|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090 |
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle_() continue;
- #define myceiling_(w) {ceil(w)}
- #define myhuge_(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static doublecomplex c_b19 = {1.,0.};
- static doublecomplex c_b20 = {0.,0.};
- static logical c_false = FALSE_;
- static integer c__3 = 3;
-
- /* > \brief \b ZTGSNA */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download ZTGSNA + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztgsna.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztgsna.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztgsna.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE ZTGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL, */
- /* LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK, */
- /* IWORK, INFO ) */
-
- /* CHARACTER HOWMNY, JOB */
- /* INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N */
- /* LOGICAL SELECT( * ) */
- /* INTEGER IWORK( * ) */
- /* DOUBLE PRECISION DIF( * ), S( * ) */
- /* COMPLEX*16 A( LDA, * ), B( LDB, * ), VL( LDVL, * ), */
- /* $ VR( LDVR, * ), WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > ZTGSNA estimates reciprocal condition numbers for specified */
- /* > eigenvalues and/or eigenvectors of a matrix pair (A, B). */
- /* > */
- /* > (A, B) must be in generalized Schur canonical form, that is, A and */
- /* > B are both upper triangular. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] JOB */
- /* > \verbatim */
- /* > JOB is CHARACTER*1 */
- /* > Specifies whether condition numbers are required for */
- /* > eigenvalues (S) or eigenvectors (DIF): */
- /* > = 'E': for eigenvalues only (S); */
- /* > = 'V': for eigenvectors only (DIF); */
- /* > = 'B': for both eigenvalues and eigenvectors (S and DIF). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] HOWMNY */
- /* > \verbatim */
- /* > HOWMNY is CHARACTER*1 */
- /* > = 'A': compute condition numbers for all eigenpairs; */
- /* > = 'S': compute condition numbers for selected eigenpairs */
- /* > specified by the array SELECT. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] SELECT */
- /* > \verbatim */
- /* > SELECT is LOGICAL array, dimension (N) */
- /* > If HOWMNY = 'S', SELECT specifies the eigenpairs for which */
- /* > condition numbers are required. To select condition numbers */
- /* > for the corresponding j-th eigenvalue and/or eigenvector, */
- /* > SELECT(j) must be set to .TRUE.. */
- /* > If HOWMNY = 'A', SELECT is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the square matrix pair (A, B). N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] A */
- /* > \verbatim */
- /* > A is COMPLEX*16 array, dimension (LDA,N) */
- /* > The upper triangular matrix A in the pair (A,B). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] B */
- /* > \verbatim */
- /* > B is COMPLEX*16 array, dimension (LDB,N) */
- /* > The upper triangular matrix B in the pair (A, B). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] VL */
- /* > \verbatim */
- /* > VL is COMPLEX*16 array, dimension (LDVL,M) */
- /* > IF JOB = 'E' or 'B', VL must contain left eigenvectors of */
- /* > (A, B), corresponding to the eigenpairs specified by HOWMNY */
- /* > and SELECT. The eigenvectors must be stored in consecutive */
- /* > columns of VL, as returned by ZTGEVC. */
- /* > If JOB = 'V', VL is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVL */
- /* > \verbatim */
- /* > LDVL is INTEGER */
- /* > The leading dimension of the array VL. LDVL >= 1; and */
- /* > If JOB = 'E' or 'B', LDVL >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] VR */
- /* > \verbatim */
- /* > VR is COMPLEX*16 array, dimension (LDVR,M) */
- /* > IF JOB = 'E' or 'B', VR must contain right eigenvectors of */
- /* > (A, B), corresponding to the eigenpairs specified by HOWMNY */
- /* > and SELECT. The eigenvectors must be stored in consecutive */
- /* > columns of VR, as returned by ZTGEVC. */
- /* > If JOB = 'V', VR is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVR */
- /* > \verbatim */
- /* > LDVR is INTEGER */
- /* > The leading dimension of the array VR. LDVR >= 1; */
- /* > If JOB = 'E' or 'B', LDVR >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] S */
- /* > \verbatim */
- /* > S is DOUBLE PRECISION array, dimension (MM) */
- /* > If JOB = 'E' or 'B', the reciprocal condition numbers of the */
- /* > selected eigenvalues, stored in consecutive elements of the */
- /* > array. */
- /* > If JOB = 'V', S is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] DIF */
- /* > \verbatim */
- /* > DIF is DOUBLE PRECISION array, dimension (MM) */
- /* > If JOB = 'V' or 'B', the estimated reciprocal condition */
- /* > numbers of the selected eigenvectors, stored in consecutive */
- /* > elements of the array. */
- /* > If the eigenvalues cannot be reordered to compute DIF(j), */
- /* > DIF(j) is set to 0; this can only occur when the true value */
- /* > would be very small anyway. */
- /* > For each eigenvalue/vector specified by SELECT, DIF stores */
- /* > a Frobenius norm-based estimate of Difl. */
- /* > If JOB = 'E', DIF is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] MM */
- /* > \verbatim */
- /* > MM is INTEGER */
- /* > The number of elements in the arrays S and DIF. MM >= M. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The number of elements of the arrays S and DIF used to store */
- /* > the specified condition numbers; for each selected eigenvalue */
- /* > one element is used. If HOWMNY = 'A', M is set to N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
- /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. LWORK >= f2cmax(1,N). */
- /* > If JOB = 'V' or 'B', LWORK >= f2cmax(1,2*N*N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IWORK */
- /* > \verbatim */
- /* > IWORK is INTEGER array, dimension (N+2) */
- /* > If JOB = 'E', IWORK is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: Successful exit */
- /* > < 0: If INFO = -i, the i-th argument had an illegal value */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup complex16OTHERcomputational */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > The reciprocal of the condition number of the i-th generalized */
- /* > eigenvalue w = (a, b) is defined as */
- /* > */
- /* > S(I) = (|v**HAu|**2 + |v**HBu|**2)**(1/2) / (norm(u)*norm(v)) */
- /* > */
- /* > where u and v are the right and left eigenvectors of (A, B) */
- /* > corresponding to w; |z| denotes the absolute value of the complex */
- /* > number, and norm(u) denotes the 2-norm of the vector u. The pair */
- /* > (a, b) corresponds to an eigenvalue w = a/b (= v**HAu/v**HBu) of the */
- /* > matrix pair (A, B). If both a and b equal zero, then (A,B) is */
- /* > singular and S(I) = -1 is returned. */
- /* > */
- /* > An approximate error bound on the chordal distance between the i-th */
- /* > computed generalized eigenvalue w and the corresponding exact */
- /* > eigenvalue lambda is */
- /* > */
- /* > chord(w, lambda) <= EPS * norm(A, B) / S(I), */
- /* > */
- /* > where EPS is the machine precision. */
- /* > */
- /* > The reciprocal of the condition number of the right eigenvector u */
- /* > and left eigenvector v corresponding to the generalized eigenvalue w */
- /* > is defined as follows. Suppose */
- /* > */
- /* > (A, B) = ( a * ) ( b * ) 1 */
- /* > ( 0 A22 ),( 0 B22 ) n-1 */
- /* > 1 n-1 1 n-1 */
- /* > */
- /* > Then the reciprocal condition number DIF(I) is */
- /* > */
- /* > Difl[(a, b), (A22, B22)] = sigma-f2cmin( Zl ) */
- /* > */
- /* > where sigma-f2cmin(Zl) denotes the smallest singular value of */
- /* > */
- /* > Zl = [ kron(a, In-1) -kron(1, A22) ] */
- /* > [ kron(b, In-1) -kron(1, B22) ]. */
- /* > */
- /* > Here In-1 is the identity matrix of size n-1 and X**H is the conjugate */
- /* > transpose of X. kron(X, Y) is the Kronecker product between the */
- /* > matrices X and Y. */
- /* > */
- /* > We approximate the smallest singular value of Zl with an upper */
- /* > bound. This is done by ZLATDF. */
- /* > */
- /* > An approximate error bound for a computed eigenvector VL(i) or */
- /* > VR(i) is given by */
- /* > */
- /* > EPS * norm(A, B) / DIF(i). */
- /* > */
- /* > See ref. [2-3] for more details and further references. */
- /* > \endverbatim */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
- /* > Umea University, S-901 87 Umea, Sweden. */
-
- /* > \par References: */
- /* ================ */
- /* > */
- /* > \verbatim */
- /* > */
- /* > [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
- /* > Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
- /* > M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
- /* > Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */
- /* > */
- /* > [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */
- /* > Eigenvalues of a Regular Matrix Pair (A, B) and Condition */
- /* > Estimation: Theory, Algorithms and Software, Report */
- /* > UMINF - 94.04, Department of Computing Science, Umea University, */
- /* > S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87. */
- /* > To appear in Numerical Algorithms, 1996. */
- /* > */
- /* > [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software */
- /* > for Solving the Generalized Sylvester Equation and Estimating the */
- /* > Separation between Regular Matrix Pairs, Report UMINF - 93.23, */
- /* > Department of Computing Science, Umea University, S-901 87 Umea, */
- /* > Sweden, December 1993, Revised April 1994, Also as LAPACK Working */
- /* > Note 75. */
- /* > To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996. */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void ztgsna_(char *job, char *howmny, logical *select,
- integer *n, doublecomplex *a, integer *lda, doublecomplex *b, integer
- *ldb, doublecomplex *vl, integer *ldvl, doublecomplex *vr, integer *
- ldvr, doublereal *s, doublereal *dif, integer *mm, integer *m,
- doublecomplex *work, integer *lwork, integer *iwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1,
- vr_offset, i__1;
- doublereal d__1, d__2;
- doublecomplex z__1;
-
- /* Local variables */
- doublereal cond;
- integer ierr, ifst;
- doublereal lnrm;
- doublecomplex yhax, yhbx;
- integer ilst;
- doublereal rnrm;
- integer i__, k;
- doublereal scale;
- extern logical lsame_(char *, char *);
- extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *,
- doublecomplex *, integer *, doublecomplex *, integer *);
- integer lwmin;
- extern /* Subroutine */ void zgemv_(char *, integer *, integer *,
- doublecomplex *, doublecomplex *, integer *, doublecomplex *,
- integer *, doublecomplex *, doublecomplex *, integer *);
- logical wants;
- doublecomplex dummy[1];
- integer n1, n2;
- extern doublereal dlapy2_(doublereal *, doublereal *);
- extern /* Subroutine */ void dlabad_(doublereal *, doublereal *);
- doublecomplex dummy1[1];
- extern doublereal dznrm2_(integer *, doublecomplex *, integer *), dlamch_(
- char *);
- integer ks;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- doublereal bignum;
- logical wantbh, wantdf, somcon;
- extern /* Subroutine */ void zlacpy_(char *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, integer *),
- ztgexc_(logical *, logical *, integer *, doublecomplex *, integer
- *, doublecomplex *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *, integer *, integer *, integer *);
- doublereal smlnum;
- logical lquery;
- extern /* Subroutine */ void ztgsyl_(char *, integer *, integer *, integer
- *, doublecomplex *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *, doublecomplex *, integer *,
- doublereal *, doublereal *, doublecomplex *, integer *, integer *,
- integer *);
- doublereal eps;
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Decode and test the input parameters */
-
- /* Parameter adjustments */
- --select;
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- vl_dim1 = *ldvl;
- vl_offset = 1 + vl_dim1 * 1;
- vl -= vl_offset;
- vr_dim1 = *ldvr;
- vr_offset = 1 + vr_dim1 * 1;
- vr -= vr_offset;
- --s;
- --dif;
- --work;
- --iwork;
-
- /* Function Body */
- wantbh = lsame_(job, "B");
- wants = lsame_(job, "E") || wantbh;
- wantdf = lsame_(job, "V") || wantbh;
-
- somcon = lsame_(howmny, "S");
-
- *info = 0;
- lquery = *lwork == -1;
-
- if (! wants && ! wantdf) {
- *info = -1;
- } else if (! lsame_(howmny, "A") && ! somcon) {
- *info = -2;
- } else if (*n < 0) {
- *info = -4;
- } else if (*lda < f2cmax(1,*n)) {
- *info = -6;
- } else if (*ldb < f2cmax(1,*n)) {
- *info = -8;
- } else if (wants && *ldvl < *n) {
- *info = -10;
- } else if (wants && *ldvr < *n) {
- *info = -12;
- } else {
-
- /* Set M to the number of eigenpairs for which condition numbers */
- /* are required, and test MM. */
-
- if (somcon) {
- *m = 0;
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- if (select[k]) {
- ++(*m);
- }
- /* L10: */
- }
- } else {
- *m = *n;
- }
-
- if (*n == 0) {
- lwmin = 1;
- } else if (lsame_(job, "V") || lsame_(job,
- "B")) {
- lwmin = (*n << 1) * *n;
- } else {
- lwmin = *n;
- }
- work[1].r = (doublereal) lwmin, work[1].i = 0.;
-
- if (*mm < *m) {
- *info = -15;
- } else if (*lwork < lwmin && ! lquery) {
- *info = -18;
- }
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZTGSNA", &i__1, (ftnlen)6);
- return;
- } else if (lquery) {
- return;
- }
-
- /* Quick return if possible */
-
- if (*n == 0) {
- return;
- }
-
- /* Get machine constants */
-
- eps = dlamch_("P");
- smlnum = dlamch_("S") / eps;
- bignum = 1. / smlnum;
- dlabad_(&smlnum, &bignum);
- ks = 0;
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
-
- /* Determine whether condition numbers are required for the k-th */
- /* eigenpair. */
-
- if (somcon) {
- if (! select[k]) {
- goto L20;
- }
- }
-
- ++ks;
-
- if (wants) {
-
- /* Compute the reciprocal condition number of the k-th */
- /* eigenvalue. */
-
- rnrm = dznrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
- lnrm = dznrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
- zgemv_("N", n, n, &c_b19, &a[a_offset], lda, &vr[ks * vr_dim1 + 1]
- , &c__1, &c_b20, &work[1], &c__1);
- zdotc_(&z__1, n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &c__1);
- yhax.r = z__1.r, yhax.i = z__1.i;
- zgemv_("N", n, n, &c_b19, &b[b_offset], ldb, &vr[ks * vr_dim1 + 1]
- , &c__1, &c_b20, &work[1], &c__1);
- zdotc_(&z__1, n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &c__1);
- yhbx.r = z__1.r, yhbx.i = z__1.i;
- d__1 = z_abs(&yhax);
- d__2 = z_abs(&yhbx);
- cond = dlapy2_(&d__1, &d__2);
- if (cond == 0.) {
- s[ks] = -1.;
- } else {
- s[ks] = cond / (rnrm * lnrm);
- }
- }
-
- if (wantdf) {
- if (*n == 1) {
- d__1 = z_abs(&a[a_dim1 + 1]);
- d__2 = z_abs(&b[b_dim1 + 1]);
- dif[ks] = dlapy2_(&d__1, &d__2);
- } else {
-
- /* Estimate the reciprocal condition number of the k-th */
- /* eigenvectors. */
-
- /* Copy the matrix (A, B) to the array WORK and move the */
- /* (k,k)th pair to the (1,1) position. */
-
- zlacpy_("Full", n, n, &a[a_offset], lda, &work[1], n);
- zlacpy_("Full", n, n, &b[b_offset], ldb, &work[*n * *n + 1],
- n);
- ifst = k;
- ilst = 1;
-
- ztgexc_(&c_false, &c_false, n, &work[1], n, &work[*n * *n + 1]
- , n, dummy, &c__1, dummy1, &c__1, &ifst, &ilst, &ierr)
- ;
-
- if (ierr > 0) {
-
- /* Ill-conditioned problem - swap rejected. */
-
- dif[ks] = 0.;
- } else {
-
- /* Reordering successful, solve generalized Sylvester */
- /* equation for R and L, */
- /* A22 * R - L * A11 = A12 */
- /* B22 * R - L * B11 = B12, */
- /* and compute estimate of Difl[(A11,B11), (A22, B22)]. */
-
- n1 = 1;
- n2 = *n - n1;
- i__ = *n * *n + 1;
- ztgsyl_("N", &c__3, &n2, &n1, &work[*n * n1 + n1 + 1], n,
- &work[1], n, &work[n1 + 1], n, &work[*n * n1 + n1
- + i__], n, &work[i__], n, &work[n1 + i__], n, &
- scale, &dif[ks], dummy, &c__1, &iwork[1], &ierr);
- }
- }
- }
-
- L20:
- ;
- }
- work[1].r = (doublereal) lwmin, work[1].i = 0.;
- return;
-
- /* End of ZTGSNA */
-
- } /* ztgsna_ */
-
|