) * vl_dim1 + 1], &c__1);
  1129. i__2 = *n;
  1130. for (k = 1; k <= i__2; ++k) {
  1131. /* Computing 2nd power */
  1132. d__1 = vl[k + i__ * vl_dim1];
  1133. /* Computing 2nd power */
  1134. d__2 = vl[k + (i__ + 1) * vl_dim1];
  1135. work[k] = d__1 * d__1 + d__2 * d__2;
  1136. /* L10: */
  1137. }
  1138. k = idamax_(n, &work[1], &c__1);
  1139. dlartg_(&vl[k + i__ * vl_dim1], &vl[k + (i__ + 1) * vl_dim1],
  1140. &cs, &sn, &r__);
  1141. drot_(n, &vl[i__ * vl_dim1 + 1], &c__1, &vl[(i__ + 1) *
  1142. vl_dim1 + 1], &c__1, &cs, &sn);
  1143. vl[k + (i__ + 1) * vl_dim1] = 0.;
  1144. }
  1145. /* L20: */
  1146. }
  1147. }
  1148. if (wantvr) {
  1149. /* Undo balancing of right eigenvectors */
  1150. dgebak_(balanc, "R", n, ilo, ihi, &scale[1], n, &vr[vr_offset], ldvr,
  1151. &ierr);
  1152. /* Normalize right eigenvectors and make largest component real */
  1153. i__1 = *n;
  1154. for (i__ = 1; i__ <= i__1; ++i__) {
  1155. if (wi[i__] == 0.) {
  1156. scl = 1. / dnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
  1157. dscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
  1158. } else if (wi[i__] > 0.) {
  1159. d__1 = dnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
  1160. d__2 = dnrm2_(n, &vr[(i__ + 1) * vr_dim1 + 1], &c__1);
  1161. scl = 1. / dlapy2_(&d__1, &d__2);
  1162. dscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
  1163. dscal_(n, &scl, &vr[(i__ + 1) * vr_dim1 + 1], &c__1);
  1164. i__2 = *n;
  1165. for (k = 1; k <= i__2; ++k) {
  1166. /* Computing 2nd power */
  1167. d__1 = vr[k + i__ * vr_dim1];
  1168. /* Computing 2nd power */
  1169. d__2 = vr[k + (i__ + 1) * vr_dim1];
  1170. work[k] = d__1 * d__1 + d__2 * d__2;
  1171. /* L30: */
  1172. }
  1173. k = idamax_(n, &work[1], &c__1);
  1174. dlartg_(&vr[k + i__ * vr_dim1], &vr[k + (i__ + 1) * vr_dim1],
  1175. &cs, &sn, &r__);
  1176. drot_(n, &vr[i__ * vr_dim1 + 1], &c__1, &vr[(i__ + 1) *
  1177. vr_dim1 + 1], &c__1, &cs, &sn);
  1178. vr[k + (i__ + 1) * vr_dim1] = 0.;
  1179. }
  1180. /* L40: */
  1181. }
  1182. }
  1183. /* Undo scaling if necessary */
  1184. L50:
  1185. if (scalea) {
  1186. i__1 = *n - *info;
  1187. /* Computing MAX */
  1188. i__3 = *n - *info;
  1189. i__2 = f2cmax(i__3,1);
  1190. dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[*info +
  1191. 1], &i__2, &ierr);
  1192. i__1 = *n - *info;
  1193. /* Computing MAX */
  1194. i__3 = *n - *info;
  1195. i__2 = f2cmax(i__3,1);
  1196. dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[*info +
  1197. 1], &i__2, &ierr);
  1198. if (*info == 0) {
  1199. if ((wntsnv || wntsnb) && icond == 0) {
  1200. dlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &rcondv[
  1201. 1], n, &ierr);
  1202. }
  1203. } else {
  1204. i__1 = *ilo - 1;
  1205. dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[1],
  1206. n, &ierr);
  1207. i__1 = *ilo - 1;
  1208. dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[1],
  1209. n, &ierr);
  1210. }
  1211. }
  1212. work[1] = (doublereal) maxwrk;
  1213. return;
  1214. /* End of DGEEVX */
  1215. } /* dgeevx_ */