You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chetf2_rk.c 54 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. /* > \brief \b CHETF2_RK computes the factorization of a complex Hermitian indefinite matrix using the bounded
  488. Bunch-Kaufman (rook) diagonal pivoting method (BLAS2 unblocked algorithm). */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download CHETF2_RK + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chetf2_
  495. rk.f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chetf2_
  498. rk.f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chetf2_
  501. rk.f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE CHETF2_RK( UPLO, N, A, LDA, E, IPIV, INFO ) */
  507. /* CHARACTER UPLO */
  508. /* INTEGER INFO, LDA, N */
  509. /* INTEGER IPIV( * ) */
  510. /* COMPLEX A( LDA, * ), E ( * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > CHETF2_RK computes the factorization of a complex Hermitian matrix A */
  516. /* > using the bounded Bunch-Kaufman (rook) diagonal pivoting method: */
  517. /* > */
  518. /* > A = P*U*D*(U**H)*(P**T) or A = P*L*D*(L**H)*(P**T), */
  519. /* > */
  520. /* > where U (or L) is unit upper (or lower) triangular matrix, */
  521. /* > U**H (or L**H) is the conjugate of U (or L), P is a permutation */
  522. /* > matrix, P**T is the transpose of P, and D is Hermitian and block */
  523. /* > diagonal with 1-by-1 and 2-by-2 diagonal blocks. */
  524. /* > */
  525. /* > This is the unblocked version of the algorithm, calling Level 2 BLAS. */
  526. /* > For more information see Further Details section. */
  527. /* > \endverbatim */
  528. /* Arguments: */
  529. /* ========== */
  530. /* > \param[in] UPLO */
  531. /* > \verbatim */
  532. /* > UPLO is CHARACTER*1 */
  533. /* > Specifies whether the upper or lower triangular part of the */
  534. /* > Hermitian matrix A is stored: */
  535. /* > = 'U': Upper triangular */
  536. /* > = 'L': Lower triangular */
  537. /* > \endverbatim */
  538. /* > */
  539. /* > \param[in] N */
  540. /* > \verbatim */
  541. /* > N is INTEGER */
  542. /* > The order of the matrix A. N >= 0. */
  543. /* > \endverbatim */
  544. /* > */
  545. /* > \param[in,out] A */
  546. /* > \verbatim */
  547. /* > A is COMPLEX array, dimension (LDA,N) */
  548. /* > On entry, the Hermitian matrix A. */
  549. /* > If UPLO = 'U': the leading N-by-N upper triangular part */
  550. /* > of A contains the upper triangular part of the matrix A, */
  551. /* > and the strictly lower triangular part of A is not */
  552. /* > referenced. */
  553. /* > */
  554. /* > If UPLO = 'L': the leading N-by-N lower triangular part */
  555. /* > of A contains the lower triangular part of the matrix A, */
  556. /* > and the strictly upper triangular part of A is not */
  557. /* > referenced. */
  558. /* > */
  559. /* > On exit, contains: */
  560. /* > a) ONLY diagonal elements of the Hermitian block diagonal */
  561. /* > matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); */
  562. /* > (superdiagonal (or subdiagonal) elements of D */
  563. /* > are stored on exit in array E), and */
  564. /* > b) If UPLO = 'U': factor U in the superdiagonal part of A. */
  565. /* > If UPLO = 'L': factor L in the subdiagonal part of A. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] LDA */
  569. /* > \verbatim */
  570. /* > LDA is INTEGER */
  571. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[out] E */
  575. /* > \verbatim */
  576. /* > E is COMPLEX array, dimension (N) */
  577. /* > On exit, contains the superdiagonal (or subdiagonal) */
  578. /* > elements of the Hermitian block diagonal matrix D */
  579. /* > with 1-by-1 or 2-by-2 diagonal blocks, where */
  580. /* > If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0; */
  581. /* > If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0. */
  582. /* > */
  583. /* > NOTE: For 1-by-1 diagonal block D(k), where */
  584. /* > 1 <= k <= N, the element E(k) is set to 0 in both */
  585. /* > UPLO = 'U' or UPLO = 'L' cases. */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[out] IPIV */
  589. /* > \verbatim */
  590. /* > IPIV is INTEGER array, dimension (N) */
  591. /* > IPIV describes the permutation matrix P in the factorization */
  592. /* > of matrix A as follows. The absolute value of IPIV(k) */
  593. /* > represents the index of row and column that were */
  594. /* > interchanged with the k-th row and column. The value of UPLO */
  595. /* > describes the order in which the interchanges were applied. */
  596. /* > Also, the sign of IPIV represents the block structure of */
  597. /* > the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2 */
  598. /* > diagonal blocks which correspond to 1 or 2 interchanges */
  599. /* > at each factorization step. For more info see Further */
  600. /* > Details section. */
  601. /* > */
  602. /* > If UPLO = 'U', */
  603. /* > ( in factorization order, k decreases from N to 1 ): */
  604. /* > a) A single positive entry IPIV(k) > 0 means: */
  605. /* > D(k,k) is a 1-by-1 diagonal block. */
  606. /* > If IPIV(k) != k, rows and columns k and IPIV(k) were */
  607. /* > interchanged in the matrix A(1:N,1:N); */
  608. /* > If IPIV(k) = k, no interchange occurred. */
  609. /* > */
  610. /* > b) A pair of consecutive negative entries */
  611. /* > IPIV(k) < 0 and IPIV(k-1) < 0 means: */
  612. /* > D(k-1:k,k-1:k) is a 2-by-2 diagonal block. */
  613. /* > (NOTE: negative entries in IPIV appear ONLY in pairs). */
  614. /* > 1) If -IPIV(k) != k, rows and columns */
  615. /* > k and -IPIV(k) were interchanged */
  616. /* > in the matrix A(1:N,1:N). */
  617. /* > If -IPIV(k) = k, no interchange occurred. */
  618. /* > 2) If -IPIV(k-1) != k-1, rows and columns */
  619. /* > k-1 and -IPIV(k-1) were interchanged */
  620. /* > in the matrix A(1:N,1:N). */
  621. /* > If -IPIV(k-1) = k-1, no interchange occurred. */
  622. /* > */
  623. /* > c) In both cases a) and b), always ABS( IPIV(k) ) <= k. */
  624. /* > */
  625. /* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
  626. /* > */
  627. /* > If UPLO = 'L', */
  628. /* > ( in factorization order, k increases from 1 to N ): */
  629. /* > a) A single positive entry IPIV(k) > 0 means: */
  630. /* > D(k,k) is a 1-by-1 diagonal block. */
  631. /* > If IPIV(k) != k, rows and columns k and IPIV(k) were */
  632. /* > interchanged in the matrix A(1:N,1:N). */
  633. /* > If IPIV(k) = k, no interchange occurred. */
  634. /* > */
  635. /* > b) A pair of consecutive negative entries */
  636. /* > IPIV(k) < 0 and IPIV(k+1) < 0 means: */
  637. /* > D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
  638. /* > (NOTE: negative entries in IPIV appear ONLY in pairs). */
  639. /* > 1) If -IPIV(k) != k, rows and columns */
  640. /* > k and -IPIV(k) were interchanged */
  641. /* > in the matrix A(1:N,1:N). */
  642. /* > If -IPIV(k) = k, no interchange occurred. */
  643. /* > 2) If -IPIV(k+1) != k+1, rows and columns */
  644. /* > k-1 and -IPIV(k-1) were interchanged */
  645. /* > in the matrix A(1:N,1:N). */
  646. /* > If -IPIV(k+1) = k+1, no interchange occurred. */
  647. /* > */
  648. /* > c) In both cases a) and b), always ABS( IPIV(k) ) >= k. */
  649. /* > */
  650. /* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
  651. /* > \endverbatim */
  652. /* > */
  653. /* > \param[out] INFO */
  654. /* > \verbatim */
  655. /* > INFO is INTEGER */
  656. /* > = 0: successful exit */
  657. /* > */
  658. /* > < 0: If INFO = -k, the k-th argument had an illegal value */
  659. /* > */
  660. /* > > 0: If INFO = k, the matrix A is singular, because: */
  661. /* > If UPLO = 'U': column k in the upper */
  662. /* > triangular part of A contains all zeros. */
  663. /* > If UPLO = 'L': column k in the lower */
  664. /* > triangular part of A contains all zeros. */
  665. /* > */
  666. /* > Therefore D(k,k) is exactly zero, and superdiagonal */
  667. /* > elements of column k of U (or subdiagonal elements of */
  668. /* > column k of L ) are all zeros. The factorization has */
  669. /* > been completed, but the block diagonal matrix D is */
  670. /* > exactly singular, and division by zero will occur if */
  671. /* > it is used to solve a system of equations. */
  672. /* > */
  673. /* > NOTE: INFO only stores the first occurrence of */
  674. /* > a singularity, any subsequent occurrence of singularity */
  675. /* > is not stored in INFO even though the factorization */
  676. /* > always completes. */
  677. /* > \endverbatim */
  678. /* Authors: */
  679. /* ======== */
  680. /* > \author Univ. of Tennessee */
  681. /* > \author Univ. of California Berkeley */
  682. /* > \author Univ. of Colorado Denver */
  683. /* > \author NAG Ltd. */
  684. /* > \date December 2016 */
  685. /* > \ingroup complexHEcomputational */
  686. /* > \par Further Details: */
  687. /* ===================== */
  688. /* > */
  689. /* > \verbatim */
  690. /* > TODO: put further details */
  691. /* > \endverbatim */
  692. /* > \par Contributors: */
  693. /* ================== */
  694. /* > */
  695. /* > \verbatim */
  696. /* > */
  697. /* > December 2016, Igor Kozachenko, */
  698. /* > Computer Science Division, */
  699. /* > University of California, Berkeley */
  700. /* > */
  701. /* > September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
  702. /* > School of Mathematics, */
  703. /* > University of Manchester */
  704. /* > */
  705. /* > 01-01-96 - Based on modifications by */
  706. /* > J. Lewis, Boeing Computer Services Company */
  707. /* > A. Petitet, Computer Science Dept., */
  708. /* > Univ. of Tenn., Knoxville abd , USA */
  709. /* > \endverbatim */
  710. /* ===================================================================== */
  711. /* Subroutine */ void chetf2_rk_(char *uplo, integer *n, complex *a, integer *
  712. lda, complex *e, integer *ipiv, integer *info)
  713. {
  714. /* System generated locals */
  715. integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6;
  716. real r__1, r__2;
  717. complex q__1, q__2, q__3, q__4, q__5, q__6, q__7, q__8;
  718. /* Local variables */
  719. extern /* Subroutine */ void cher_(char *, integer *, real *, complex *,
  720. integer *, complex *, integer *);
  721. logical done;
  722. integer imax, jmax;
  723. real d__;
  724. integer i__, j, k, p;
  725. complex t;
  726. real alpha;
  727. extern logical lsame_(char *, char *);
  728. real sfmin;
  729. extern /* Subroutine */ void cswap_(integer *, complex *, integer *,
  730. complex *, integer *);
  731. integer itemp, kstep;
  732. real stemp;
  733. logical upper;
  734. real r1, d11;
  735. complex d12;
  736. real d22;
  737. complex d21;
  738. extern real slapy2_(real *, real *);
  739. integer ii, kk, kp;
  740. real absakk;
  741. complex wk;
  742. extern integer icamax_(integer *, complex *, integer *);
  743. extern real slamch_(char *);
  744. real tt;
  745. extern /* Subroutine */ void csscal_(integer *, real *, complex *, integer
  746. *);
  747. extern int xerbla_(char *, integer *, ftnlen);
  748. real colmax, rowmax;
  749. complex wkm1, wkp1;
  750. /* -- LAPACK computational routine (version 3.7.0) -- */
  751. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  752. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  753. /* December 2016 */
  754. /* ====================================================================== */
  755. /* Test the input parameters. */
  756. /* Parameter adjustments */
  757. a_dim1 = *lda;
  758. a_offset = 1 + a_dim1 * 1;
  759. a -= a_offset;
  760. --e;
  761. --ipiv;
  762. /* Function Body */
  763. *info = 0;
  764. upper = lsame_(uplo, "U");
  765. if (! upper && ! lsame_(uplo, "L")) {
  766. *info = -1;
  767. } else if (*n < 0) {
  768. *info = -2;
  769. } else if (*lda < f2cmax(1,*n)) {
  770. *info = -4;
  771. }
  772. if (*info != 0) {
  773. i__1 = -(*info);
  774. xerbla_("CHETF2_RK", &i__1, (ftnlen)9);
  775. return;
  776. }
  777. /* Initialize ALPHA for use in choosing pivot block size. */
  778. alpha = (sqrt(17.f) + 1.f) / 8.f;
  779. /* Compute machine safe minimum */
  780. sfmin = slamch_("S");
  781. if (upper) {
  782. /* Factorize A as U*D*U**H using the upper triangle of A */
  783. /* Initialize the first entry of array E, where superdiagonal */
  784. /* elements of D are stored */
  785. e[1].r = 0.f, e[1].i = 0.f;
  786. /* K is the main loop index, decreasing from N to 1 in steps of */
  787. /* 1 or 2 */
  788. k = *n;
  789. L10:
  790. /* If K < 1, exit from loop */
  791. if (k < 1) {
  792. goto L34;
  793. }
  794. kstep = 1;
  795. p = k;
  796. /* Determine rows and columns to be interchanged and whether */
  797. /* a 1-by-1 or 2-by-2 pivot block will be used */
  798. i__1 = k + k * a_dim1;
  799. absakk = (r__1 = a[i__1].r, abs(r__1));
  800. /* IMAX is the row-index of the largest off-diagonal element in */
  801. /* column K, and COLMAX is its absolute value. */
  802. /* Determine both COLMAX and IMAX. */
  803. if (k > 1) {
  804. i__1 = k - 1;
  805. imax = icamax_(&i__1, &a[k * a_dim1 + 1], &c__1);
  806. i__1 = imax + k * a_dim1;
  807. colmax = (r__1 = a[i__1].r, abs(r__1)) + (r__2 = r_imag(&a[imax +
  808. k * a_dim1]), abs(r__2));
  809. } else {
  810. colmax = 0.f;
  811. }
  812. if (f2cmax(absakk,colmax) == 0.f) {
  813. /* Column K is zero or underflow: set INFO and continue */
  814. if (*info == 0) {
  815. *info = k;
  816. }
  817. kp = k;
  818. i__1 = k + k * a_dim1;
  819. i__2 = k + k * a_dim1;
  820. r__1 = a[i__2].r;
  821. a[i__1].r = r__1, a[i__1].i = 0.f;
  822. /* Set E( K ) to zero */
  823. if (k > 1) {
  824. i__1 = k;
  825. e[i__1].r = 0.f, e[i__1].i = 0.f;
  826. }
  827. } else {
  828. /* ============================================================ */
  829. /* BEGIN pivot search */
  830. /* Case(1) */
  831. /* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
  832. /* (used to handle NaN and Inf) */
  833. if (! (absakk < alpha * colmax)) {
  834. /* no interchange, use 1-by-1 pivot block */
  835. kp = k;
  836. } else {
  837. done = FALSE_;
  838. /* Loop until pivot found */
  839. L12:
  840. /* BEGIN pivot search loop body */
  841. /* JMAX is the column-index of the largest off-diagonal */
  842. /* element in row IMAX, and ROWMAX is its absolute value. */
  843. /* Determine both ROWMAX and JMAX. */
  844. if (imax != k) {
  845. i__1 = k - imax;
  846. jmax = imax + icamax_(&i__1, &a[imax + (imax + 1) *
  847. a_dim1], lda);
  848. i__1 = imax + jmax * a_dim1;
  849. rowmax = (r__1 = a[i__1].r, abs(r__1)) + (r__2 = r_imag(&
  850. a[imax + jmax * a_dim1]), abs(r__2));
  851. } else {
  852. rowmax = 0.f;
  853. }
  854. if (imax > 1) {
  855. i__1 = imax - 1;
  856. itemp = icamax_(&i__1, &a[imax * a_dim1 + 1], &c__1);
  857. i__1 = itemp + imax * a_dim1;
  858. stemp = (r__1 = a[i__1].r, abs(r__1)) + (r__2 = r_imag(&a[
  859. itemp + imax * a_dim1]), abs(r__2));
  860. if (stemp > rowmax) {
  861. rowmax = stemp;
  862. jmax = itemp;
  863. }
  864. }
  865. /* Case(2) */
  866. /* Equivalent to testing for */
  867. /* ABS( REAL( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX */
  868. /* (used to handle NaN and Inf) */
  869. i__1 = imax + imax * a_dim1;
  870. if (! ((r__1 = a[i__1].r, abs(r__1)) < alpha * rowmax)) {
  871. /* interchange rows and columns K and IMAX, */
  872. /* use 1-by-1 pivot block */
  873. kp = imax;
  874. done = TRUE_;
  875. /* Case(3) */
  876. /* Equivalent to testing for ROWMAX.EQ.COLMAX, */
  877. /* (used to handle NaN and Inf) */
  878. } else if (p == jmax || rowmax <= colmax) {
  879. /* interchange rows and columns K-1 and IMAX, */
  880. /* use 2-by-2 pivot block */
  881. kp = imax;
  882. kstep = 2;
  883. done = TRUE_;
  884. /* Case(4) */
  885. } else {
  886. /* Pivot not found: set params and repeat */
  887. p = imax;
  888. colmax = rowmax;
  889. imax = jmax;
  890. }
  891. /* END pivot search loop body */
  892. if (! done) {
  893. goto L12;
  894. }
  895. }
  896. /* END pivot search */
  897. /* ============================================================ */
  898. /* KK is the column of A where pivoting step stopped */
  899. kk = k - kstep + 1;
  900. /* For only a 2x2 pivot, interchange rows and columns K and P */
  901. /* in the leading submatrix A(1:k,1:k) */
  902. if (kstep == 2 && p != k) {
  903. /* (1) Swap columnar parts */
  904. if (p > 1) {
  905. i__1 = p - 1;
  906. cswap_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[p * a_dim1 +
  907. 1], &c__1);
  908. }
  909. /* (2) Swap and conjugate middle parts */
  910. i__1 = k - 1;
  911. for (j = p + 1; j <= i__1; ++j) {
  912. r_cnjg(&q__1, &a[j + k * a_dim1]);
  913. t.r = q__1.r, t.i = q__1.i;
  914. i__2 = j + k * a_dim1;
  915. r_cnjg(&q__1, &a[p + j * a_dim1]);
  916. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  917. i__2 = p + j * a_dim1;
  918. a[i__2].r = t.r, a[i__2].i = t.i;
  919. /* L14: */
  920. }
  921. /* (3) Swap and conjugate corner elements at row-col interserction */
  922. i__1 = p + k * a_dim1;
  923. r_cnjg(&q__1, &a[p + k * a_dim1]);
  924. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  925. /* (4) Swap diagonal elements at row-col intersection */
  926. i__1 = k + k * a_dim1;
  927. r1 = a[i__1].r;
  928. i__1 = k + k * a_dim1;
  929. i__2 = p + p * a_dim1;
  930. r__1 = a[i__2].r;
  931. a[i__1].r = r__1, a[i__1].i = 0.f;
  932. i__1 = p + p * a_dim1;
  933. a[i__1].r = r1, a[i__1].i = 0.f;
  934. /* Convert upper triangle of A into U form by applying */
  935. /* the interchanges in columns k+1:N. */
  936. if (k < *n) {
  937. i__1 = *n - k;
  938. cswap_(&i__1, &a[k + (k + 1) * a_dim1], lda, &a[p + (k +
  939. 1) * a_dim1], lda);
  940. }
  941. }
  942. /* For both 1x1 and 2x2 pivots, interchange rows and */
  943. /* columns KK and KP in the leading submatrix A(1:k,1:k) */
  944. if (kp != kk) {
  945. /* (1) Swap columnar parts */
  946. if (kp > 1) {
  947. i__1 = kp - 1;
  948. cswap_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1
  949. + 1], &c__1);
  950. }
  951. /* (2) Swap and conjugate middle parts */
  952. i__1 = kk - 1;
  953. for (j = kp + 1; j <= i__1; ++j) {
  954. r_cnjg(&q__1, &a[j + kk * a_dim1]);
  955. t.r = q__1.r, t.i = q__1.i;
  956. i__2 = j + kk * a_dim1;
  957. r_cnjg(&q__1, &a[kp + j * a_dim1]);
  958. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  959. i__2 = kp + j * a_dim1;
  960. a[i__2].r = t.r, a[i__2].i = t.i;
  961. /* L15: */
  962. }
  963. /* (3) Swap and conjugate corner elements at row-col interserction */
  964. i__1 = kp + kk * a_dim1;
  965. r_cnjg(&q__1, &a[kp + kk * a_dim1]);
  966. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  967. /* (4) Swap diagonal elements at row-col intersection */
  968. i__1 = kk + kk * a_dim1;
  969. r1 = a[i__1].r;
  970. i__1 = kk + kk * a_dim1;
  971. i__2 = kp + kp * a_dim1;
  972. r__1 = a[i__2].r;
  973. a[i__1].r = r__1, a[i__1].i = 0.f;
  974. i__1 = kp + kp * a_dim1;
  975. a[i__1].r = r1, a[i__1].i = 0.f;
  976. if (kstep == 2) {
  977. /* (*) Make sure that diagonal element of pivot is real */
  978. i__1 = k + k * a_dim1;
  979. i__2 = k + k * a_dim1;
  980. r__1 = a[i__2].r;
  981. a[i__1].r = r__1, a[i__1].i = 0.f;
  982. /* (5) Swap row elements */
  983. i__1 = k - 1 + k * a_dim1;
  984. t.r = a[i__1].r, t.i = a[i__1].i;
  985. i__1 = k - 1 + k * a_dim1;
  986. i__2 = kp + k * a_dim1;
  987. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  988. i__1 = kp + k * a_dim1;
  989. a[i__1].r = t.r, a[i__1].i = t.i;
  990. }
  991. /* Convert upper triangle of A into U form by applying */
  992. /* the interchanges in columns k+1:N. */
  993. if (k < *n) {
  994. i__1 = *n - k;
  995. cswap_(&i__1, &a[kk + (k + 1) * a_dim1], lda, &a[kp + (k
  996. + 1) * a_dim1], lda);
  997. }
  998. } else {
  999. /* (*) Make sure that diagonal element of pivot is real */
  1000. i__1 = k + k * a_dim1;
  1001. i__2 = k + k * a_dim1;
  1002. r__1 = a[i__2].r;
  1003. a[i__1].r = r__1, a[i__1].i = 0.f;
  1004. if (kstep == 2) {
  1005. i__1 = k - 1 + (k - 1) * a_dim1;
  1006. i__2 = k - 1 + (k - 1) * a_dim1;
  1007. r__1 = a[i__2].r;
  1008. a[i__1].r = r__1, a[i__1].i = 0.f;
  1009. }
  1010. }
  1011. /* Update the leading submatrix */
  1012. if (kstep == 1) {
  1013. /* 1-by-1 pivot block D(k): column k now holds */
  1014. /* W(k) = U(k)*D(k) */
  1015. /* where U(k) is the k-th column of U */
  1016. if (k > 1) {
  1017. /* Perform a rank-1 update of A(1:k-1,1:k-1) and */
  1018. /* store U(k) in column k */
  1019. i__1 = k + k * a_dim1;
  1020. if ((r__1 = a[i__1].r, abs(r__1)) >= sfmin) {
  1021. /* Perform a rank-1 update of A(1:k-1,1:k-1) as */
  1022. /* A := A - U(k)*D(k)*U(k)**T */
  1023. /* = A - W(k)*1/D(k)*W(k)**T */
  1024. i__1 = k + k * a_dim1;
  1025. d11 = 1.f / a[i__1].r;
  1026. i__1 = k - 1;
  1027. r__1 = -d11;
  1028. cher_(uplo, &i__1, &r__1, &a[k * a_dim1 + 1], &c__1, &
  1029. a[a_offset], lda);
  1030. /* Store U(k) in column k */
  1031. i__1 = k - 1;
  1032. csscal_(&i__1, &d11, &a[k * a_dim1 + 1], &c__1);
  1033. } else {
  1034. /* Store L(k) in column K */
  1035. i__1 = k + k * a_dim1;
  1036. d11 = a[i__1].r;
  1037. i__1 = k - 1;
  1038. for (ii = 1; ii <= i__1; ++ii) {
  1039. i__2 = ii + k * a_dim1;
  1040. i__3 = ii + k * a_dim1;
  1041. q__1.r = a[i__3].r / d11, q__1.i = a[i__3].i /
  1042. d11;
  1043. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1044. /* L16: */
  1045. }
  1046. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  1047. /* A := A - U(k)*D(k)*U(k)**T */
  1048. /* = A - W(k)*(1/D(k))*W(k)**T */
  1049. /* = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T */
  1050. i__1 = k - 1;
  1051. r__1 = -d11;
  1052. cher_(uplo, &i__1, &r__1, &a[k * a_dim1 + 1], &c__1, &
  1053. a[a_offset], lda);
  1054. }
  1055. /* Store the superdiagonal element of D in array E */
  1056. i__1 = k;
  1057. e[i__1].r = 0.f, e[i__1].i = 0.f;
  1058. }
  1059. } else {
  1060. /* 2-by-2 pivot block D(k): columns k and k-1 now hold */
  1061. /* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
  1062. /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
  1063. /* of U */
  1064. /* Perform a rank-2 update of A(1:k-2,1:k-2) as */
  1065. /* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T */
  1066. /* = A - ( ( A(k-1)A(k) )*inv(D(k)) ) * ( A(k-1)A(k) )**T */
  1067. /* and store L(k) and L(k+1) in columns k and k+1 */
  1068. if (k > 2) {
  1069. /* D = |A12| */
  1070. i__1 = k - 1 + k * a_dim1;
  1071. r__1 = a[i__1].r;
  1072. r__2 = r_imag(&a[k - 1 + k * a_dim1]);
  1073. d__ = slapy2_(&r__1, &r__2);
  1074. i__1 = k + k * a_dim1;
  1075. q__1.r = a[i__1].r / d__, q__1.i = a[i__1].i / d__;
  1076. d11 = q__1.r;
  1077. i__1 = k - 1 + (k - 1) * a_dim1;
  1078. q__1.r = a[i__1].r / d__, q__1.i = a[i__1].i / d__;
  1079. d22 = q__1.r;
  1080. i__1 = k - 1 + k * a_dim1;
  1081. q__1.r = a[i__1].r / d__, q__1.i = a[i__1].i / d__;
  1082. d12.r = q__1.r, d12.i = q__1.i;
  1083. tt = 1.f / (d11 * d22 - 1.f);
  1084. for (j = k - 2; j >= 1; --j) {
  1085. /* Compute D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J */
  1086. i__1 = j + (k - 1) * a_dim1;
  1087. q__3.r = d11 * a[i__1].r, q__3.i = d11 * a[i__1].i;
  1088. r_cnjg(&q__5, &d12);
  1089. i__2 = j + k * a_dim1;
  1090. q__4.r = q__5.r * a[i__2].r - q__5.i * a[i__2].i,
  1091. q__4.i = q__5.r * a[i__2].i + q__5.i * a[i__2]
  1092. .r;
  1093. q__2.r = q__3.r - q__4.r, q__2.i = q__3.i - q__4.i;
  1094. q__1.r = tt * q__2.r, q__1.i = tt * q__2.i;
  1095. wkm1.r = q__1.r, wkm1.i = q__1.i;
  1096. i__1 = j + k * a_dim1;
  1097. q__3.r = d22 * a[i__1].r, q__3.i = d22 * a[i__1].i;
  1098. i__2 = j + (k - 1) * a_dim1;
  1099. q__4.r = d12.r * a[i__2].r - d12.i * a[i__2].i,
  1100. q__4.i = d12.r * a[i__2].i + d12.i * a[i__2]
  1101. .r;
  1102. q__2.r = q__3.r - q__4.r, q__2.i = q__3.i - q__4.i;
  1103. q__1.r = tt * q__2.r, q__1.i = tt * q__2.i;
  1104. wk.r = q__1.r, wk.i = q__1.i;
  1105. /* Perform a rank-2 update of A(1:k-2,1:k-2) */
  1106. for (i__ = j; i__ >= 1; --i__) {
  1107. i__1 = i__ + j * a_dim1;
  1108. i__2 = i__ + j * a_dim1;
  1109. i__3 = i__ + k * a_dim1;
  1110. q__4.r = a[i__3].r / d__, q__4.i = a[i__3].i /
  1111. d__;
  1112. r_cnjg(&q__5, &wk);
  1113. q__3.r = q__4.r * q__5.r - q__4.i * q__5.i,
  1114. q__3.i = q__4.r * q__5.i + q__4.i *
  1115. q__5.r;
  1116. q__2.r = a[i__2].r - q__3.r, q__2.i = a[i__2].i -
  1117. q__3.i;
  1118. i__4 = i__ + (k - 1) * a_dim1;
  1119. q__7.r = a[i__4].r / d__, q__7.i = a[i__4].i /
  1120. d__;
  1121. r_cnjg(&q__8, &wkm1);
  1122. q__6.r = q__7.r * q__8.r - q__7.i * q__8.i,
  1123. q__6.i = q__7.r * q__8.i + q__7.i *
  1124. q__8.r;
  1125. q__1.r = q__2.r - q__6.r, q__1.i = q__2.i -
  1126. q__6.i;
  1127. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  1128. /* L20: */
  1129. }
  1130. /* Store U(k) and U(k-1) in cols k and k-1 for row J */
  1131. i__1 = j + k * a_dim1;
  1132. q__1.r = wk.r / d__, q__1.i = wk.i / d__;
  1133. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  1134. i__1 = j + (k - 1) * a_dim1;
  1135. q__1.r = wkm1.r / d__, q__1.i = wkm1.i / d__;
  1136. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  1137. /* (*) Make sure that diagonal element of pivot is real */
  1138. i__1 = j + j * a_dim1;
  1139. i__2 = j + j * a_dim1;
  1140. r__1 = a[i__2].r;
  1141. q__1.r = r__1, q__1.i = 0.f;
  1142. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  1143. /* L30: */
  1144. }
  1145. }
  1146. /* Copy superdiagonal elements of D(K) to E(K) and */
  1147. /* ZERO out superdiagonal entry of A */
  1148. i__1 = k;
  1149. i__2 = k - 1 + k * a_dim1;
  1150. e[i__1].r = a[i__2].r, e[i__1].i = a[i__2].i;
  1151. i__1 = k - 1;
  1152. e[i__1].r = 0.f, e[i__1].i = 0.f;
  1153. i__1 = k - 1 + k * a_dim1;
  1154. a[i__1].r = 0.f, a[i__1].i = 0.f;
  1155. }
  1156. /* End column K is nonsingular */
  1157. }
  1158. /* Store details of the interchanges in IPIV */
  1159. if (kstep == 1) {
  1160. ipiv[k] = kp;
  1161. } else {
  1162. ipiv[k] = -p;
  1163. ipiv[k - 1] = -kp;
  1164. }
  1165. /* Decrease K and return to the start of the main loop */
  1166. k -= kstep;
  1167. goto L10;
  1168. L34:
  1169. ;
  1170. } else {
  1171. /* Factorize A as L*D*L**H using the lower triangle of A */
  1172. /* Initialize the unused last entry of the subdiagonal array E. */
  1173. i__1 = *n;
  1174. e[i__1].r = 0.f, e[i__1].i = 0.f;
  1175. /* K is the main loop index, increasing from 1 to N in steps of */
  1176. /* 1 or 2 */
  1177. k = 1;
  1178. L40:
  1179. /* If K > N, exit from loop */
  1180. if (k > *n) {
  1181. goto L64;
  1182. }
  1183. kstep = 1;
  1184. p = k;
  1185. /* Determine rows and columns to be interchanged and whether */
  1186. /* a 1-by-1 or 2-by-2 pivot block will be used */
  1187. i__1 = k + k * a_dim1;
  1188. absakk = (r__1 = a[i__1].r, abs(r__1));
  1189. /* IMAX is the row-index of the largest off-diagonal element in */
  1190. /* column K, and COLMAX is its absolute value. */
  1191. /* Determine both COLMAX and IMAX. */
  1192. if (k < *n) {
  1193. i__1 = *n - k;
  1194. imax = k + icamax_(&i__1, &a[k + 1 + k * a_dim1], &c__1);
  1195. i__1 = imax + k * a_dim1;
  1196. colmax = (r__1 = a[i__1].r, abs(r__1)) + (r__2 = r_imag(&a[imax +
  1197. k * a_dim1]), abs(r__2));
  1198. } else {
  1199. colmax = 0.f;
  1200. }
  1201. if (f2cmax(absakk,colmax) == 0.f) {
  1202. /* Column K is zero or underflow: set INFO and continue */
  1203. if (*info == 0) {
  1204. *info = k;
  1205. }
  1206. kp = k;
  1207. i__1 = k + k * a_dim1;
  1208. i__2 = k + k * a_dim1;
  1209. r__1 = a[i__2].r;
  1210. a[i__1].r = r__1, a[i__1].i = 0.f;
  1211. /* Set E( K ) to zero */
  1212. if (k < *n) {
  1213. i__1 = k;
  1214. e[i__1].r = 0.f, e[i__1].i = 0.f;
  1215. }
  1216. } else {
  1217. /* ============================================================ */
  1218. /* BEGIN pivot search */
  1219. /* Case(1) */
  1220. /* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
  1221. /* (used to handle NaN and Inf) */
  1222. if (! (absakk < alpha * colmax)) {
  1223. /* no interchange, use 1-by-1 pivot block */
  1224. kp = k;
  1225. } else {
  1226. done = FALSE_;
  1227. /* Loop until pivot found */
  1228. L42:
  1229. /* BEGIN pivot search loop body */
  1230. /* JMAX is the column-index of the largest off-diagonal */
  1231. /* element in row IMAX, and ROWMAX is its absolute value. */
  1232. /* Determine both ROWMAX and JMAX. */
  1233. if (imax != k) {
  1234. i__1 = imax - k;
  1235. jmax = k - 1 + icamax_(&i__1, &a[imax + k * a_dim1], lda);
  1236. i__1 = imax + jmax * a_dim1;
  1237. rowmax = (r__1 = a[i__1].r, abs(r__1)) + (r__2 = r_imag(&
  1238. a[imax + jmax * a_dim1]), abs(r__2));
  1239. } else {
  1240. rowmax = 0.f;
  1241. }
  1242. if (imax < *n) {
  1243. i__1 = *n - imax;
  1244. itemp = imax + icamax_(&i__1, &a[imax + 1 + imax * a_dim1]
  1245. , &c__1);
  1246. i__1 = itemp + imax * a_dim1;
  1247. stemp = (r__1 = a[i__1].r, abs(r__1)) + (r__2 = r_imag(&a[
  1248. itemp + imax * a_dim1]), abs(r__2));
  1249. if (stemp > rowmax) {
  1250. rowmax = stemp;
  1251. jmax = itemp;
  1252. }
  1253. }
  1254. /* Case(2) */
  1255. /* Equivalent to testing for */
  1256. /* ABS( REAL( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX */
  1257. /* (used to handle NaN and Inf) */
  1258. i__1 = imax + imax * a_dim1;
  1259. if (! ((r__1 = a[i__1].r, abs(r__1)) < alpha * rowmax)) {
  1260. /* interchange rows and columns K and IMAX, */
  1261. /* use 1-by-1 pivot block */
  1262. kp = imax;
  1263. done = TRUE_;
  1264. /* Case(3) */
  1265. /* Equivalent to testing for ROWMAX.EQ.COLMAX, */
  1266. /* (used to handle NaN and Inf) */
  1267. } else if (p == jmax || rowmax <= colmax) {
  1268. /* interchange rows and columns K+1 and IMAX, */
  1269. /* use 2-by-2 pivot block */
  1270. kp = imax;
  1271. kstep = 2;
  1272. done = TRUE_;
  1273. /* Case(4) */
  1274. } else {
  1275. /* Pivot not found: set params and repeat */
  1276. p = imax;
  1277. colmax = rowmax;
  1278. imax = jmax;
  1279. }
  1280. /* END pivot search loop body */
  1281. if (! done) {
  1282. goto L42;
  1283. }
  1284. }
  1285. /* END pivot search */
  1286. /* ============================================================ */
  1287. /* KK is the column of A where pivoting step stopped */
  1288. kk = k + kstep - 1;
  1289. /* For only a 2x2 pivot, interchange rows and columns K and P */
  1290. /* in the trailing submatrix A(k:n,k:n) */
  1291. if (kstep == 2 && p != k) {
  1292. /* (1) Swap columnar parts */
  1293. if (p < *n) {
  1294. i__1 = *n - p;
  1295. cswap_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + 1 + p
  1296. * a_dim1], &c__1);
  1297. }
  1298. /* (2) Swap and conjugate middle parts */
  1299. i__1 = p - 1;
  1300. for (j = k + 1; j <= i__1; ++j) {
  1301. r_cnjg(&q__1, &a[j + k * a_dim1]);
  1302. t.r = q__1.r, t.i = q__1.i;
  1303. i__2 = j + k * a_dim1;
  1304. r_cnjg(&q__1, &a[p + j * a_dim1]);
  1305. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1306. i__2 = p + j * a_dim1;
  1307. a[i__2].r = t.r, a[i__2].i = t.i;
  1308. /* L44: */
  1309. }
  1310. /* (3) Swap and conjugate corner elements at row-col interserction */
  1311. i__1 = p + k * a_dim1;
  1312. r_cnjg(&q__1, &a[p + k * a_dim1]);
  1313. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  1314. /* (4) Swap diagonal elements at row-col intersection */
  1315. i__1 = k + k * a_dim1;
  1316. r1 = a[i__1].r;
  1317. i__1 = k + k * a_dim1;
  1318. i__2 = p + p * a_dim1;
  1319. r__1 = a[i__2].r;
  1320. a[i__1].r = r__1, a[i__1].i = 0.f;
  1321. i__1 = p + p * a_dim1;
  1322. a[i__1].r = r1, a[i__1].i = 0.f;
  1323. /* Convert lower triangle of A into L form by applying */
  1324. /* the interchanges in columns 1:k-1. */
  1325. if (k > 1) {
  1326. i__1 = k - 1;
  1327. cswap_(&i__1, &a[k + a_dim1], lda, &a[p + a_dim1], lda);
  1328. }
  1329. }
  1330. /* For both 1x1 and 2x2 pivots, interchange rows and */
  1331. /* columns KK and KP in the trailing submatrix A(k:n,k:n) */
  1332. if (kp != kk) {
  1333. /* (1) Swap columnar parts */
  1334. if (kp < *n) {
  1335. i__1 = *n - kp;
  1336. cswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1
  1337. + kp * a_dim1], &c__1);
  1338. }
  1339. /* (2) Swap and conjugate middle parts */
  1340. i__1 = kp - 1;
  1341. for (j = kk + 1; j <= i__1; ++j) {
  1342. r_cnjg(&q__1, &a[j + kk * a_dim1]);
  1343. t.r = q__1.r, t.i = q__1.i;
  1344. i__2 = j + kk * a_dim1;
  1345. r_cnjg(&q__1, &a[kp + j * a_dim1]);
  1346. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1347. i__2 = kp + j * a_dim1;
  1348. a[i__2].r = t.r, a[i__2].i = t.i;
  1349. /* L45: */
  1350. }
  1351. /* (3) Swap and conjugate corner elements at row-col interserction */
  1352. i__1 = kp + kk * a_dim1;
  1353. r_cnjg(&q__1, &a[kp + kk * a_dim1]);
  1354. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  1355. /* (4) Swap diagonal elements at row-col intersection */
  1356. i__1 = kk + kk * a_dim1;
  1357. r1 = a[i__1].r;
  1358. i__1 = kk + kk * a_dim1;
  1359. i__2 = kp + kp * a_dim1;
  1360. r__1 = a[i__2].r;
  1361. a[i__1].r = r__1, a[i__1].i = 0.f;
  1362. i__1 = kp + kp * a_dim1;
  1363. a[i__1].r = r1, a[i__1].i = 0.f;
  1364. if (kstep == 2) {
  1365. /* (*) Make sure that diagonal element of pivot is real */
  1366. i__1 = k + k * a_dim1;
  1367. i__2 = k + k * a_dim1;
  1368. r__1 = a[i__2].r;
  1369. a[i__1].r = r__1, a[i__1].i = 0.f;
  1370. /* (5) Swap row elements */
  1371. i__1 = k + 1 + k * a_dim1;
  1372. t.r = a[i__1].r, t.i = a[i__1].i;
  1373. i__1 = k + 1 + k * a_dim1;
  1374. i__2 = kp + k * a_dim1;
  1375. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  1376. i__1 = kp + k * a_dim1;
  1377. a[i__1].r = t.r, a[i__1].i = t.i;
  1378. }
  1379. /* Convert lower triangle of A into L form by applying */
  1380. /* the interchanges in columns 1:k-1. */
  1381. if (k > 1) {
  1382. i__1 = k - 1;
  1383. cswap_(&i__1, &a[kk + a_dim1], lda, &a[kp + a_dim1], lda);
  1384. }
  1385. } else {
  1386. /* (*) Make sure that diagonal element of pivot is real */
  1387. i__1 = k + k * a_dim1;
  1388. i__2 = k + k * a_dim1;
  1389. r__1 = a[i__2].r;
  1390. a[i__1].r = r__1, a[i__1].i = 0.f;
  1391. if (kstep == 2) {
  1392. i__1 = k + 1 + (k + 1) * a_dim1;
  1393. i__2 = k + 1 + (k + 1) * a_dim1;
  1394. r__1 = a[i__2].r;
  1395. a[i__1].r = r__1, a[i__1].i = 0.f;
  1396. }
  1397. }
  1398. /* Update the trailing submatrix */
  1399. if (kstep == 1) {
  1400. /* 1-by-1 pivot block D(k): column k of A now holds */
  1401. /* W(k) = L(k)*D(k), */
  1402. /* where L(k) is the k-th column of L */
  1403. if (k < *n) {
  1404. /* Perform a rank-1 update of A(k+1:n,k+1:n) and */
  1405. /* store L(k) in column k */
  1406. /* Handle division by a small number */
  1407. i__1 = k + k * a_dim1;
  1408. if ((r__1 = a[i__1].r, abs(r__1)) >= sfmin) {
  1409. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  1410. /* A := A - L(k)*D(k)*L(k)**T */
  1411. /* = A - W(k)*(1/D(k))*W(k)**T */
  1412. i__1 = k + k * a_dim1;
  1413. d11 = 1.f / a[i__1].r;
  1414. i__1 = *n - k;
  1415. r__1 = -d11;
  1416. cher_(uplo, &i__1, &r__1, &a[k + 1 + k * a_dim1], &
  1417. c__1, &a[k + 1 + (k + 1) * a_dim1], lda);
  1418. /* Store L(k) in column k */
  1419. i__1 = *n - k;
  1420. csscal_(&i__1, &d11, &a[k + 1 + k * a_dim1], &c__1);
  1421. } else {
  1422. /* Store L(k) in column k */
  1423. i__1 = k + k * a_dim1;
  1424. d11 = a[i__1].r;
  1425. i__1 = *n;
  1426. for (ii = k + 1; ii <= i__1; ++ii) {
  1427. i__2 = ii + k * a_dim1;
  1428. i__3 = ii + k * a_dim1;
  1429. q__1.r = a[i__3].r / d11, q__1.i = a[i__3].i /
  1430. d11;
  1431. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1432. /* L46: */
  1433. }
  1434. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  1435. /* A := A - L(k)*D(k)*L(k)**T */
  1436. /* = A - W(k)*(1/D(k))*W(k)**T */
  1437. /* = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T */
  1438. i__1 = *n - k;
  1439. r__1 = -d11;
  1440. cher_(uplo, &i__1, &r__1, &a[k + 1 + k * a_dim1], &
  1441. c__1, &a[k + 1 + (k + 1) * a_dim1], lda);
  1442. }
  1443. /* Store the subdiagonal element of D in array E */
  1444. i__1 = k;
  1445. e[i__1].r = 0.f, e[i__1].i = 0.f;
  1446. }
  1447. } else {
  1448. /* 2-by-2 pivot block D(k): columns k and k+1 now hold */
  1449. /* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
  1450. /* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
  1451. /* of L */
  1452. /* Perform a rank-2 update of A(k+2:n,k+2:n) as */
  1453. /* A := A - ( L(k) L(k+1) ) * D(k) * ( L(k) L(k+1) )**T */
  1454. /* = A - ( ( A(k)A(k+1) )*inv(D(k) ) * ( A(k)A(k+1) )**T */
  1455. /* and store L(k) and L(k+1) in columns k and k+1 */
  1456. if (k < *n - 1) {
  1457. /* D = |A21| */
  1458. i__1 = k + 1 + k * a_dim1;
  1459. r__1 = a[i__1].r;
  1460. r__2 = r_imag(&a[k + 1 + k * a_dim1]);
  1461. d__ = slapy2_(&r__1, &r__2);
  1462. i__1 = k + 1 + (k + 1) * a_dim1;
  1463. d11 = a[i__1].r / d__;
  1464. i__1 = k + k * a_dim1;
  1465. d22 = a[i__1].r / d__;
  1466. i__1 = k + 1 + k * a_dim1;
  1467. q__1.r = a[i__1].r / d__, q__1.i = a[i__1].i / d__;
  1468. d21.r = q__1.r, d21.i = q__1.i;
  1469. tt = 1.f / (d11 * d22 - 1.f);
  1470. i__1 = *n;
  1471. for (j = k + 2; j <= i__1; ++j) {
  1472. /* Compute D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J */
  1473. i__2 = j + k * a_dim1;
  1474. q__3.r = d11 * a[i__2].r, q__3.i = d11 * a[i__2].i;
  1475. i__3 = j + (k + 1) * a_dim1;
  1476. q__4.r = d21.r * a[i__3].r - d21.i * a[i__3].i,
  1477. q__4.i = d21.r * a[i__3].i + d21.i * a[i__3]
  1478. .r;
  1479. q__2.r = q__3.r - q__4.r, q__2.i = q__3.i - q__4.i;
  1480. q__1.r = tt * q__2.r, q__1.i = tt * q__2.i;
  1481. wk.r = q__1.r, wk.i = q__1.i;
  1482. i__2 = j + (k + 1) * a_dim1;
  1483. q__3.r = d22 * a[i__2].r, q__3.i = d22 * a[i__2].i;
  1484. r_cnjg(&q__5, &d21);
  1485. i__3 = j + k * a_dim1;
  1486. q__4.r = q__5.r * a[i__3].r - q__5.i * a[i__3].i,
  1487. q__4.i = q__5.r * a[i__3].i + q__5.i * a[i__3]
  1488. .r;
  1489. q__2.r = q__3.r - q__4.r, q__2.i = q__3.i - q__4.i;
  1490. q__1.r = tt * q__2.r, q__1.i = tt * q__2.i;
  1491. wkp1.r = q__1.r, wkp1.i = q__1.i;
  1492. /* Perform a rank-2 update of A(k+2:n,k+2:n) */
  1493. i__2 = *n;
  1494. for (i__ = j; i__ <= i__2; ++i__) {
  1495. i__3 = i__ + j * a_dim1;
  1496. i__4 = i__ + j * a_dim1;
  1497. i__5 = i__ + k * a_dim1;
  1498. q__4.r = a[i__5].r / d__, q__4.i = a[i__5].i /
  1499. d__;
  1500. r_cnjg(&q__5, &wk);
  1501. q__3.r = q__4.r * q__5.r - q__4.i * q__5.i,
  1502. q__3.i = q__4.r * q__5.i + q__4.i *
  1503. q__5.r;
  1504. q__2.r = a[i__4].r - q__3.r, q__2.i = a[i__4].i -
  1505. q__3.i;
  1506. i__6 = i__ + (k + 1) * a_dim1;
  1507. q__7.r = a[i__6].r / d__, q__7.i = a[i__6].i /
  1508. d__;
  1509. r_cnjg(&q__8, &wkp1);
  1510. q__6.r = q__7.r * q__8.r - q__7.i * q__8.i,
  1511. q__6.i = q__7.r * q__8.i + q__7.i *
  1512. q__8.r;
  1513. q__1.r = q__2.r - q__6.r, q__1.i = q__2.i -
  1514. q__6.i;
  1515. a[i__3].r = q__1.r, a[i__3].i = q__1.i;
  1516. /* L50: */
  1517. }
  1518. /* Store L(k) and L(k+1) in cols k and k+1 for row J */
  1519. i__2 = j + k * a_dim1;
  1520. q__1.r = wk.r / d__, q__1.i = wk.i / d__;
  1521. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1522. i__2 = j + (k + 1) * a_dim1;
  1523. q__1.r = wkp1.r / d__, q__1.i = wkp1.i / d__;
  1524. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1525. /* (*) Make sure that diagonal element of pivot is real */
  1526. i__2 = j + j * a_dim1;
  1527. i__3 = j + j * a_dim1;
  1528. r__1 = a[i__3].r;
  1529. q__1.r = r__1, q__1.i = 0.f;
  1530. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1531. /* L60: */
  1532. }
  1533. }
  1534. /* Copy subdiagonal elements of D(K) to E(K) and */
  1535. /* ZERO out subdiagonal entry of A */
  1536. i__1 = k;
  1537. i__2 = k + 1 + k * a_dim1;
  1538. e[i__1].r = a[i__2].r, e[i__1].i = a[i__2].i;
  1539. i__1 = k + 1;
  1540. e[i__1].r = 0.f, e[i__1].i = 0.f;
  1541. i__1 = k + 1 + k * a_dim1;
  1542. a[i__1].r = 0.f, a[i__1].i = 0.f;
  1543. }
  1544. /* End column K is nonsingular */
  1545. }
  1546. /* Store details of the interchanges in IPIV */
  1547. if (kstep == 1) {
  1548. ipiv[k] = kp;
  1549. } else {
  1550. ipiv[k] = -p;
  1551. ipiv[k + 1] = -kp;
  1552. }
  1553. /* Increase K and return to the start of the main loop */
  1554. k += kstep;
  1555. goto L40;
  1556. L64:
  1557. ;
  1558. }
  1559. return;
  1560. /* End of CHETF2_RK */
  1561. } /* chetf2_rk__ */