|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418 |
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static integer c_n1 = -1;
- static integer c__3 = 3;
- static integer c__2 = 2;
- static integer c__0 = 0;
-
- /* > \brief \b SLARRD computes the eigenvalues of a symmetric tridiagonal matrix to suitable accuracy. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download SLARRD + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarrd.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarrd.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarrd.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE SLARRD( RANGE, ORDER, N, VL, VU, IL, IU, GERS, */
- /* RELTOL, D, E, E2, PIVMIN, NSPLIT, ISPLIT, */
- /* M, W, WERR, WL, WU, IBLOCK, INDEXW, */
- /* WORK, IWORK, INFO ) */
-
- /* CHARACTER ORDER, RANGE */
- /* INTEGER IL, INFO, IU, M, N, NSPLIT */
- /* REAL PIVMIN, RELTOL, VL, VU, WL, WU */
- /* INTEGER IBLOCK( * ), INDEXW( * ), */
- /* $ ISPLIT( * ), IWORK( * ) */
- /* REAL D( * ), E( * ), E2( * ), */
- /* $ GERS( * ), W( * ), WERR( * ), WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > SLARRD computes the eigenvalues of a symmetric tridiagonal */
- /* > matrix T to suitable accuracy. This is an auxiliary code to be */
- /* > called from SSTEMR. */
- /* > The user may ask for all eigenvalues, all eigenvalues */
- /* > in the half-open interval (VL, VU], or the IL-th through IU-th */
- /* > eigenvalues. */
- /* > */
- /* > To avoid overflow, the matrix must be scaled so that its */
- /* > largest element is no greater than overflow**(1/2) * underflow**(1/4) in absolute value, and for greatest
- */
- /* > accuracy, it should not be much smaller than that. */
- /* > */
- /* > See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal */
- /* > Matrix", Report CS41, Computer Science Dept., Stanford */
- /* > University, July 21, 1966. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] RANGE */
- /* > \verbatim */
- /* > RANGE is CHARACTER*1 */
- /* > = 'A': ("All") all eigenvalues will be found. */
- /* > = 'V': ("Value") all eigenvalues in the half-open interval */
- /* > (VL, VU] will be found. */
- /* > = 'I': ("Index") the IL-th through IU-th eigenvalues (of the */
- /* > entire matrix) will be found. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] ORDER */
- /* > \verbatim */
- /* > ORDER is CHARACTER*1 */
- /* > = 'B': ("By Block") the eigenvalues will be grouped by */
- /* > split-off block (see IBLOCK, ISPLIT) and */
- /* > ordered from smallest to largest within */
- /* > the block. */
- /* > = 'E': ("Entire matrix") */
- /* > the eigenvalues for the entire matrix */
- /* > will be ordered from smallest to */
- /* > largest. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the tridiagonal matrix T. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] VL */
- /* > \verbatim */
- /* > VL is REAL */
- /* > If RANGE='V', the lower bound of the interval to */
- /* > be searched for eigenvalues. Eigenvalues less than or equal */
- /* > to VL, or greater than VU, will not be returned. VL < VU. */
- /* > Not referenced if RANGE = 'A' or 'I'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] VU */
- /* > \verbatim */
- /* > VU is REAL */
- /* > If RANGE='V', the upper bound of the interval to */
- /* > be searched for eigenvalues. Eigenvalues less than or equal */
- /* > to VL, or greater than VU, will not be returned. VL < VU. */
- /* > Not referenced if RANGE = 'A' or 'I'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] IL */
- /* > \verbatim */
- /* > IL is INTEGER */
- /* > If RANGE='I', the index of the */
- /* > smallest eigenvalue to be returned. */
- /* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
- /* > Not referenced if RANGE = 'A' or 'V'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] IU */
- /* > \verbatim */
- /* > IU is INTEGER */
- /* > If RANGE='I', the index of the */
- /* > largest eigenvalue to be returned. */
- /* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
- /* > Not referenced if RANGE = 'A' or 'V'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] GERS */
- /* > \verbatim */
- /* > GERS is REAL array, dimension (2*N) */
- /* > The N Gerschgorin intervals (the i-th Gerschgorin interval */
- /* > is (GERS(2*i-1), GERS(2*i)). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] RELTOL */
- /* > \verbatim */
- /* > RELTOL is REAL */
- /* > The minimum relative width of an interval. When an interval */
- /* > is narrower than RELTOL times the larger (in */
- /* > magnitude) endpoint, then it is considered to be */
- /* > sufficiently small, i.e., converged. Note: this should */
- /* > always be at least radix*machine epsilon. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] D */
- /* > \verbatim */
- /* > D is REAL array, dimension (N) */
- /* > The n diagonal elements of the tridiagonal matrix T. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] E */
- /* > \verbatim */
- /* > E is REAL array, dimension (N-1) */
- /* > The (n-1) off-diagonal elements of the tridiagonal matrix T. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] E2 */
- /* > \verbatim */
- /* > E2 is REAL array, dimension (N-1) */
- /* > The (n-1) squared off-diagonal elements of the tridiagonal matrix T. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] PIVMIN */
- /* > \verbatim */
- /* > PIVMIN is REAL */
- /* > The minimum pivot allowed in the Sturm sequence for T. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NSPLIT */
- /* > \verbatim */
- /* > NSPLIT is INTEGER */
- /* > The number of diagonal blocks in the matrix T. */
- /* > 1 <= NSPLIT <= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] ISPLIT */
- /* > \verbatim */
- /* > ISPLIT is INTEGER array, dimension (N) */
- /* > The splitting points, at which T breaks up into submatrices. */
- /* > The first submatrix consists of rows/columns 1 to ISPLIT(1), */
- /* > the second of rows/columns ISPLIT(1)+1 through ISPLIT(2), */
- /* > etc., and the NSPLIT-th consists of rows/columns */
- /* > ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N. */
- /* > (Only the first NSPLIT elements will actually be used, but */
- /* > since the user cannot know a priori what value NSPLIT will */
- /* > have, N words must be reserved for ISPLIT.) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The actual number of eigenvalues found. 0 <= M <= N. */
- /* > (See also the description of INFO=2,3.) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] W */
- /* > \verbatim */
- /* > W is REAL array, dimension (N) */
- /* > On exit, the first M elements of W will contain the */
- /* > eigenvalue approximations. SLARRD computes an interval */
- /* > I_j = (a_j, b_j] that includes eigenvalue j. The eigenvalue */
- /* > approximation is given as the interval midpoint */
- /* > W(j)= ( a_j + b_j)/2. The corresponding error is bounded by */
- /* > WERR(j) = abs( a_j - b_j)/2 */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WERR */
- /* > \verbatim */
- /* > WERR is REAL array, dimension (N) */
- /* > The error bound on the corresponding eigenvalue approximation */
- /* > in W. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WL */
- /* > \verbatim */
- /* > WL is REAL */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WU */
- /* > \verbatim */
- /* > WU is REAL */
- /* > The interval (WL, WU] contains all the wanted eigenvalues. */
- /* > If RANGE='V', then WL=VL and WU=VU. */
- /* > If RANGE='A', then WL and WU are the global Gerschgorin bounds */
- /* > on the spectrum. */
- /* > If RANGE='I', then WL and WU are computed by SLAEBZ from the */
- /* > index range specified. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IBLOCK */
- /* > \verbatim */
- /* > IBLOCK is INTEGER array, dimension (N) */
- /* > At each row/column j where E(j) is zero or small, the */
- /* > matrix T is considered to split into a block diagonal */
- /* > matrix. On exit, if INFO = 0, IBLOCK(i) specifies to which */
- /* > block (from 1 to the number of blocks) the eigenvalue W(i) */
- /* > belongs. (SLARRD may use the remaining N-M elements as */
- /* > workspace.) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INDEXW */
- /* > \verbatim */
- /* > INDEXW is INTEGER array, dimension (N) */
- /* > The indices of the eigenvalues within each block (submatrix); */
- /* > for example, INDEXW(i)= j and IBLOCK(i)=k imply that the */
- /* > i-th eigenvalue W(i) is the j-th eigenvalue in block k. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is REAL array, dimension (4*N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IWORK */
- /* > \verbatim */
- /* > IWORK is INTEGER array, dimension (3*N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > > 0: some or all of the eigenvalues failed to converge or */
- /* > were not computed: */
- /* > =1 or 3: Bisection failed to converge for some */
- /* > eigenvalues; these eigenvalues are flagged by a */
- /* > negative block number. The effect is that the */
- /* > eigenvalues may not be as accurate as the */
- /* > absolute and relative tolerances. This is */
- /* > generally caused by unexpectedly inaccurate */
- /* > arithmetic. */
- /* > =2 or 3: RANGE='I' only: Not all of the eigenvalues */
- /* > IL:IU were found. */
- /* > Effect: M < IU+1-IL */
- /* > Cause: non-monotonic arithmetic, causing the */
- /* > Sturm sequence to be non-monotonic. */
- /* > Cure: recalculate, using RANGE='A', and pick */
- /* > out eigenvalues IL:IU. In some cases, */
- /* > increasing the PARAMETER "FUDGE" may */
- /* > make things work. */
- /* > = 4: RANGE='I', and the Gershgorin interval */
- /* > initially used was too small. No eigenvalues */
- /* > were computed. */
- /* > Probable cause: your machine has sloppy */
- /* > floating-point arithmetic. */
- /* > Cure: Increase the PARAMETER "FUDGE", */
- /* > recompile, and try again. */
- /* > \endverbatim */
-
- /* > \par Internal Parameters: */
- /* ========================= */
- /* > */
- /* > \verbatim */
- /* > FUDGE REAL, default = 2 */
- /* > A "fudge factor" to widen the Gershgorin intervals. Ideally, */
- /* > a value of 1 should work, but on machines with sloppy */
- /* > arithmetic, this needs to be larger. The default for */
- /* > publicly released versions should be large enough to handle */
- /* > the worst machine around. Note that this has no effect */
- /* > on accuracy of the solution. */
- /* > \endverbatim */
- /* > */
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > W. Kahan, University of California, Berkeley, USA \n */
- /* > Beresford Parlett, University of California, Berkeley, USA \n */
- /* > Jim Demmel, University of California, Berkeley, USA \n */
- /* > Inderjit Dhillon, University of Texas, Austin, USA \n */
- /* > Osni Marques, LBNL/NERSC, USA \n */
- /* > Christof Voemel, University of California, Berkeley, USA \n */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2016 */
-
- /* > \ingroup OTHERauxiliary */
-
- /* ===================================================================== */
- /* Subroutine */ void slarrd_(char *range, char *order, integer *n, real *vl,
- real *vu, integer *il, integer *iu, real *gers, real *reltol, real *
- d__, real *e, real *e2, real *pivmin, integer *nsplit, integer *
- isplit, integer *m, real *w, real *werr, real *wl, real *wu, integer *
- iblock, integer *indexw, real *work, integer *iwork, integer *info)
- {
- /* System generated locals */
- integer i__1, i__2, i__3;
- real r__1, r__2;
-
- /* Local variables */
- integer iend, jblk, ioff, iout, itmp1, itmp2, i__, j, jdisc;
- extern logical lsame_(char *, char *);
- integer iinfo;
- real atoli;
- integer iwoff, itmax;
- real wkill, rtoli, uflow, tnorm;
- integer ib, ie, je, nb;
- real gl;
- integer im, in;
- real gu;
- integer ibegin, iw, irange, idiscl;
- extern real slamch_(char *);
- integer idumma[1];
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- integer idiscu;
- extern /* Subroutine */ void slaebz_(integer *, integer *, integer *,
- integer *, integer *, integer *, real *, real *, real *, real *,
- real *, real *, integer *, real *, real *, integer *, integer *,
- real *, integer *, integer *);
- logical ncnvrg, toofew;
- integer jee;
- real eps;
- integer nwl;
- real wlu, wul;
- integer nwu;
- real tmp1, tmp2;
-
-
- /* -- LAPACK auxiliary routine (version 3.7.1) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Parameter adjustments */
- --iwork;
- --work;
- --indexw;
- --iblock;
- --werr;
- --w;
- --isplit;
- --e2;
- --e;
- --d__;
- --gers;
-
- /* Function Body */
- *info = 0;
-
- /* Quick return if possible */
-
- if (*n <= 0) {
- return;
- }
-
- /* Decode RANGE */
-
- if (lsame_(range, "A")) {
- irange = 1;
- } else if (lsame_(range, "V")) {
- irange = 2;
- } else if (lsame_(range, "I")) {
- irange = 3;
- } else {
- irange = 0;
- }
-
- /* Check for Errors */
-
- if (irange <= 0) {
- *info = -1;
- } else if (! (lsame_(order, "B") || lsame_(order,
- "E"))) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (irange == 2) {
- if (*vl >= *vu) {
- *info = -5;
- }
- } else if (irange == 3 && (*il < 1 || *il > f2cmax(1,*n))) {
- *info = -6;
- } else if (irange == 3 && (*iu < f2cmin(*n,*il) || *iu > *n)) {
- *info = -7;
- }
-
- if (*info != 0) {
- return;
- }
- /* Initialize error flags */
- *info = 0;
- ncnvrg = FALSE_;
- toofew = FALSE_;
- /* Quick return if possible */
- *m = 0;
- if (*n == 0) {
- return;
- }
- /* Simplification: */
- if (irange == 3 && *il == 1 && *iu == *n) {
- irange = 1;
- }
- /* Get machine constants */
- eps = slamch_("P");
- uflow = slamch_("U");
- /* Special Case when N=1 */
- /* Treat case of 1x1 matrix for quick return */
- if (*n == 1) {
- if (irange == 1 || irange == 2 && d__[1] > *vl && d__[1] <= *vu ||
- irange == 3 && *il == 1 && *iu == 1) {
- *m = 1;
- w[1] = d__[1];
- /* The computation error of the eigenvalue is zero */
- werr[1] = 0.f;
- iblock[1] = 1;
- indexw[1] = 1;
- }
- return;
- }
- /* NB is the minimum vector length for vector bisection, or 0 */
- /* if only scalar is to be done. */
- nb = ilaenv_(&c__1, "SSTEBZ", " ", n, &c_n1, &c_n1, &c_n1, (ftnlen)6, (
- ftnlen)1);
- if (nb <= 1) {
- nb = 0;
- }
- /* Find global spectral radius */
- gl = d__[1];
- gu = d__[1];
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* Computing MIN */
- r__1 = gl, r__2 = gers[(i__ << 1) - 1];
- gl = f2cmin(r__1,r__2);
- /* Computing MAX */
- r__1 = gu, r__2 = gers[i__ * 2];
- gu = f2cmax(r__1,r__2);
- /* L5: */
- }
- /* Compute global Gerschgorin bounds and spectral diameter */
- /* Computing MAX */
- r__1 = abs(gl), r__2 = abs(gu);
- tnorm = f2cmax(r__1,r__2);
- gl = gl - tnorm * 2.f * eps * *n - *pivmin * 4.f;
- gu = gu + tnorm * 2.f * eps * *n + *pivmin * 4.f;
- /* [JAN/28/2009] remove the line below since SPDIAM variable not use */
- /* SPDIAM = GU - GL */
- /* Input arguments for SLAEBZ: */
- /* The relative tolerance. An interval (a,b] lies within */
- /* "relative tolerance" if b-a < RELTOL*f2cmax(|a|,|b|), */
- rtoli = *reltol;
- /* Set the absolute tolerance for interval convergence to zero to force */
- /* interval convergence based on relative size of the interval. */
- /* This is dangerous because intervals might not converge when RELTOL is */
- /* small. But at least a very small number should be selected so that for */
- /* strongly graded matrices, the code can get relatively accurate */
- /* eigenvalues. */
- atoli = uflow * 4.f + *pivmin * 4.f;
- if (irange == 3) {
- /* RANGE='I': Compute an interval containing eigenvalues */
- /* IL through IU. The initial interval [GL,GU] from the global */
- /* Gerschgorin bounds GL and GU is refined by SLAEBZ. */
- itmax = (integer) ((log(tnorm + *pivmin) - log(*pivmin)) / log(2.f))
- + 2;
- work[*n + 1] = gl;
- work[*n + 2] = gl;
- work[*n + 3] = gu;
- work[*n + 4] = gu;
- work[*n + 5] = gl;
- work[*n + 6] = gu;
- iwork[1] = -1;
- iwork[2] = -1;
- iwork[3] = *n + 1;
- iwork[4] = *n + 1;
- iwork[5] = *il - 1;
- iwork[6] = *iu;
-
- slaebz_(&c__3, &itmax, n, &c__2, &c__2, &nb, &atoli, &rtoli, pivmin, &
- d__[1], &e[1], &e2[1], &iwork[5], &work[*n + 1], &work[*n + 5]
- , &iout, &iwork[1], &w[1], &iblock[1], &iinfo);
- if (iinfo != 0) {
- *info = iinfo;
- return;
- }
- /* On exit, output intervals may not be ordered by ascending negcount */
- if (iwork[6] == *iu) {
- *wl = work[*n + 1];
- wlu = work[*n + 3];
- nwl = iwork[1];
- *wu = work[*n + 4];
- wul = work[*n + 2];
- nwu = iwork[4];
- } else {
- *wl = work[*n + 2];
- wlu = work[*n + 4];
- nwl = iwork[2];
- *wu = work[*n + 3];
- wul = work[*n + 1];
- nwu = iwork[3];
- }
- /* On exit, the interval [WL, WLU] contains a value with negcount NWL, */
- /* and [WUL, WU] contains a value with negcount NWU. */
- if (nwl < 0 || nwl >= *n || nwu < 1 || nwu > *n) {
- *info = 4;
- return;
- }
- } else if (irange == 2) {
- *wl = *vl;
- *wu = *vu;
- } else if (irange == 1) {
- *wl = gl;
- *wu = gu;
- }
- /* Find Eigenvalues -- Loop Over blocks and recompute NWL and NWU. */
- /* NWL accumulates the number of eigenvalues .le. WL, */
- /* NWU accumulates the number of eigenvalues .le. WU */
- *m = 0;
- iend = 0;
- *info = 0;
- nwl = 0;
- nwu = 0;
-
- i__1 = *nsplit;
- for (jblk = 1; jblk <= i__1; ++jblk) {
- ioff = iend;
- ibegin = ioff + 1;
- iend = isplit[jblk];
- in = iend - ioff;
-
- if (in == 1) {
- /* 1x1 block */
- if (*wl >= d__[ibegin] - *pivmin) {
- ++nwl;
- }
- if (*wu >= d__[ibegin] - *pivmin) {
- ++nwu;
- }
- if (irange == 1 || *wl < d__[ibegin] - *pivmin && *wu >= d__[
- ibegin] - *pivmin) {
- ++(*m);
- w[*m] = d__[ibegin];
- werr[*m] = 0.f;
- /* The gap for a single block doesn't matter for the later */
- /* algorithm and is assigned an arbitrary large value */
- iblock[*m] = jblk;
- indexw[*m] = 1;
- }
- /* Disabled 2x2 case because of a failure on the following matrix */
- /* RANGE = 'I', IL = IU = 4 */
- /* Original Tridiagonal, d = [ */
- /* -0.150102010615740E+00 */
- /* -0.849897989384260E+00 */
- /* -0.128208148052635E-15 */
- /* 0.128257718286320E-15 */
- /* ]; */
- /* e = [ */
- /* -0.357171383266986E+00 */
- /* -0.180411241501588E-15 */
- /* -0.175152352710251E-15 */
- /* ]; */
-
- /* ELSE IF( IN.EQ.2 ) THEN */
- /* * 2x2 block */
- /* DISC = SQRT( (HALF*(D(IBEGIN)-D(IEND)))**2 + E(IBEGIN)**2 ) */
- /* TMP1 = HALF*(D(IBEGIN)+D(IEND)) */
- /* L1 = TMP1 - DISC */
- /* IF( WL.GE. L1-PIVMIN ) */
- /* $ NWL = NWL + 1 */
- /* IF( WU.GE. L1-PIVMIN ) */
- /* $ NWU = NWU + 1 */
- /* IF( IRANGE.EQ.ALLRNG .OR. ( WL.LT.L1-PIVMIN .AND. WU.GE. */
- /* $ L1-PIVMIN ) ) THEN */
- /* M = M + 1 */
- /* W( M ) = L1 */
- /* * The uncertainty of eigenvalues of a 2x2 matrix is very small */
- /* WERR( M ) = EPS * ABS( W( M ) ) * TWO */
- /* IBLOCK( M ) = JBLK */
- /* INDEXW( M ) = 1 */
- /* ENDIF */
- /* L2 = TMP1 + DISC */
- /* IF( WL.GE. L2-PIVMIN ) */
- /* $ NWL = NWL + 1 */
- /* IF( WU.GE. L2-PIVMIN ) */
- /* $ NWU = NWU + 1 */
- /* IF( IRANGE.EQ.ALLRNG .OR. ( WL.LT.L2-PIVMIN .AND. WU.GE. */
- /* $ L2-PIVMIN ) ) THEN */
- /* M = M + 1 */
- /* W( M ) = L2 */
- /* * The uncertainty of eigenvalues of a 2x2 matrix is very small */
- /* WERR( M ) = EPS * ABS( W( M ) ) * TWO */
- /* IBLOCK( M ) = JBLK */
- /* INDEXW( M ) = 2 */
- /* ENDIF */
- } else {
- /* General Case - block of size IN >= 2 */
- /* Compute local Gerschgorin interval and use it as the initial */
- /* interval for SLAEBZ */
- gu = d__[ibegin];
- gl = d__[ibegin];
- tmp1 = 0.f;
- i__2 = iend;
- for (j = ibegin; j <= i__2; ++j) {
- /* Computing MIN */
- r__1 = gl, r__2 = gers[(j << 1) - 1];
- gl = f2cmin(r__1,r__2);
- /* Computing MAX */
- r__1 = gu, r__2 = gers[j * 2];
- gu = f2cmax(r__1,r__2);
- /* L40: */
- }
- /* [JAN/28/2009] */
- /* change SPDIAM by TNORM in lines 2 and 3 thereafter */
- /* line 1: remove computation of SPDIAM (not useful anymore) */
- /* SPDIAM = GU - GL */
- /* GL = GL - FUDGE*SPDIAM*EPS*IN - FUDGE*PIVMIN */
- /* GU = GU + FUDGE*SPDIAM*EPS*IN + FUDGE*PIVMIN */
- gl = gl - tnorm * 2.f * eps * in - *pivmin * 2.f;
- gu = gu + tnorm * 2.f * eps * in + *pivmin * 2.f;
-
- if (irange > 1) {
- if (gu < *wl) {
- /* the local block contains none of the wanted eigenvalues */
- nwl += in;
- nwu += in;
- goto L70;
- }
- /* refine search interval if possible, only range (WL,WU] matters */
- gl = f2cmax(gl,*wl);
- gu = f2cmin(gu,*wu);
- if (gl >= gu) {
- goto L70;
- }
- }
- /* Find negcount of initial interval boundaries GL and GU */
- work[*n + 1] = gl;
- work[*n + in + 1] = gu;
- slaebz_(&c__1, &c__0, &in, &in, &c__1, &nb, &atoli, &rtoli,
- pivmin, &d__[ibegin], &e[ibegin], &e2[ibegin], idumma, &
- work[*n + 1], &work[*n + (in << 1) + 1], &im, &iwork[1], &
- w[*m + 1], &iblock[*m + 1], &iinfo);
- if (iinfo != 0) {
- *info = iinfo;
- return;
- }
-
- nwl += iwork[1];
- nwu += iwork[in + 1];
- iwoff = *m - iwork[1];
- /* Compute Eigenvalues */
- itmax = (integer) ((log(gu - gl + *pivmin) - log(*pivmin)) / log(
- 2.f)) + 2;
- slaebz_(&c__2, &itmax, &in, &in, &c__1, &nb, &atoli, &rtoli,
- pivmin, &d__[ibegin], &e[ibegin], &e2[ibegin], idumma, &
- work[*n + 1], &work[*n + (in << 1) + 1], &iout, &iwork[1],
- &w[*m + 1], &iblock[*m + 1], &iinfo);
- if (iinfo != 0) {
- *info = iinfo;
- return;
- }
-
- /* Copy eigenvalues into W and IBLOCK */
- /* Use -JBLK for block number for unconverged eigenvalues. */
- /* Loop over the number of output intervals from SLAEBZ */
- i__2 = iout;
- for (j = 1; j <= i__2; ++j) {
- /* eigenvalue approximation is middle point of interval */
- tmp1 = (work[j + *n] + work[j + in + *n]) * .5f;
- /* semi length of error interval */
- tmp2 = (r__1 = work[j + *n] - work[j + in + *n], abs(r__1)) *
- .5f;
- if (j > iout - iinfo) {
- /* Flag non-convergence. */
- ncnvrg = TRUE_;
- ib = -jblk;
- } else {
- ib = jblk;
- }
- i__3 = iwork[j + in] + iwoff;
- for (je = iwork[j] + 1 + iwoff; je <= i__3; ++je) {
- w[je] = tmp1;
- werr[je] = tmp2;
- indexw[je] = je - iwoff;
- iblock[je] = ib;
- /* L50: */
- }
- /* L60: */
- }
-
- *m += im;
- }
- L70:
- ;
- }
- /* If RANGE='I', then (WL,WU) contains eigenvalues NWL+1,...,NWU */
- /* If NWL+1 < IL or NWU > IU, discard extra eigenvalues. */
- if (irange == 3) {
- idiscl = *il - 1 - nwl;
- idiscu = nwu - *iu;
-
- if (idiscl > 0) {
- im = 0;
- i__1 = *m;
- for (je = 1; je <= i__1; ++je) {
- /* Remove some of the smallest eigenvalues from the left so that */
- /* at the end IDISCL =0. Move all eigenvalues up to the left. */
- if (w[je] <= wlu && idiscl > 0) {
- --idiscl;
- } else {
- ++im;
- w[im] = w[je];
- werr[im] = werr[je];
- indexw[im] = indexw[je];
- iblock[im] = iblock[je];
- }
- /* L80: */
- }
- *m = im;
- }
- if (idiscu > 0) {
- /* Remove some of the largest eigenvalues from the right so that */
- /* at the end IDISCU =0. Move all eigenvalues up to the left. */
- im = *m + 1;
- for (je = *m; je >= 1; --je) {
- if (w[je] >= wul && idiscu > 0) {
- --idiscu;
- } else {
- --im;
- w[im] = w[je];
- werr[im] = werr[je];
- indexw[im] = indexw[je];
- iblock[im] = iblock[je];
- }
- /* L81: */
- }
- jee = 0;
- i__1 = *m;
- for (je = im; je <= i__1; ++je) {
- ++jee;
- w[jee] = w[je];
- werr[jee] = werr[je];
- indexw[jee] = indexw[je];
- iblock[jee] = iblock[je];
- /* L82: */
- }
- *m = *m - im + 1;
- }
- if (idiscl > 0 || idiscu > 0) {
- /* Code to deal with effects of bad arithmetic. (If N(w) is */
- /* monotone non-decreasing, this should never happen.) */
- /* Some low eigenvalues to be discarded are not in (WL,WLU], */
- /* or high eigenvalues to be discarded are not in (WUL,WU] */
- /* so just kill off the smallest IDISCL/largest IDISCU */
- /* eigenvalues, by marking the corresponding IBLOCK = 0 */
- if (idiscl > 0) {
- wkill = *wu;
- i__1 = idiscl;
- for (jdisc = 1; jdisc <= i__1; ++jdisc) {
- iw = 0;
- i__2 = *m;
- for (je = 1; je <= i__2; ++je) {
- if (iblock[je] != 0 && (w[je] < wkill || iw == 0)) {
- iw = je;
- wkill = w[je];
- }
- /* L90: */
- }
- iblock[iw] = 0;
- /* L100: */
- }
- }
- if (idiscu > 0) {
- wkill = *wl;
- i__1 = idiscu;
- for (jdisc = 1; jdisc <= i__1; ++jdisc) {
- iw = 0;
- i__2 = *m;
- for (je = 1; je <= i__2; ++je) {
- if (iblock[je] != 0 && (w[je] >= wkill || iw == 0)) {
- iw = je;
- wkill = w[je];
- }
- /* L110: */
- }
- iblock[iw] = 0;
- /* L120: */
- }
- }
- /* Now erase all eigenvalues with IBLOCK set to zero */
- im = 0;
- i__1 = *m;
- for (je = 1; je <= i__1; ++je) {
- if (iblock[je] != 0) {
- ++im;
- w[im] = w[je];
- werr[im] = werr[je];
- indexw[im] = indexw[je];
- iblock[im] = iblock[je];
- }
- /* L130: */
- }
- *m = im;
- }
- if (idiscl < 0 || idiscu < 0) {
- toofew = TRUE_;
- }
- }
-
- if (irange == 1 && *m != *n || irange == 3 && *m != *iu - *il + 1) {
- toofew = TRUE_;
- }
- /* If ORDER='B', do nothing the eigenvalues are already sorted by */
- /* block. */
- /* If ORDER='E', sort the eigenvalues from smallest to largest */
- if (lsame_(order, "E") && *nsplit > 1) {
- i__1 = *m - 1;
- for (je = 1; je <= i__1; ++je) {
- ie = 0;
- tmp1 = w[je];
- i__2 = *m;
- for (j = je + 1; j <= i__2; ++j) {
- if (w[j] < tmp1) {
- ie = j;
- tmp1 = w[j];
- }
- /* L140: */
- }
- if (ie != 0) {
- tmp2 = werr[ie];
- itmp1 = iblock[ie];
- itmp2 = indexw[ie];
- w[ie] = w[je];
- werr[ie] = werr[je];
- iblock[ie] = iblock[je];
- indexw[ie] = indexw[je];
- w[je] = tmp1;
- werr[je] = tmp2;
- iblock[je] = itmp1;
- indexw[je] = itmp2;
- }
- /* L150: */
- }
- }
-
- *info = 0;
- if (ncnvrg) {
- ++(*info);
- }
- if (toofew) {
- *info += 2;
- }
- return;
-
- /* End of SLARRD */
-
- } /* slarrd_ */
-
|