|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153 |
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static integer c__0 = 0;
- static integer c_n1 = -1;
-
- /* > \brief <b> SGEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matr
- ices</b> */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download SGEEV + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgeev.f
- "> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgeev.f
- "> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgeev.f
- "> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE SGEEV( JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR, */
- /* LDVR, WORK, LWORK, INFO ) */
-
- /* CHARACTER JOBVL, JOBVR */
- /* INTEGER INFO, LDA, LDVL, LDVR, LWORK, N */
- /* REAL A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ), */
- /* $ WI( * ), WORK( * ), WR( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > SGEEV computes for an N-by-N real nonsymmetric matrix A, the */
- /* > eigenvalues and, optionally, the left and/or right eigenvectors. */
- /* > */
- /* > The right eigenvector v(j) of A satisfies */
- /* > A * v(j) = lambda(j) * v(j) */
- /* > where lambda(j) is its eigenvalue. */
- /* > The left eigenvector u(j) of A satisfies */
- /* > u(j)**H * A = lambda(j) * u(j)**H */
- /* > where u(j)**H denotes the conjugate-transpose of u(j). */
- /* > */
- /* > The computed eigenvectors are normalized to have Euclidean norm */
- /* > equal to 1 and largest component real. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] JOBVL */
- /* > \verbatim */
- /* > JOBVL is CHARACTER*1 */
- /* > = 'N': left eigenvectors of A are not computed; */
- /* > = 'V': left eigenvectors of A are computed. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] JOBVR */
- /* > \verbatim */
- /* > JOBVR is CHARACTER*1 */
- /* > = 'N': right eigenvectors of A are not computed; */
- /* > = 'V': right eigenvectors of A are computed. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix A. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is REAL array, dimension (LDA,N) */
- /* > On entry, the N-by-N matrix A. */
- /* > On exit, A has been overwritten. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WR */
- /* > \verbatim */
- /* > WR is REAL array, dimension (N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WI */
- /* > \verbatim */
- /* > WI is REAL array, dimension (N) */
- /* > WR and WI contain the real and imaginary parts, */
- /* > respectively, of the computed eigenvalues. Complex */
- /* > conjugate pairs of eigenvalues appear consecutively */
- /* > with the eigenvalue having the positive imaginary part */
- /* > first. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] VL */
- /* > \verbatim */
- /* > VL is REAL array, dimension (LDVL,N) */
- /* > If JOBVL = 'V', the left eigenvectors u(j) are stored one */
- /* > after another in the columns of VL, in the same order */
- /* > as their eigenvalues. */
- /* > If JOBVL = 'N', VL is not referenced. */
- /* > If the j-th eigenvalue is real, then u(j) = VL(:,j), */
- /* > the j-th column of VL. */
- /* > If the j-th and (j+1)-st eigenvalues form a complex */
- /* > conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and */
- /* > u(j+1) = VL(:,j) - i*VL(:,j+1). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVL */
- /* > \verbatim */
- /* > LDVL is INTEGER */
- /* > The leading dimension of the array VL. LDVL >= 1; if */
- /* > JOBVL = 'V', LDVL >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] VR */
- /* > \verbatim */
- /* > VR is REAL array, dimension (LDVR,N) */
- /* > If JOBVR = 'V', the right eigenvectors v(j) are stored one */
- /* > after another in the columns of VR, in the same order */
- /* > as their eigenvalues. */
- /* > If JOBVR = 'N', VR is not referenced. */
- /* > If the j-th eigenvalue is real, then v(j) = VR(:,j), */
- /* > the j-th column of VR. */
- /* > If the j-th and (j+1)-st eigenvalues form a complex */
- /* > conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and */
- /* > v(j+1) = VR(:,j) - i*VR(:,j+1). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVR */
- /* > \verbatim */
- /* > LDVR is INTEGER */
- /* > The leading dimension of the array VR. LDVR >= 1; if */
- /* > JOBVR = 'V', LDVR >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
- /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. LWORK >= f2cmax(1,3*N), and */
- /* > if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N. For good */
- /* > performance, LWORK must generally be larger. */
- /* > */
- /* > If LWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the WORK array, returns */
- /* > this value as the first entry of the WORK array, and no error */
- /* > message related to LWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > > 0: if INFO = i, the QR algorithm failed to compute all the */
- /* > eigenvalues, and no eigenvectors have been computed; */
- /* > elements i+1:N of WR and WI contain eigenvalues which */
- /* > have converged. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2016 */
-
- /* @generated from dgeev.f, fortran d -> s, Tue Apr 19 01:47:44 2016 */
-
- /* > \ingroup realGEeigen */
-
- /* ===================================================================== */
- /* Subroutine */ void sgeev_(char *jobvl, char *jobvr, integer *n, real *a,
- integer *lda, real *wr, real *wi, real *vl, integer *ldvl, real *vr,
- integer *ldvr, real *work, integer *lwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
- i__2, i__3;
- real r__1, r__2;
-
- /* Local variables */
- integer ibal;
- char side[1];
- real anrm;
- integer ierr, itau, iwrk, nout;
- extern /* Subroutine */ void srot_(integer *, real *, integer *, real *,
- integer *, real *, real *);
- extern real snrm2_(integer *, real *, integer *);
- integer i__, k;
- real r__;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
- extern real slapy2_(real *, real *);
- real cs;
- extern /* Subroutine */ void slabad_(real *, real *);
- logical scalea;
- real cscale;
- extern /* Subroutine */ void sgebak_(char *, char *, integer *, integer *,
- integer *, real *, integer *, real *, integer *, integer *), sgebal_(char *, integer *, real *, integer *,
- integer *, integer *, real *, integer *);
- real sn;
- extern real slamch_(char *), slange_(char *, integer *, integer *,
- real *, integer *, real *);
- extern /* Subroutine */ void sgehrd_(integer *, integer *, integer *, real
- *, integer *, real *, real *, integer *, integer *);
- extern int xerbla_(char *, integer *, ftnlen);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- logical select[1];
- real bignum;
- extern /* Subroutine */ void slascl_(char *, integer *, integer *, real *,
- real *, integer *, integer *, real *, integer *, integer *);
- extern integer isamax_(integer *, real *, integer *);
- extern /* Subroutine */ void slacpy_(char *, integer *, integer *, real *,
- integer *, real *, integer *), slartg_(real *, real *,
- real *, real *, real *), sorghr_(integer *, integer *, integer *,
- real *, integer *, real *, real *, integer *, integer *), shseqr_(
- char *, char *, integer *, integer *, integer *, real *, integer *
- , real *, real *, real *, integer *, real *, integer *, integer *);
- integer minwrk, maxwrk;
- logical wantvl;
- real smlnum;
- integer hswork;
- logical lquery, wantvr;
- extern /* Subroutine */ void strevc3_(char *, char *, logical *, integer *,
- real *, integer *, real *, integer *, real *, integer *, integer
- *, integer *, real *, integer *, integer *);
- integer ihi;
- real scl;
- integer ilo;
- real dum[1], eps;
- integer lwork_trevc__;
-
-
- /* -- LAPACK driver routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Test the input arguments */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --wr;
- --wi;
- vl_dim1 = *ldvl;
- vl_offset = 1 + vl_dim1 * 1;
- vl -= vl_offset;
- vr_dim1 = *ldvr;
- vr_offset = 1 + vr_dim1 * 1;
- vr -= vr_offset;
- --work;
-
- /* Function Body */
- *info = 0;
- lquery = *lwork == -1;
- wantvl = lsame_(jobvl, "V");
- wantvr = lsame_(jobvr, "V");
- if (! wantvl && ! lsame_(jobvl, "N")) {
- *info = -1;
- } else if (! wantvr && ! lsame_(jobvr, "N")) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*lda < f2cmax(1,*n)) {
- *info = -5;
- } else if (*ldvl < 1 || wantvl && *ldvl < *n) {
- *info = -9;
- } else if (*ldvr < 1 || wantvr && *ldvr < *n) {
- *info = -11;
- }
-
- /* Compute workspace */
- /* (Note: Comments in the code beginning "Workspace:" describe the */
- /* minimal amount of workspace needed at that point in the code, */
- /* as well as the preferred amount for good performance. */
- /* NB refers to the optimal block size for the immediately */
- /* following subroutine, as returned by ILAENV. */
- /* HSWORK refers to the workspace preferred by SHSEQR, as */
- /* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
- /* the worst case.) */
-
- if (*info == 0) {
- if (*n == 0) {
- minwrk = 1;
- maxwrk = 1;
- } else {
- maxwrk = (*n << 1) + *n * ilaenv_(&c__1, "SGEHRD", " ", n, &c__1,
- n, &c__0, (ftnlen)6, (ftnlen)1);
- if (wantvl) {
- minwrk = *n << 2;
- /* Computing MAX */
- i__1 = maxwrk, i__2 = (*n << 1) + (*n - 1) * ilaenv_(&c__1,
- "SORGHR", " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)
- 1);
- maxwrk = f2cmax(i__1,i__2);
- shseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[
- 1], &vl[vl_offset], ldvl, &work[1], &c_n1, info);
- hswork = (integer) work[1];
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *n + 1, i__1 = f2cmax(i__1,i__2), i__2 = *
- n + hswork;
- maxwrk = f2cmax(i__1,i__2);
- strevc3_("L", "B", select, n, &a[a_offset], lda, &vl[
- vl_offset], ldvl, &vr[vr_offset], ldvr, n, &nout, &
- work[1], &c_n1, &ierr);
- lwork_trevc__ = (integer) work[1];
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *n + lwork_trevc__;
- maxwrk = f2cmax(i__1,i__2);
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *n << 2;
- maxwrk = f2cmax(i__1,i__2);
- } else if (wantvr) {
- minwrk = *n << 2;
- /* Computing MAX */
- i__1 = maxwrk, i__2 = (*n << 1) + (*n - 1) * ilaenv_(&c__1,
- "SORGHR", " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)
- 1);
- maxwrk = f2cmax(i__1,i__2);
- shseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[
- 1], &vr[vr_offset], ldvr, &work[1], &c_n1, info);
- hswork = (integer) work[1];
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *n + 1, i__1 = f2cmax(i__1,i__2), i__2 = *
- n + hswork;
- maxwrk = f2cmax(i__1,i__2);
- strevc3_("R", "B", select, n, &a[a_offset], lda, &vl[
- vl_offset], ldvl, &vr[vr_offset], ldvr, n, &nout, &
- work[1], &c_n1, &ierr);
- lwork_trevc__ = (integer) work[1];
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *n + lwork_trevc__;
- maxwrk = f2cmax(i__1,i__2);
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *n << 2;
- maxwrk = f2cmax(i__1,i__2);
- } else {
- minwrk = *n * 3;
- shseqr_("E", "N", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[
- 1], &vr[vr_offset], ldvr, &work[1], &c_n1, info);
- hswork = (integer) work[1];
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *n + 1, i__1 = f2cmax(i__1,i__2), i__2 = *
- n + hswork;
- maxwrk = f2cmax(i__1,i__2);
- }
- maxwrk = f2cmax(maxwrk,minwrk);
- }
- work[1] = (real) maxwrk;
-
- if (*lwork < minwrk && ! lquery) {
- *info = -13;
- }
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("SGEEV ", &i__1, (ftnlen)5);
- return;
- } else if (lquery) {
- return;
- }
-
- /* Quick return if possible */
-
- if (*n == 0) {
- return;
- }
-
- /* Get machine constants */
-
- eps = slamch_("P");
- smlnum = slamch_("S");
- bignum = 1.f / smlnum;
- slabad_(&smlnum, &bignum);
- smlnum = sqrt(smlnum) / eps;
- bignum = 1.f / smlnum;
-
- /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
-
- anrm = slange_("M", n, n, &a[a_offset], lda, dum);
- scalea = FALSE_;
- if (anrm > 0.f && anrm < smlnum) {
- scalea = TRUE_;
- cscale = smlnum;
- } else if (anrm > bignum) {
- scalea = TRUE_;
- cscale = bignum;
- }
- if (scalea) {
- slascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
- ierr);
- }
-
- /* Balance the matrix */
- /* (Workspace: need N) */
-
- ibal = 1;
- sgebal_("B", n, &a[a_offset], lda, &ilo, &ihi, &work[ibal], &ierr);
-
- /* Reduce to upper Hessenberg form */
- /* (Workspace: need 3*N, prefer 2*N+N*NB) */
-
- itau = ibal + *n;
- iwrk = itau + *n;
- i__1 = *lwork - iwrk + 1;
- sgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1,
- &ierr);
-
- if (wantvl) {
-
- /* Want left eigenvectors */
- /* Copy Householder vectors to VL */
-
- *(unsigned char *)side = 'L';
- slacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl)
- ;
-
- /* Generate orthogonal matrix in VL */
- /* (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
-
- i__1 = *lwork - iwrk + 1;
- sorghr_(n, &ilo, &ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk],
- &i__1, &ierr);
-
- /* Perform QR iteration, accumulating Schur vectors in VL */
- /* (Workspace: need N+1, prefer N+HSWORK (see comments) ) */
-
- iwrk = itau;
- i__1 = *lwork - iwrk + 1;
- shseqr_("S", "V", n, &ilo, &ihi, &a[a_offset], lda, &wr[1], &wi[1], &
- vl[vl_offset], ldvl, &work[iwrk], &i__1, info);
-
- if (wantvr) {
-
- /* Want left and right eigenvectors */
- /* Copy Schur vectors to VR */
-
- *(unsigned char *)side = 'B';
- slacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr);
- }
-
- } else if (wantvr) {
-
- /* Want right eigenvectors */
- /* Copy Householder vectors to VR */
-
- *(unsigned char *)side = 'R';
- slacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr)
- ;
-
- /* Generate orthogonal matrix in VR */
- /* (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
-
- i__1 = *lwork - iwrk + 1;
- sorghr_(n, &ilo, &ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk],
- &i__1, &ierr);
-
- /* Perform QR iteration, accumulating Schur vectors in VR */
- /* (Workspace: need N+1, prefer N+HSWORK (see comments) ) */
-
- iwrk = itau;
- i__1 = *lwork - iwrk + 1;
- shseqr_("S", "V", n, &ilo, &ihi, &a[a_offset], lda, &wr[1], &wi[1], &
- vr[vr_offset], ldvr, &work[iwrk], &i__1, info);
-
- } else {
-
- /* Compute eigenvalues only */
- /* (Workspace: need N+1, prefer N+HSWORK (see comments) ) */
-
- iwrk = itau;
- i__1 = *lwork - iwrk + 1;
- shseqr_("E", "N", n, &ilo, &ihi, &a[a_offset], lda, &wr[1], &wi[1], &
- vr[vr_offset], ldvr, &work[iwrk], &i__1, info);
- }
-
- /* If INFO .NE. 0 from SHSEQR, then quit */
-
- if (*info != 0) {
- goto L50;
- }
-
- if (wantvl || wantvr) {
-
- /* Compute left and/or right eigenvectors */
- /* (Workspace: need 4*N, prefer N + N + 2*N*NB) */
-
- i__1 = *lwork - iwrk + 1;
- strevc3_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset],
- ldvl, &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &i__1, &
- ierr);
- }
-
- if (wantvl) {
-
- /* Undo balancing of left eigenvectors */
- /* (Workspace: need N) */
-
- sgebak_("B", "L", n, &ilo, &ihi, &work[ibal], n, &vl[vl_offset], ldvl,
- &ierr);
-
- /* Normalize left eigenvectors and make largest component real */
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (wi[i__] == 0.f) {
- scl = 1.f / snrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
- sscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
- } else if (wi[i__] > 0.f) {
- r__1 = snrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
- r__2 = snrm2_(n, &vl[(i__ + 1) * vl_dim1 + 1], &c__1);
- scl = 1.f / slapy2_(&r__1, &r__2);
- sscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
- sscal_(n, &scl, &vl[(i__ + 1) * vl_dim1 + 1], &c__1);
- i__2 = *n;
- for (k = 1; k <= i__2; ++k) {
- /* Computing 2nd power */
- r__1 = vl[k + i__ * vl_dim1];
- /* Computing 2nd power */
- r__2 = vl[k + (i__ + 1) * vl_dim1];
- work[iwrk + k - 1] = r__1 * r__1 + r__2 * r__2;
- /* L10: */
- }
- k = isamax_(n, &work[iwrk], &c__1);
- slartg_(&vl[k + i__ * vl_dim1], &vl[k + (i__ + 1) * vl_dim1],
- &cs, &sn, &r__);
- srot_(n, &vl[i__ * vl_dim1 + 1], &c__1, &vl[(i__ + 1) *
- vl_dim1 + 1], &c__1, &cs, &sn);
- vl[k + (i__ + 1) * vl_dim1] = 0.f;
- }
- /* L20: */
- }
- }
-
- if (wantvr) {
-
- /* Undo balancing of right eigenvectors */
- /* (Workspace: need N) */
-
- sgebak_("B", "R", n, &ilo, &ihi, &work[ibal], n, &vr[vr_offset], ldvr,
- &ierr);
-
- /* Normalize right eigenvectors and make largest component real */
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (wi[i__] == 0.f) {
- scl = 1.f / snrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
- sscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
- } else if (wi[i__] > 0.f) {
- r__1 = snrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
- r__2 = snrm2_(n, &vr[(i__ + 1) * vr_dim1 + 1], &c__1);
- scl = 1.f / slapy2_(&r__1, &r__2);
- sscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
- sscal_(n, &scl, &vr[(i__ + 1) * vr_dim1 + 1], &c__1);
- i__2 = *n;
- for (k = 1; k <= i__2; ++k) {
- /* Computing 2nd power */
- r__1 = vr[k + i__ * vr_dim1];
- /* Computing 2nd power */
- r__2 = vr[k + (i__ + 1) * vr_dim1];
- work[iwrk + k - 1] = r__1 * r__1 + r__2 * r__2;
- /* L30: */
- }
- k = isamax_(n, &work[iwrk], &c__1);
- slartg_(&vr[k + i__ * vr_dim1], &vr[k + (i__ + 1) * vr_dim1],
- &cs, &sn, &r__);
- srot_(n, &vr[i__ * vr_dim1 + 1], &c__1, &vr[(i__ + 1) *
- vr_dim1 + 1], &c__1, &cs, &sn);
- vr[k + (i__ + 1) * vr_dim1] = 0.f;
- }
- /* L40: */
- }
- }
-
- /* Undo scaling if necessary */
-
- L50:
- if (scalea) {
- i__1 = *n - *info;
- /* Computing MAX */
- i__3 = *n - *info;
- i__2 = f2cmax(i__3,1);
- slascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[*info +
- 1], &i__2, &ierr);
- i__1 = *n - *info;
- /* Computing MAX */
- i__3 = *n - *info;
- i__2 = f2cmax(i__3,1);
- slascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[*info +
- 1], &i__2, &ierr);
- if (*info > 0) {
- i__1 = ilo - 1;
- slascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[1],
- n, &ierr);
- i__1 = ilo - 1;
- slascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[1],
- n, &ierr);
- }
- }
-
- work[1] = (real) maxwrk;
- return;
-
- /* End of SGEEV */
-
- } /* sgeev_ */
-
|