You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlaed2.c 31 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static doublereal c_b3 = -1.;
  487. static integer c__1 = 1;
  488. /* > \brief \b DLAED2 used by sstedc. Merges eigenvalues and deflates secular equation. Used when the original
  489. matrix is tridiagonal. */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download DLAED2 + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed2.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed2.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed2.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE DLAED2( K, N, N1, D, Q, LDQ, INDXQ, RHO, Z, DLAMDA, W, */
  508. /* Q2, INDX, INDXC, INDXP, COLTYP, INFO ) */
  509. /* INTEGER INFO, K, LDQ, N, N1 */
  510. /* DOUBLE PRECISION RHO */
  511. /* INTEGER COLTYP( * ), INDX( * ), INDXC( * ), INDXP( * ), */
  512. /* $ INDXQ( * ) */
  513. /* DOUBLE PRECISION D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ), */
  514. /* $ W( * ), Z( * ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > DLAED2 merges the two sets of eigenvalues together into a single */
  521. /* > sorted set. Then it tries to deflate the size of the problem. */
  522. /* > There are two ways in which deflation can occur: when two or more */
  523. /* > eigenvalues are close together or if there is a tiny entry in the */
  524. /* > Z vector. For each such occurrence the order of the related secular */
  525. /* > equation problem is reduced by one. */
  526. /* > \endverbatim */
  527. /* Arguments: */
  528. /* ========== */
  529. /* > \param[out] K */
  530. /* > \verbatim */
  531. /* > K is INTEGER */
  532. /* > The number of non-deflated eigenvalues, and the order of the */
  533. /* > related secular equation. 0 <= K <=N. */
  534. /* > \endverbatim */
  535. /* > */
  536. /* > \param[in] N */
  537. /* > \verbatim */
  538. /* > N is INTEGER */
  539. /* > The dimension of the symmetric tridiagonal matrix. N >= 0. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] N1 */
  543. /* > \verbatim */
  544. /* > N1 is INTEGER */
  545. /* > The location of the last eigenvalue in the leading sub-matrix. */
  546. /* > f2cmin(1,N) <= N1 <= N/2. */
  547. /* > \endverbatim */
  548. /* > */
  549. /* > \param[in,out] D */
  550. /* > \verbatim */
  551. /* > D is DOUBLE PRECISION array, dimension (N) */
  552. /* > On entry, D contains the eigenvalues of the two submatrices to */
  553. /* > be combined. */
  554. /* > On exit, D contains the trailing (N-K) updated eigenvalues */
  555. /* > (those which were deflated) sorted into increasing order. */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[in,out] Q */
  559. /* > \verbatim */
  560. /* > Q is DOUBLE PRECISION array, dimension (LDQ, N) */
  561. /* > On entry, Q contains the eigenvectors of two submatrices in */
  562. /* > the two square blocks with corners at (1,1), (N1,N1) */
  563. /* > and (N1+1, N1+1), (N,N). */
  564. /* > On exit, Q contains the trailing (N-K) updated eigenvectors */
  565. /* > (those which were deflated) in its last N-K columns. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] LDQ */
  569. /* > \verbatim */
  570. /* > LDQ is INTEGER */
  571. /* > The leading dimension of the array Q. LDQ >= f2cmax(1,N). */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in,out] INDXQ */
  575. /* > \verbatim */
  576. /* > INDXQ is INTEGER array, dimension (N) */
  577. /* > The permutation which separately sorts the two sub-problems */
  578. /* > in D into ascending order. Note that elements in the second */
  579. /* > half of this permutation must first have N1 added to their */
  580. /* > values. Destroyed on exit. */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[in,out] RHO */
  584. /* > \verbatim */
  585. /* > RHO is DOUBLE PRECISION */
  586. /* > On entry, the off-diagonal element associated with the rank-1 */
  587. /* > cut which originally split the two submatrices which are now */
  588. /* > being recombined. */
  589. /* > On exit, RHO has been modified to the value required by */
  590. /* > DLAED3. */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[in] Z */
  594. /* > \verbatim */
  595. /* > Z is DOUBLE PRECISION array, dimension (N) */
  596. /* > On entry, Z contains the updating vector (the last */
  597. /* > row of the first sub-eigenvector matrix and the first row of */
  598. /* > the second sub-eigenvector matrix). */
  599. /* > On exit, the contents of Z have been destroyed by the updating */
  600. /* > process. */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[out] DLAMDA */
  604. /* > \verbatim */
  605. /* > DLAMDA is DOUBLE PRECISION array, dimension (N) */
  606. /* > A copy of the first K eigenvalues which will be used by */
  607. /* > DLAED3 to form the secular equation. */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[out] W */
  611. /* > \verbatim */
  612. /* > W is DOUBLE PRECISION array, dimension (N) */
  613. /* > The first k values of the final deflation-altered z-vector */
  614. /* > which will be passed to DLAED3. */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[out] Q2 */
  618. /* > \verbatim */
  619. /* > Q2 is DOUBLE PRECISION array, dimension (N1**2+(N-N1)**2) */
  620. /* > A copy of the first K eigenvectors which will be used by */
  621. /* > DLAED3 in a matrix multiply (DGEMM) to solve for the new */
  622. /* > eigenvectors. */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[out] INDX */
  626. /* > \verbatim */
  627. /* > INDX is INTEGER array, dimension (N) */
  628. /* > The permutation used to sort the contents of DLAMDA into */
  629. /* > ascending order. */
  630. /* > \endverbatim */
  631. /* > */
  632. /* > \param[out] INDXC */
  633. /* > \verbatim */
  634. /* > INDXC is INTEGER array, dimension (N) */
  635. /* > The permutation used to arrange the columns of the deflated */
  636. /* > Q matrix into three groups: the first group contains non-zero */
  637. /* > elements only at and above N1, the second contains */
  638. /* > non-zero elements only below N1, and the third is dense. */
  639. /* > \endverbatim */
  640. /* > */
  641. /* > \param[out] INDXP */
  642. /* > \verbatim */
  643. /* > INDXP is INTEGER array, dimension (N) */
  644. /* > The permutation used to place deflated values of D at the end */
  645. /* > of the array. INDXP(1:K) points to the nondeflated D-values */
  646. /* > and INDXP(K+1:N) points to the deflated eigenvalues. */
  647. /* > \endverbatim */
  648. /* > */
  649. /* > \param[out] COLTYP */
  650. /* > \verbatim */
  651. /* > COLTYP is INTEGER array, dimension (N) */
  652. /* > During execution, a label which will indicate which of the */
  653. /* > following types a column in the Q2 matrix is: */
  654. /* > 1 : non-zero in the upper half only; */
  655. /* > 2 : dense; */
  656. /* > 3 : non-zero in the lower half only; */
  657. /* > 4 : deflated. */
  658. /* > On exit, COLTYP(i) is the number of columns of type i, */
  659. /* > for i=1 to 4 only. */
  660. /* > \endverbatim */
  661. /* > */
  662. /* > \param[out] INFO */
  663. /* > \verbatim */
  664. /* > INFO is INTEGER */
  665. /* > = 0: successful exit. */
  666. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  667. /* > \endverbatim */
  668. /* Authors: */
  669. /* ======== */
  670. /* > \author Univ. of Tennessee */
  671. /* > \author Univ. of California Berkeley */
  672. /* > \author Univ. of Colorado Denver */
  673. /* > \author NAG Ltd. */
  674. /* > \date December 2016 */
  675. /* > \ingroup auxOTHERcomputational */
  676. /* > \par Contributors: */
  677. /* ================== */
  678. /* > */
  679. /* > Jeff Rutter, Computer Science Division, University of California */
  680. /* > at Berkeley, USA \n */
  681. /* > Modified by Francoise Tisseur, University of Tennessee */
  682. /* > */
  683. /* ===================================================================== */
  684. /* Subroutine */ void dlaed2_(integer *k, integer *n, integer *n1, doublereal *
  685. d__, doublereal *q, integer *ldq, integer *indxq, doublereal *rho,
  686. doublereal *z__, doublereal *dlamda, doublereal *w, doublereal *q2,
  687. integer *indx, integer *indxc, integer *indxp, integer *coltyp,
  688. integer *info)
  689. {
  690. /* System generated locals */
  691. integer q_dim1, q_offset, i__1, i__2;
  692. doublereal d__1, d__2, d__3, d__4;
  693. /* Local variables */
  694. integer imax, jmax;
  695. extern /* Subroutine */ void drot_(integer *, doublereal *, integer *,
  696. doublereal *, integer *, doublereal *, doublereal *);
  697. integer ctot[4];
  698. doublereal c__;
  699. integer i__, j;
  700. doublereal s, t;
  701. extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
  702. integer *), dcopy_(integer *, doublereal *, integer *, doublereal
  703. *, integer *);
  704. integer k2, n2;
  705. extern doublereal dlapy2_(doublereal *, doublereal *);
  706. integer ct, nj;
  707. extern doublereal dlamch_(char *);
  708. integer pj, js;
  709. extern integer idamax_(integer *, doublereal *, integer *);
  710. extern /* Subroutine */ void dlamrg_(integer *, integer *, doublereal *,
  711. integer *, integer *, integer *), dlacpy_(char *, integer *,
  712. integer *, doublereal *, integer *, doublereal *, integer *);
  713. extern int xerbla_(char *, integer *, ftnlen);
  714. integer iq1, iq2, n1p1;
  715. doublereal eps, tau, tol;
  716. integer psm[4];
  717. /* -- LAPACK computational routine (version 3.7.0) -- */
  718. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  719. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  720. /* December 2016 */
  721. /* ===================================================================== */
  722. /* Test the input parameters. */
  723. /* Parameter adjustments */
  724. --d__;
  725. q_dim1 = *ldq;
  726. q_offset = 1 + q_dim1 * 1;
  727. q -= q_offset;
  728. --indxq;
  729. --z__;
  730. --dlamda;
  731. --w;
  732. --q2;
  733. --indx;
  734. --indxc;
  735. --indxp;
  736. --coltyp;
  737. /* Function Body */
  738. *info = 0;
  739. if (*n < 0) {
  740. *info = -2;
  741. } else if (*ldq < f2cmax(1,*n)) {
  742. *info = -6;
  743. } else /* if(complicated condition) */ {
  744. /* Computing MIN */
  745. i__1 = 1, i__2 = *n / 2;
  746. if (f2cmin(i__1,i__2) > *n1 || *n / 2 < *n1) {
  747. *info = -3;
  748. }
  749. }
  750. if (*info != 0) {
  751. i__1 = -(*info);
  752. xerbla_("DLAED2", &i__1, (ftnlen)6);
  753. return;
  754. }
  755. /* Quick return if possible */
  756. if (*n == 0) {
  757. return;
  758. }
  759. n2 = *n - *n1;
  760. n1p1 = *n1 + 1;
  761. if (*rho < 0.) {
  762. dscal_(&n2, &c_b3, &z__[n1p1], &c__1);
  763. }
  764. /* Normalize z so that norm(z) = 1. Since z is the concatenation of */
  765. /* two normalized vectors, norm2(z) = sqrt(2). */
  766. t = 1. / sqrt(2.);
  767. dscal_(n, &t, &z__[1], &c__1);
  768. /* RHO = ABS( norm(z)**2 * RHO ) */
  769. *rho = (d__1 = *rho * 2., abs(d__1));
  770. /* Sort the eigenvalues into increasing order */
  771. i__1 = *n;
  772. for (i__ = n1p1; i__ <= i__1; ++i__) {
  773. indxq[i__] += *n1;
  774. /* L10: */
  775. }
  776. /* re-integrate the deflated parts from the last pass */
  777. i__1 = *n;
  778. for (i__ = 1; i__ <= i__1; ++i__) {
  779. dlamda[i__] = d__[indxq[i__]];
  780. /* L20: */
  781. }
  782. dlamrg_(n1, &n2, &dlamda[1], &c__1, &c__1, &indxc[1]);
  783. i__1 = *n;
  784. for (i__ = 1; i__ <= i__1; ++i__) {
  785. indx[i__] = indxq[indxc[i__]];
  786. /* L30: */
  787. }
  788. /* Calculate the allowable deflation tolerance */
  789. imax = idamax_(n, &z__[1], &c__1);
  790. jmax = idamax_(n, &d__[1], &c__1);
  791. eps = dlamch_("Epsilon");
  792. /* Computing MAX */
  793. d__3 = (d__1 = d__[jmax], abs(d__1)), d__4 = (d__2 = z__[imax], abs(d__2))
  794. ;
  795. tol = eps * 8. * f2cmax(d__3,d__4);
  796. /* If the rank-1 modifier is small enough, no more needs to be done */
  797. /* except to reorganize Q so that its columns correspond with the */
  798. /* elements in D. */
  799. if (*rho * (d__1 = z__[imax], abs(d__1)) <= tol) {
  800. *k = 0;
  801. iq2 = 1;
  802. i__1 = *n;
  803. for (j = 1; j <= i__1; ++j) {
  804. i__ = indx[j];
  805. dcopy_(n, &q[i__ * q_dim1 + 1], &c__1, &q2[iq2], &c__1);
  806. dlamda[j] = d__[i__];
  807. iq2 += *n;
  808. /* L40: */
  809. }
  810. dlacpy_("A", n, n, &q2[1], n, &q[q_offset], ldq);
  811. dcopy_(n, &dlamda[1], &c__1, &d__[1], &c__1);
  812. goto L190;
  813. }
  814. /* If there are multiple eigenvalues then the problem deflates. Here */
  815. /* the number of equal eigenvalues are found. As each equal */
  816. /* eigenvalue is found, an elementary reflector is computed to rotate */
  817. /* the corresponding eigensubspace so that the corresponding */
  818. /* components of Z are zero in this new basis. */
  819. i__1 = *n1;
  820. for (i__ = 1; i__ <= i__1; ++i__) {
  821. coltyp[i__] = 1;
  822. /* L50: */
  823. }
  824. i__1 = *n;
  825. for (i__ = n1p1; i__ <= i__1; ++i__) {
  826. coltyp[i__] = 3;
  827. /* L60: */
  828. }
  829. *k = 0;
  830. k2 = *n + 1;
  831. i__1 = *n;
  832. for (j = 1; j <= i__1; ++j) {
  833. nj = indx[j];
  834. if (*rho * (d__1 = z__[nj], abs(d__1)) <= tol) {
  835. /* Deflate due to small z component. */
  836. --k2;
  837. coltyp[nj] = 4;
  838. indxp[k2] = nj;
  839. if (j == *n) {
  840. goto L100;
  841. }
  842. } else {
  843. pj = nj;
  844. goto L80;
  845. }
  846. /* L70: */
  847. }
  848. L80:
  849. ++j;
  850. nj = indx[j];
  851. if (j > *n) {
  852. goto L100;
  853. }
  854. if (*rho * (d__1 = z__[nj], abs(d__1)) <= tol) {
  855. /* Deflate due to small z component. */
  856. --k2;
  857. coltyp[nj] = 4;
  858. indxp[k2] = nj;
  859. } else {
  860. /* Check if eigenvalues are close enough to allow deflation. */
  861. s = z__[pj];
  862. c__ = z__[nj];
  863. /* Find sqrt(a**2+b**2) without overflow or */
  864. /* destructive underflow. */
  865. tau = dlapy2_(&c__, &s);
  866. t = d__[nj] - d__[pj];
  867. c__ /= tau;
  868. s = -s / tau;
  869. if ((d__1 = t * c__ * s, abs(d__1)) <= tol) {
  870. /* Deflation is possible. */
  871. z__[nj] = tau;
  872. z__[pj] = 0.;
  873. if (coltyp[nj] != coltyp[pj]) {
  874. coltyp[nj] = 2;
  875. }
  876. coltyp[pj] = 4;
  877. drot_(n, &q[pj * q_dim1 + 1], &c__1, &q[nj * q_dim1 + 1], &c__1, &
  878. c__, &s);
  879. /* Computing 2nd power */
  880. d__1 = c__;
  881. /* Computing 2nd power */
  882. d__2 = s;
  883. t = d__[pj] * (d__1 * d__1) + d__[nj] * (d__2 * d__2);
  884. /* Computing 2nd power */
  885. d__1 = s;
  886. /* Computing 2nd power */
  887. d__2 = c__;
  888. d__[nj] = d__[pj] * (d__1 * d__1) + d__[nj] * (d__2 * d__2);
  889. d__[pj] = t;
  890. --k2;
  891. i__ = 1;
  892. L90:
  893. if (k2 + i__ <= *n) {
  894. if (d__[pj] < d__[indxp[k2 + i__]]) {
  895. indxp[k2 + i__ - 1] = indxp[k2 + i__];
  896. indxp[k2 + i__] = pj;
  897. ++i__;
  898. goto L90;
  899. } else {
  900. indxp[k2 + i__ - 1] = pj;
  901. }
  902. } else {
  903. indxp[k2 + i__ - 1] = pj;
  904. }
  905. pj = nj;
  906. } else {
  907. ++(*k);
  908. dlamda[*k] = d__[pj];
  909. w[*k] = z__[pj];
  910. indxp[*k] = pj;
  911. pj = nj;
  912. }
  913. }
  914. goto L80;
  915. L100:
  916. /* Record the last eigenvalue. */
  917. ++(*k);
  918. dlamda[*k] = d__[pj];
  919. w[*k] = z__[pj];
  920. indxp[*k] = pj;
  921. /* Count up the total number of the various types of columns, then */
  922. /* form a permutation which positions the four column types into */
  923. /* four uniform groups (although one or more of these groups may be */
  924. /* empty). */
  925. for (j = 1; j <= 4; ++j) {
  926. ctot[j - 1] = 0;
  927. /* L110: */
  928. }
  929. i__1 = *n;
  930. for (j = 1; j <= i__1; ++j) {
  931. ct = coltyp[j];
  932. ++ctot[ct - 1];
  933. /* L120: */
  934. }
  935. /* PSM(*) = Position in SubMatrix (of types 1 through 4) */
  936. psm[0] = 1;
  937. psm[1] = ctot[0] + 1;
  938. psm[2] = psm[1] + ctot[1];
  939. psm[3] = psm[2] + ctot[2];
  940. *k = *n - ctot[3];
  941. /* Fill out the INDXC array so that the permutation which it induces */
  942. /* will place all type-1 columns first, all type-2 columns next, */
  943. /* then all type-3's, and finally all type-4's. */
  944. i__1 = *n;
  945. for (j = 1; j <= i__1; ++j) {
  946. js = indxp[j];
  947. ct = coltyp[js];
  948. indx[psm[ct - 1]] = js;
  949. indxc[psm[ct - 1]] = j;
  950. ++psm[ct - 1];
  951. /* L130: */
  952. }
  953. /* Sort the eigenvalues and corresponding eigenvectors into DLAMDA */
  954. /* and Q2 respectively. The eigenvalues/vectors which were not */
  955. /* deflated go into the first K slots of DLAMDA and Q2 respectively, */
  956. /* while those which were deflated go into the last N - K slots. */
  957. i__ = 1;
  958. iq1 = 1;
  959. iq2 = (ctot[0] + ctot[1]) * *n1 + 1;
  960. i__1 = ctot[0];
  961. for (j = 1; j <= i__1; ++j) {
  962. js = indx[i__];
  963. dcopy_(n1, &q[js * q_dim1 + 1], &c__1, &q2[iq1], &c__1);
  964. z__[i__] = d__[js];
  965. ++i__;
  966. iq1 += *n1;
  967. /* L140: */
  968. }
  969. i__1 = ctot[1];
  970. for (j = 1; j <= i__1; ++j) {
  971. js = indx[i__];
  972. dcopy_(n1, &q[js * q_dim1 + 1], &c__1, &q2[iq1], &c__1);
  973. dcopy_(&n2, &q[*n1 + 1 + js * q_dim1], &c__1, &q2[iq2], &c__1);
  974. z__[i__] = d__[js];
  975. ++i__;
  976. iq1 += *n1;
  977. iq2 += n2;
  978. /* L150: */
  979. }
  980. i__1 = ctot[2];
  981. for (j = 1; j <= i__1; ++j) {
  982. js = indx[i__];
  983. dcopy_(&n2, &q[*n1 + 1 + js * q_dim1], &c__1, &q2[iq2], &c__1);
  984. z__[i__] = d__[js];
  985. ++i__;
  986. iq2 += n2;
  987. /* L160: */
  988. }
  989. iq1 = iq2;
  990. i__1 = ctot[3];
  991. for (j = 1; j <= i__1; ++j) {
  992. js = indx[i__];
  993. dcopy_(n, &q[js * q_dim1 + 1], &c__1, &q2[iq2], &c__1);
  994. iq2 += *n;
  995. z__[i__] = d__[js];
  996. ++i__;
  997. /* L170: */
  998. }
  999. /* The deflated eigenvalues and their corresponding vectors go back */
  1000. /* into the last N - K slots of D and Q respectively. */
  1001. if (*k < *n) {
  1002. dlacpy_("A", n, &ctot[3], &q2[iq1], n, &q[(*k + 1) * q_dim1 + 1], ldq);
  1003. i__1 = *n - *k;
  1004. dcopy_(&i__1, &z__[*k + 1], &c__1, &d__[*k + 1], &c__1);
  1005. }
  1006. /* Copy CTOT into COLTYP for referencing in DLAED3. */
  1007. for (j = 1; j <= 4; ++j) {
  1008. coltyp[j] = ctot[j - 1];
  1009. /* L180: */
  1010. }
  1011. L190:
  1012. return;
  1013. /* End of DLAED2 */
  1014. } /* dlaed2_ */