You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clar1v.c 31 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* > \brief \b CLAR1V computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn
  486. of the tridiagonal matrix LDLT - λI. */
  487. /* =========== DOCUMENTATION =========== */
  488. /* Online html documentation available at */
  489. /* http://www.netlib.org/lapack/explore-html/ */
  490. /* > \htmlonly */
  491. /* > Download CLAR1V + dependencies */
  492. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clar1v.
  493. f"> */
  494. /* > [TGZ]</a> */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clar1v.
  496. f"> */
  497. /* > [ZIP]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clar1v.
  499. f"> */
  500. /* > [TXT]</a> */
  501. /* > \endhtmlonly */
  502. /* Definition: */
  503. /* =========== */
  504. /* SUBROUTINE CLAR1V( N, B1, BN, LAMBDA, D, L, LD, LLD, */
  505. /* PIVMIN, GAPTOL, Z, WANTNC, NEGCNT, ZTZ, MINGMA, */
  506. /* R, ISUPPZ, NRMINV, RESID, RQCORR, WORK ) */
  507. /* LOGICAL WANTNC */
  508. /* INTEGER B1, BN, N, NEGCNT, R */
  509. /* REAL GAPTOL, LAMBDA, MINGMA, NRMINV, PIVMIN, RESID, */
  510. /* $ RQCORR, ZTZ */
  511. /* INTEGER ISUPPZ( * ) */
  512. /* REAL D( * ), L( * ), LD( * ), LLD( * ), */
  513. /* $ WORK( * ) */
  514. /* COMPLEX Z( * ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > CLAR1V computes the (scaled) r-th column of the inverse of */
  521. /* > the sumbmatrix in rows B1 through BN of the tridiagonal matrix */
  522. /* > L D L**T - sigma I. When sigma is close to an eigenvalue, the */
  523. /* > computed vector is an accurate eigenvector. Usually, r corresponds */
  524. /* > to the index where the eigenvector is largest in magnitude. */
  525. /* > The following steps accomplish this computation : */
  526. /* > (a) Stationary qd transform, L D L**T - sigma I = L(+) D(+) L(+)**T, */
  527. /* > (b) Progressive qd transform, L D L**T - sigma I = U(-) D(-) U(-)**T, */
  528. /* > (c) Computation of the diagonal elements of the inverse of */
  529. /* > L D L**T - sigma I by combining the above transforms, and choosing */
  530. /* > r as the index where the diagonal of the inverse is (one of the) */
  531. /* > largest in magnitude. */
  532. /* > (d) Computation of the (scaled) r-th column of the inverse using the */
  533. /* > twisted factorization obtained by combining the top part of the */
  534. /* > the stationary and the bottom part of the progressive transform. */
  535. /* > \endverbatim */
  536. /* Arguments: */
  537. /* ========== */
  538. /* > \param[in] N */
  539. /* > \verbatim */
  540. /* > N is INTEGER */
  541. /* > The order of the matrix L D L**T. */
  542. /* > \endverbatim */
  543. /* > */
  544. /* > \param[in] B1 */
  545. /* > \verbatim */
  546. /* > B1 is INTEGER */
  547. /* > First index of the submatrix of L D L**T. */
  548. /* > \endverbatim */
  549. /* > */
  550. /* > \param[in] BN */
  551. /* > \verbatim */
  552. /* > BN is INTEGER */
  553. /* > Last index of the submatrix of L D L**T. */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in] LAMBDA */
  557. /* > \verbatim */
  558. /* > LAMBDA is REAL */
  559. /* > The shift. In order to compute an accurate eigenvector, */
  560. /* > LAMBDA should be a good approximation to an eigenvalue */
  561. /* > of L D L**T. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] L */
  565. /* > \verbatim */
  566. /* > L is REAL array, dimension (N-1) */
  567. /* > The (n-1) subdiagonal elements of the unit bidiagonal matrix */
  568. /* > L, in elements 1 to N-1. */
  569. /* > \endverbatim */
  570. /* > */
  571. /* > \param[in] D */
  572. /* > \verbatim */
  573. /* > D is REAL array, dimension (N) */
  574. /* > The n diagonal elements of the diagonal matrix D. */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in] LD */
  578. /* > \verbatim */
  579. /* > LD is REAL array, dimension (N-1) */
  580. /* > The n-1 elements L(i)*D(i). */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[in] LLD */
  584. /* > \verbatim */
  585. /* > LLD is REAL array, dimension (N-1) */
  586. /* > The n-1 elements L(i)*L(i)*D(i). */
  587. /* > \endverbatim */
  588. /* > */
  589. /* > \param[in] PIVMIN */
  590. /* > \verbatim */
  591. /* > PIVMIN is REAL */
  592. /* > The minimum pivot in the Sturm sequence. */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[in] GAPTOL */
  596. /* > \verbatim */
  597. /* > GAPTOL is REAL */
  598. /* > Tolerance that indicates when eigenvector entries are negligible */
  599. /* > w.r.t. their contribution to the residual. */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in,out] Z */
  603. /* > \verbatim */
  604. /* > Z is COMPLEX array, dimension (N) */
  605. /* > On input, all entries of Z must be set to 0. */
  606. /* > On output, Z contains the (scaled) r-th column of the */
  607. /* > inverse. The scaling is such that Z(R) equals 1. */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[in] WANTNC */
  611. /* > \verbatim */
  612. /* > WANTNC is LOGICAL */
  613. /* > Specifies whether NEGCNT has to be computed. */
  614. /* > \endverbatim */
  615. /* > */
  616. /* > \param[out] NEGCNT */
  617. /* > \verbatim */
  618. /* > NEGCNT is INTEGER */
  619. /* > If WANTNC is .TRUE. then NEGCNT = the number of pivots < pivmin */
  620. /* > in the matrix factorization L D L**T, and NEGCNT = -1 otherwise. */
  621. /* > \endverbatim */
  622. /* > */
  623. /* > \param[out] ZTZ */
  624. /* > \verbatim */
  625. /* > ZTZ is REAL */
  626. /* > The square of the 2-norm of Z. */
  627. /* > \endverbatim */
  628. /* > */
  629. /* > \param[out] MINGMA */
  630. /* > \verbatim */
  631. /* > MINGMA is REAL */
  632. /* > The reciprocal of the largest (in magnitude) diagonal */
  633. /* > element of the inverse of L D L**T - sigma I. */
  634. /* > \endverbatim */
  635. /* > */
  636. /* > \param[in,out] R */
  637. /* > \verbatim */
  638. /* > R is INTEGER */
  639. /* > The twist index for the twisted factorization used to */
  640. /* > compute Z. */
  641. /* > On input, 0 <= R <= N. If R is input as 0, R is set to */
  642. /* > the index where (L D L**T - sigma I)^{-1} is largest */
  643. /* > in magnitude. If 1 <= R <= N, R is unchanged. */
  644. /* > On output, R contains the twist index used to compute Z. */
  645. /* > Ideally, R designates the position of the maximum entry in the */
  646. /* > eigenvector. */
  647. /* > \endverbatim */
  648. /* > */
  649. /* > \param[out] ISUPPZ */
  650. /* > \verbatim */
  651. /* > ISUPPZ is INTEGER array, dimension (2) */
  652. /* > The support of the vector in Z, i.e., the vector Z is */
  653. /* > nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 ). */
  654. /* > \endverbatim */
  655. /* > */
  656. /* > \param[out] NRMINV */
  657. /* > \verbatim */
  658. /* > NRMINV is REAL */
  659. /* > NRMINV = 1/SQRT( ZTZ ) */
  660. /* > \endverbatim */
  661. /* > */
  662. /* > \param[out] RESID */
  663. /* > \verbatim */
  664. /* > RESID is REAL */
  665. /* > The residual of the FP vector. */
  666. /* > RESID = ABS( MINGMA )/SQRT( ZTZ ) */
  667. /* > \endverbatim */
  668. /* > */
  669. /* > \param[out] RQCORR */
  670. /* > \verbatim */
  671. /* > RQCORR is REAL */
  672. /* > The Rayleigh Quotient correction to LAMBDA. */
  673. /* > RQCORR = MINGMA*TMP */
  674. /* > \endverbatim */
  675. /* > */
  676. /* > \param[out] WORK */
  677. /* > \verbatim */
  678. /* > WORK is REAL array, dimension (4*N) */
  679. /* > \endverbatim */
  680. /* Authors: */
  681. /* ======== */
  682. /* > \author Univ. of Tennessee */
  683. /* > \author Univ. of California Berkeley */
  684. /* > \author Univ. of Colorado Denver */
  685. /* > \author NAG Ltd. */
  686. /* > \date December 2016 */
  687. /* > \ingroup complexOTHERauxiliary */
  688. /* > \par Contributors: */
  689. /* ================== */
  690. /* > */
  691. /* > Beresford Parlett, University of California, Berkeley, USA \n */
  692. /* > Jim Demmel, University of California, Berkeley, USA \n */
  693. /* > Inderjit Dhillon, University of Texas, Austin, USA \n */
  694. /* > Osni Marques, LBNL/NERSC, USA \n */
  695. /* > Christof Voemel, University of California, Berkeley, USA */
  696. /* ===================================================================== */
  697. /* Subroutine */ void clar1v_(integer *n, integer *b1, integer *bn, real *
  698. lambda, real *d__, real *l, real *ld, real *lld, real *pivmin, real *
  699. gaptol, complex *z__, logical *wantnc, integer *negcnt, real *ztz,
  700. real *mingma, integer *r__, integer *isuppz, real *nrminv, real *
  701. resid, real *rqcorr, real *work)
  702. {
  703. /* System generated locals */
  704. integer i__1, i__2, i__3, i__4;
  705. real r__1;
  706. complex q__1, q__2;
  707. /* Local variables */
  708. integer indp, inds, i__;
  709. real s, dplus;
  710. integer r1, r2;
  711. extern real slamch_(char *);
  712. integer indlpl, indumn;
  713. extern logical sisnan_(real *);
  714. real dminus;
  715. logical sawnan1, sawnan2;
  716. real eps, tmp;
  717. integer neg1, neg2;
  718. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  719. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  720. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  721. /* December 2016 */
  722. /* ===================================================================== */
  723. /* Parameter adjustments */
  724. --work;
  725. --isuppz;
  726. --z__;
  727. --lld;
  728. --ld;
  729. --l;
  730. --d__;
  731. /* Function Body */
  732. eps = slamch_("Precision");
  733. if (*r__ == 0) {
  734. r1 = *b1;
  735. r2 = *bn;
  736. } else {
  737. r1 = *r__;
  738. r2 = *r__;
  739. }
  740. /* Storage for LPLUS */
  741. indlpl = 0;
  742. /* Storage for UMINUS */
  743. indumn = *n;
  744. inds = (*n << 1) + 1;
  745. indp = *n * 3 + 1;
  746. if (*b1 == 1) {
  747. work[inds] = 0.f;
  748. } else {
  749. work[inds + *b1 - 1] = lld[*b1 - 1];
  750. }
  751. /* Compute the stationary transform (using the differential form) */
  752. /* until the index R2. */
  753. sawnan1 = FALSE_;
  754. neg1 = 0;
  755. s = work[inds + *b1 - 1] - *lambda;
  756. i__1 = r1 - 1;
  757. for (i__ = *b1; i__ <= i__1; ++i__) {
  758. dplus = d__[i__] + s;
  759. work[indlpl + i__] = ld[i__] / dplus;
  760. if (dplus < 0.f) {
  761. ++neg1;
  762. }
  763. work[inds + i__] = s * work[indlpl + i__] * l[i__];
  764. s = work[inds + i__] - *lambda;
  765. /* L50: */
  766. }
  767. sawnan1 = sisnan_(&s);
  768. if (sawnan1) {
  769. goto L60;
  770. }
  771. i__1 = r2 - 1;
  772. for (i__ = r1; i__ <= i__1; ++i__) {
  773. dplus = d__[i__] + s;
  774. work[indlpl + i__] = ld[i__] / dplus;
  775. work[inds + i__] = s * work[indlpl + i__] * l[i__];
  776. s = work[inds + i__] - *lambda;
  777. /* L51: */
  778. }
  779. sawnan1 = sisnan_(&s);
  780. L60:
  781. if (sawnan1) {
  782. /* Runs a slower version of the above loop if a NaN is detected */
  783. neg1 = 0;
  784. s = work[inds + *b1 - 1] - *lambda;
  785. i__1 = r1 - 1;
  786. for (i__ = *b1; i__ <= i__1; ++i__) {
  787. dplus = d__[i__] + s;
  788. if (abs(dplus) < *pivmin) {
  789. dplus = -(*pivmin);
  790. }
  791. work[indlpl + i__] = ld[i__] / dplus;
  792. if (dplus < 0.f) {
  793. ++neg1;
  794. }
  795. work[inds + i__] = s * work[indlpl + i__] * l[i__];
  796. if (work[indlpl + i__] == 0.f) {
  797. work[inds + i__] = lld[i__];
  798. }
  799. s = work[inds + i__] - *lambda;
  800. /* L70: */
  801. }
  802. i__1 = r2 - 1;
  803. for (i__ = r1; i__ <= i__1; ++i__) {
  804. dplus = d__[i__] + s;
  805. if (abs(dplus) < *pivmin) {
  806. dplus = -(*pivmin);
  807. }
  808. work[indlpl + i__] = ld[i__] / dplus;
  809. work[inds + i__] = s * work[indlpl + i__] * l[i__];
  810. if (work[indlpl + i__] == 0.f) {
  811. work[inds + i__] = lld[i__];
  812. }
  813. s = work[inds + i__] - *lambda;
  814. /* L71: */
  815. }
  816. }
  817. /* Compute the progressive transform (using the differential form) */
  818. /* until the index R1 */
  819. sawnan2 = FALSE_;
  820. neg2 = 0;
  821. work[indp + *bn - 1] = d__[*bn] - *lambda;
  822. i__1 = r1;
  823. for (i__ = *bn - 1; i__ >= i__1; --i__) {
  824. dminus = lld[i__] + work[indp + i__];
  825. tmp = d__[i__] / dminus;
  826. if (dminus < 0.f) {
  827. ++neg2;
  828. }
  829. work[indumn + i__] = l[i__] * tmp;
  830. work[indp + i__ - 1] = work[indp + i__] * tmp - *lambda;
  831. /* L80: */
  832. }
  833. tmp = work[indp + r1 - 1];
  834. sawnan2 = sisnan_(&tmp);
  835. if (sawnan2) {
  836. /* Runs a slower version of the above loop if a NaN is detected */
  837. neg2 = 0;
  838. i__1 = r1;
  839. for (i__ = *bn - 1; i__ >= i__1; --i__) {
  840. dminus = lld[i__] + work[indp + i__];
  841. if (abs(dminus) < *pivmin) {
  842. dminus = -(*pivmin);
  843. }
  844. tmp = d__[i__] / dminus;
  845. if (dminus < 0.f) {
  846. ++neg2;
  847. }
  848. work[indumn + i__] = l[i__] * tmp;
  849. work[indp + i__ - 1] = work[indp + i__] * tmp - *lambda;
  850. if (tmp == 0.f) {
  851. work[indp + i__ - 1] = d__[i__] - *lambda;
  852. }
  853. /* L100: */
  854. }
  855. }
  856. /* Find the index (from R1 to R2) of the largest (in magnitude) */
  857. /* diagonal element of the inverse */
  858. *mingma = work[inds + r1 - 1] + work[indp + r1 - 1];
  859. if (*mingma < 0.f) {
  860. ++neg1;
  861. }
  862. if (*wantnc) {
  863. *negcnt = neg1 + neg2;
  864. } else {
  865. *negcnt = -1;
  866. }
  867. if (abs(*mingma) == 0.f) {
  868. *mingma = eps * work[inds + r1 - 1];
  869. }
  870. *r__ = r1;
  871. i__1 = r2 - 1;
  872. for (i__ = r1; i__ <= i__1; ++i__) {
  873. tmp = work[inds + i__] + work[indp + i__];
  874. if (tmp == 0.f) {
  875. tmp = eps * work[inds + i__];
  876. }
  877. if (abs(tmp) <= abs(*mingma)) {
  878. *mingma = tmp;
  879. *r__ = i__ + 1;
  880. }
  881. /* L110: */
  882. }
  883. /* Compute the FP vector: solve N^T v = e_r */
  884. isuppz[1] = *b1;
  885. isuppz[2] = *bn;
  886. i__1 = *r__;
  887. z__[i__1].r = 1.f, z__[i__1].i = 0.f;
  888. *ztz = 1.f;
  889. /* Compute the FP vector upwards from R */
  890. if (! sawnan1 && ! sawnan2) {
  891. i__1 = *b1;
  892. for (i__ = *r__ - 1; i__ >= i__1; --i__) {
  893. i__2 = i__;
  894. i__3 = indlpl + i__;
  895. i__4 = i__ + 1;
  896. q__2.r = work[i__3] * z__[i__4].r, q__2.i = work[i__3] * z__[i__4]
  897. .i;
  898. q__1.r = -q__2.r, q__1.i = -q__2.i;
  899. z__[i__2].r = q__1.r, z__[i__2].i = q__1.i;
  900. if ((c_abs(&z__[i__]) + c_abs(&z__[i__ + 1])) * (r__1 = ld[i__],
  901. abs(r__1)) < *gaptol) {
  902. i__2 = i__;
  903. z__[i__2].r = 0.f, z__[i__2].i = 0.f;
  904. isuppz[1] = i__ + 1;
  905. goto L220;
  906. }
  907. i__2 = i__;
  908. i__3 = i__;
  909. q__1.r = z__[i__2].r * z__[i__3].r - z__[i__2].i * z__[i__3].i,
  910. q__1.i = z__[i__2].r * z__[i__3].i + z__[i__2].i * z__[
  911. i__3].r;
  912. *ztz += q__1.r;
  913. /* L210: */
  914. }
  915. L220:
  916. ;
  917. } else {
  918. /* Run slower loop if NaN occurred. */
  919. i__1 = *b1;
  920. for (i__ = *r__ - 1; i__ >= i__1; --i__) {
  921. i__2 = i__ + 1;
  922. if (z__[i__2].r == 0.f && z__[i__2].i == 0.f) {
  923. i__2 = i__;
  924. r__1 = -(ld[i__ + 1] / ld[i__]);
  925. i__3 = i__ + 2;
  926. q__1.r = r__1 * z__[i__3].r, q__1.i = r__1 * z__[i__3].i;
  927. z__[i__2].r = q__1.r, z__[i__2].i = q__1.i;
  928. } else {
  929. i__2 = i__;
  930. i__3 = indlpl + i__;
  931. i__4 = i__ + 1;
  932. q__2.r = work[i__3] * z__[i__4].r, q__2.i = work[i__3] * z__[
  933. i__4].i;
  934. q__1.r = -q__2.r, q__1.i = -q__2.i;
  935. z__[i__2].r = q__1.r, z__[i__2].i = q__1.i;
  936. }
  937. if ((c_abs(&z__[i__]) + c_abs(&z__[i__ + 1])) * (r__1 = ld[i__],
  938. abs(r__1)) < *gaptol) {
  939. i__2 = i__;
  940. z__[i__2].r = 0.f, z__[i__2].i = 0.f;
  941. isuppz[1] = i__ + 1;
  942. goto L240;
  943. }
  944. i__2 = i__;
  945. i__3 = i__;
  946. q__1.r = z__[i__2].r * z__[i__3].r - z__[i__2].i * z__[i__3].i,
  947. q__1.i = z__[i__2].r * z__[i__3].i + z__[i__2].i * z__[
  948. i__3].r;
  949. *ztz += q__1.r;
  950. /* L230: */
  951. }
  952. L240:
  953. ;
  954. }
  955. /* Compute the FP vector downwards from R in blocks of size BLKSIZ */
  956. if (! sawnan1 && ! sawnan2) {
  957. i__1 = *bn - 1;
  958. for (i__ = *r__; i__ <= i__1; ++i__) {
  959. i__2 = i__ + 1;
  960. i__3 = indumn + i__;
  961. i__4 = i__;
  962. q__2.r = work[i__3] * z__[i__4].r, q__2.i = work[i__3] * z__[i__4]
  963. .i;
  964. q__1.r = -q__2.r, q__1.i = -q__2.i;
  965. z__[i__2].r = q__1.r, z__[i__2].i = q__1.i;
  966. if ((c_abs(&z__[i__]) + c_abs(&z__[i__ + 1])) * (r__1 = ld[i__],
  967. abs(r__1)) < *gaptol) {
  968. i__2 = i__ + 1;
  969. z__[i__2].r = 0.f, z__[i__2].i = 0.f;
  970. isuppz[2] = i__;
  971. goto L260;
  972. }
  973. i__2 = i__ + 1;
  974. i__3 = i__ + 1;
  975. q__1.r = z__[i__2].r * z__[i__3].r - z__[i__2].i * z__[i__3].i,
  976. q__1.i = z__[i__2].r * z__[i__3].i + z__[i__2].i * z__[
  977. i__3].r;
  978. *ztz += q__1.r;
  979. /* L250: */
  980. }
  981. L260:
  982. ;
  983. } else {
  984. /* Run slower loop if NaN occurred. */
  985. i__1 = *bn - 1;
  986. for (i__ = *r__; i__ <= i__1; ++i__) {
  987. i__2 = i__;
  988. if (z__[i__2].r == 0.f && z__[i__2].i == 0.f) {
  989. i__2 = i__ + 1;
  990. r__1 = -(ld[i__ - 1] / ld[i__]);
  991. i__3 = i__ - 1;
  992. q__1.r = r__1 * z__[i__3].r, q__1.i = r__1 * z__[i__3].i;
  993. z__[i__2].r = q__1.r, z__[i__2].i = q__1.i;
  994. } else {
  995. i__2 = i__ + 1;
  996. i__3 = indumn + i__;
  997. i__4 = i__;
  998. q__2.r = work[i__3] * z__[i__4].r, q__2.i = work[i__3] * z__[
  999. i__4].i;
  1000. q__1.r = -q__2.r, q__1.i = -q__2.i;
  1001. z__[i__2].r = q__1.r, z__[i__2].i = q__1.i;
  1002. }
  1003. if ((c_abs(&z__[i__]) + c_abs(&z__[i__ + 1])) * (r__1 = ld[i__],
  1004. abs(r__1)) < *gaptol) {
  1005. i__2 = i__ + 1;
  1006. z__[i__2].r = 0.f, z__[i__2].i = 0.f;
  1007. isuppz[2] = i__;
  1008. goto L280;
  1009. }
  1010. i__2 = i__ + 1;
  1011. i__3 = i__ + 1;
  1012. q__1.r = z__[i__2].r * z__[i__3].r - z__[i__2].i * z__[i__3].i,
  1013. q__1.i = z__[i__2].r * z__[i__3].i + z__[i__2].i * z__[
  1014. i__3].r;
  1015. *ztz += q__1.r;
  1016. /* L270: */
  1017. }
  1018. L280:
  1019. ;
  1020. }
  1021. /* Compute quantities for convergence test */
  1022. tmp = 1.f / *ztz;
  1023. *nrminv = sqrt(tmp);
  1024. *resid = abs(*mingma) * *nrminv;
  1025. *rqcorr = *mingma * tmp;
  1026. return;
  1027. /* End of CLAR1V */
  1028. } /* clar1v_ */