You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlaqr2.c 36 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static doublecomplex c_b1 = {0.,0.};
  485. static doublecomplex c_b2 = {1.,0.};
  486. static integer c__1 = 1;
  487. static integer c_n1 = -1;
  488. static logical c_true = TRUE_;
  489. /* > \brief \b ZLAQR2 performs the unitary similarity transformation of a Hessenberg matrix to detect and defl
  490. ate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation). */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download ZLAQR2 + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqr2.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqr2.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqr2.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE ZLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ, */
  509. /* IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT, */
  510. /* NV, WV, LDWV, WORK, LWORK ) */
  511. /* INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV, */
  512. /* $ LDZ, LWORK, N, ND, NH, NS, NV, NW */
  513. /* LOGICAL WANTT, WANTZ */
  514. /* COMPLEX*16 H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ), */
  515. /* $ WORK( * ), WV( LDWV, * ), Z( LDZ, * ) */
  516. /* > \par Purpose: */
  517. /* ============= */
  518. /* > */
  519. /* > \verbatim */
  520. /* > */
  521. /* > ZLAQR2 is identical to ZLAQR3 except that it avoids */
  522. /* > recursion by calling ZLAHQR instead of ZLAQR4. */
  523. /* > */
  524. /* > Aggressive early deflation: */
  525. /* > */
  526. /* > ZLAQR2 accepts as input an upper Hessenberg matrix */
  527. /* > H and performs an unitary similarity transformation */
  528. /* > designed to detect and deflate fully converged eigenvalues from */
  529. /* > a trailing principal submatrix. On output H has been over- */
  530. /* > written by a new Hessenberg matrix that is a perturbation of */
  531. /* > an unitary similarity transformation of H. It is to be */
  532. /* > hoped that the final version of H has many zero subdiagonal */
  533. /* > entries. */
  534. /* > */
  535. /* > \endverbatim */
  536. /* Arguments: */
  537. /* ========== */
  538. /* > \param[in] WANTT */
  539. /* > \verbatim */
  540. /* > WANTT is LOGICAL */
  541. /* > If .TRUE., then the Hessenberg matrix H is fully updated */
  542. /* > so that the triangular Schur factor may be */
  543. /* > computed (in cooperation with the calling subroutine). */
  544. /* > If .FALSE., then only enough of H is updated to preserve */
  545. /* > the eigenvalues. */
  546. /* > \endverbatim */
  547. /* > */
  548. /* > \param[in] WANTZ */
  549. /* > \verbatim */
  550. /* > WANTZ is LOGICAL */
  551. /* > If .TRUE., then the unitary matrix Z is updated so */
  552. /* > so that the unitary Schur factor may be computed */
  553. /* > (in cooperation with the calling subroutine). */
  554. /* > If .FALSE., then Z is not referenced. */
  555. /* > \endverbatim */
  556. /* > */
  557. /* > \param[in] N */
  558. /* > \verbatim */
  559. /* > N is INTEGER */
  560. /* > The order of the matrix H and (if WANTZ is .TRUE.) the */
  561. /* > order of the unitary matrix Z. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] KTOP */
  565. /* > \verbatim */
  566. /* > KTOP is INTEGER */
  567. /* > It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0. */
  568. /* > KBOT and KTOP together determine an isolated block */
  569. /* > along the diagonal of the Hessenberg matrix. */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in] KBOT */
  573. /* > \verbatim */
  574. /* > KBOT is INTEGER */
  575. /* > It is assumed without a check that either */
  576. /* > KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together */
  577. /* > determine an isolated block along the diagonal of the */
  578. /* > Hessenberg matrix. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[in] NW */
  582. /* > \verbatim */
  583. /* > NW is INTEGER */
  584. /* > Deflation window size. 1 <= NW <= (KBOT-KTOP+1). */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[in,out] H */
  588. /* > \verbatim */
  589. /* > H is COMPLEX*16 array, dimension (LDH,N) */
  590. /* > On input the initial N-by-N section of H stores the */
  591. /* > Hessenberg matrix undergoing aggressive early deflation. */
  592. /* > On output H has been transformed by a unitary */
  593. /* > similarity transformation, perturbed, and the returned */
  594. /* > to Hessenberg form that (it is to be hoped) has some */
  595. /* > zero subdiagonal entries. */
  596. /* > \endverbatim */
  597. /* > */
  598. /* > \param[in] LDH */
  599. /* > \verbatim */
  600. /* > LDH is INTEGER */
  601. /* > Leading dimension of H just as declared in the calling */
  602. /* > subroutine. N <= LDH */
  603. /* > \endverbatim */
  604. /* > */
  605. /* > \param[in] ILOZ */
  606. /* > \verbatim */
  607. /* > ILOZ is INTEGER */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[in] IHIZ */
  611. /* > \verbatim */
  612. /* > IHIZ is INTEGER */
  613. /* > Specify the rows of Z to which transformations must be */
  614. /* > applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N. */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[in,out] Z */
  618. /* > \verbatim */
  619. /* > Z is COMPLEX*16 array, dimension (LDZ,N) */
  620. /* > IF WANTZ is .TRUE., then on output, the unitary */
  621. /* > similarity transformation mentioned above has been */
  622. /* > accumulated into Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right. */
  623. /* > If WANTZ is .FALSE., then Z is unreferenced. */
  624. /* > \endverbatim */
  625. /* > */
  626. /* > \param[in] LDZ */
  627. /* > \verbatim */
  628. /* > LDZ is INTEGER */
  629. /* > The leading dimension of Z just as declared in the */
  630. /* > calling subroutine. 1 <= LDZ. */
  631. /* > \endverbatim */
  632. /* > */
  633. /* > \param[out] NS */
  634. /* > \verbatim */
  635. /* > NS is INTEGER */
  636. /* > The number of unconverged (ie approximate) eigenvalues */
  637. /* > returned in SR and SI that may be used as shifts by the */
  638. /* > calling subroutine. */
  639. /* > \endverbatim */
  640. /* > */
  641. /* > \param[out] ND */
  642. /* > \verbatim */
  643. /* > ND is INTEGER */
  644. /* > The number of converged eigenvalues uncovered by this */
  645. /* > subroutine. */
  646. /* > \endverbatim */
  647. /* > */
  648. /* > \param[out] SH */
  649. /* > \verbatim */
  650. /* > SH is COMPLEX*16 array, dimension (KBOT) */
  651. /* > On output, approximate eigenvalues that may */
  652. /* > be used for shifts are stored in SH(KBOT-ND-NS+1) */
  653. /* > through SR(KBOT-ND). Converged eigenvalues are */
  654. /* > stored in SH(KBOT-ND+1) through SH(KBOT). */
  655. /* > \endverbatim */
  656. /* > */
  657. /* > \param[out] V */
  658. /* > \verbatim */
  659. /* > V is COMPLEX*16 array, dimension (LDV,NW) */
  660. /* > An NW-by-NW work array. */
  661. /* > \endverbatim */
  662. /* > */
  663. /* > \param[in] LDV */
  664. /* > \verbatim */
  665. /* > LDV is INTEGER */
  666. /* > The leading dimension of V just as declared in the */
  667. /* > calling subroutine. NW <= LDV */
  668. /* > \endverbatim */
  669. /* > */
  670. /* > \param[in] NH */
  671. /* > \verbatim */
  672. /* > NH is INTEGER */
  673. /* > The number of columns of T. NH >= NW. */
  674. /* > \endverbatim */
  675. /* > */
  676. /* > \param[out] T */
  677. /* > \verbatim */
  678. /* > T is COMPLEX*16 array, dimension (LDT,NW) */
  679. /* > \endverbatim */
  680. /* > */
  681. /* > \param[in] LDT */
  682. /* > \verbatim */
  683. /* > LDT is INTEGER */
  684. /* > The leading dimension of T just as declared in the */
  685. /* > calling subroutine. NW <= LDT */
  686. /* > \endverbatim */
  687. /* > */
  688. /* > \param[in] NV */
  689. /* > \verbatim */
  690. /* > NV is INTEGER */
  691. /* > The number of rows of work array WV available for */
  692. /* > workspace. NV >= NW. */
  693. /* > \endverbatim */
  694. /* > */
  695. /* > \param[out] WV */
  696. /* > \verbatim */
  697. /* > WV is COMPLEX*16 array, dimension (LDWV,NW) */
  698. /* > \endverbatim */
  699. /* > */
  700. /* > \param[in] LDWV */
  701. /* > \verbatim */
  702. /* > LDWV is INTEGER */
  703. /* > The leading dimension of W just as declared in the */
  704. /* > calling subroutine. NW <= LDV */
  705. /* > \endverbatim */
  706. /* > */
  707. /* > \param[out] WORK */
  708. /* > \verbatim */
  709. /* > WORK is COMPLEX*16 array, dimension (LWORK) */
  710. /* > On exit, WORK(1) is set to an estimate of the optimal value */
  711. /* > of LWORK for the given values of N, NW, KTOP and KBOT. */
  712. /* > \endverbatim */
  713. /* > */
  714. /* > \param[in] LWORK */
  715. /* > \verbatim */
  716. /* > LWORK is INTEGER */
  717. /* > The dimension of the work array WORK. LWORK = 2*NW */
  718. /* > suffices, but greater efficiency may result from larger */
  719. /* > values of LWORK. */
  720. /* > */
  721. /* > If LWORK = -1, then a workspace query is assumed; ZLAQR2 */
  722. /* > only estimates the optimal workspace size for the given */
  723. /* > values of N, NW, KTOP and KBOT. The estimate is returned */
  724. /* > in WORK(1). No error message related to LWORK is issued */
  725. /* > by XERBLA. Neither H nor Z are accessed. */
  726. /* > \endverbatim */
  727. /* Authors: */
  728. /* ======== */
  729. /* > \author Univ. of Tennessee */
  730. /* > \author Univ. of California Berkeley */
  731. /* > \author Univ. of Colorado Denver */
  732. /* > \author NAG Ltd. */
  733. /* > \date June 2017 */
  734. /* > \ingroup complex16OTHERauxiliary */
  735. /* > \par Contributors: */
  736. /* ================== */
  737. /* > */
  738. /* > Karen Braman and Ralph Byers, Department of Mathematics, */
  739. /* > University of Kansas, USA */
  740. /* > */
  741. /* ===================================================================== */
  742. /* Subroutine */ void zlaqr2_(logical *wantt, logical *wantz, integer *n,
  743. integer *ktop, integer *kbot, integer *nw, doublecomplex *h__,
  744. integer *ldh, integer *iloz, integer *ihiz, doublecomplex *z__,
  745. integer *ldz, integer *ns, integer *nd, doublecomplex *sh,
  746. doublecomplex *v, integer *ldv, integer *nh, doublecomplex *t,
  747. integer *ldt, integer *nv, doublecomplex *wv, integer *ldwv,
  748. doublecomplex *work, integer *lwork)
  749. {
  750. /* System generated locals */
  751. integer h_dim1, h_offset, t_dim1, t_offset, v_dim1, v_offset, wv_dim1,
  752. wv_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4;
  753. doublereal d__1, d__2, d__3, d__4, d__5, d__6;
  754. doublecomplex z__1, z__2;
  755. /* Local variables */
  756. doublecomplex beta;
  757. integer kcol, info, ifst, ilst, ltop, krow, i__, j;
  758. doublecomplex s;
  759. extern /* Subroutine */ void zlarf_(char *, integer *, integer *,
  760. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  761. integer *, doublecomplex *);
  762. integer infqr;
  763. extern /* Subroutine */ void zgemm_(char *, char *, integer *, integer *,
  764. integer *, doublecomplex *, doublecomplex *, integer *,
  765. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  766. integer *);
  767. integer kwtop;
  768. extern /* Subroutine */ void zcopy_(integer *, doublecomplex *, integer *,
  769. doublecomplex *, integer *), dlabad_(doublereal *, doublereal *);
  770. extern doublereal dlamch_(char *);
  771. integer jw;
  772. doublereal safmin, safmax;
  773. extern /* Subroutine */ void zgehrd_(integer *, integer *, integer *,
  774. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  775. integer *, integer *), zlarfg_(integer *, doublecomplex *,
  776. doublecomplex *, integer *, doublecomplex *), zlahqr_(logical *,
  777. logical *, integer *, integer *, integer *, doublecomplex *,
  778. integer *, doublecomplex *, integer *, integer *, doublecomplex *,
  779. integer *, integer *), zlacpy_(char *, integer *, integer *,
  780. doublecomplex *, integer *, doublecomplex *, integer *),
  781. zlaset_(char *, integer *, integer *, doublecomplex *,
  782. doublecomplex *, doublecomplex *, integer *);
  783. doublereal smlnum;
  784. extern /* Subroutine */ void ztrexc_(char *, integer *, doublecomplex *,
  785. integer *, doublecomplex *, integer *, integer *, integer *,
  786. integer *);
  787. integer lwkopt;
  788. extern /* Subroutine */ void zunmhr_(char *, char *, integer *, integer *,
  789. integer *, integer *, doublecomplex *, integer *, doublecomplex *,
  790. doublecomplex *, integer *, doublecomplex *, integer *, integer *
  791. );
  792. doublereal foo;
  793. integer kln;
  794. doublecomplex tau;
  795. integer knt;
  796. doublereal ulp;
  797. integer lwk1, lwk2;
  798. /* -- LAPACK auxiliary routine (version 3.7.1) -- */
  799. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  800. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  801. /* June 2017 */
  802. /* ================================================================ */
  803. /* ==== Estimate optimal workspace. ==== */
  804. /* Parameter adjustments */
  805. h_dim1 = *ldh;
  806. h_offset = 1 + h_dim1 * 1;
  807. h__ -= h_offset;
  808. z_dim1 = *ldz;
  809. z_offset = 1 + z_dim1 * 1;
  810. z__ -= z_offset;
  811. --sh;
  812. v_dim1 = *ldv;
  813. v_offset = 1 + v_dim1 * 1;
  814. v -= v_offset;
  815. t_dim1 = *ldt;
  816. t_offset = 1 + t_dim1 * 1;
  817. t -= t_offset;
  818. wv_dim1 = *ldwv;
  819. wv_offset = 1 + wv_dim1 * 1;
  820. wv -= wv_offset;
  821. --work;
  822. /* Function Body */
  823. /* Computing MIN */
  824. i__1 = *nw, i__2 = *kbot - *ktop + 1;
  825. jw = f2cmin(i__1,i__2);
  826. if (jw <= 2) {
  827. lwkopt = 1;
  828. } else {
  829. /* ==== Workspace query call to ZGEHRD ==== */
  830. i__1 = jw - 1;
  831. zgehrd_(&jw, &c__1, &i__1, &t[t_offset], ldt, &work[1], &work[1], &
  832. c_n1, &info);
  833. lwk1 = (integer) work[1].r;
  834. /* ==== Workspace query call to ZUNMHR ==== */
  835. i__1 = jw - 1;
  836. zunmhr_("R", "N", &jw, &jw, &c__1, &i__1, &t[t_offset], ldt, &work[1],
  837. &v[v_offset], ldv, &work[1], &c_n1, &info);
  838. lwk2 = (integer) work[1].r;
  839. /* ==== Optimal workspace ==== */
  840. lwkopt = jw + f2cmax(lwk1,lwk2);
  841. }
  842. /* ==== Quick return in case of workspace query. ==== */
  843. if (*lwork == -1) {
  844. d__1 = (doublereal) lwkopt;
  845. z__1.r = d__1, z__1.i = 0.;
  846. work[1].r = z__1.r, work[1].i = z__1.i;
  847. return;
  848. }
  849. /* ==== Nothing to do ... */
  850. /* ... for an empty active block ... ==== */
  851. *ns = 0;
  852. *nd = 0;
  853. work[1].r = 1., work[1].i = 0.;
  854. if (*ktop > *kbot) {
  855. return;
  856. }
  857. /* ... nor for an empty deflation window. ==== */
  858. if (*nw < 1) {
  859. return;
  860. }
  861. /* ==== Machine constants ==== */
  862. safmin = dlamch_("SAFE MINIMUM");
  863. safmax = 1. / safmin;
  864. dlabad_(&safmin, &safmax);
  865. ulp = dlamch_("PRECISION");
  866. smlnum = safmin * ((doublereal) (*n) / ulp);
  867. /* ==== Setup deflation window ==== */
  868. /* Computing MIN */
  869. i__1 = *nw, i__2 = *kbot - *ktop + 1;
  870. jw = f2cmin(i__1,i__2);
  871. kwtop = *kbot - jw + 1;
  872. if (kwtop == *ktop) {
  873. s.r = 0., s.i = 0.;
  874. } else {
  875. i__1 = kwtop + (kwtop - 1) * h_dim1;
  876. s.r = h__[i__1].r, s.i = h__[i__1].i;
  877. }
  878. if (*kbot == kwtop) {
  879. /* ==== 1-by-1 deflation window: not much to do ==== */
  880. i__1 = kwtop;
  881. i__2 = kwtop + kwtop * h_dim1;
  882. sh[i__1].r = h__[i__2].r, sh[i__1].i = h__[i__2].i;
  883. *ns = 1;
  884. *nd = 0;
  885. /* Computing MAX */
  886. i__1 = kwtop + kwtop * h_dim1;
  887. d__5 = smlnum, d__6 = ulp * ((d__1 = h__[i__1].r, abs(d__1)) + (d__2 =
  888. d_imag(&h__[kwtop + kwtop * h_dim1]), abs(d__2)));
  889. if ((d__3 = s.r, abs(d__3)) + (d__4 = d_imag(&s), abs(d__4)) <= f2cmax(
  890. d__5,d__6)) {
  891. *ns = 0;
  892. *nd = 1;
  893. if (kwtop > *ktop) {
  894. i__1 = kwtop + (kwtop - 1) * h_dim1;
  895. h__[i__1].r = 0., h__[i__1].i = 0.;
  896. }
  897. }
  898. work[1].r = 1., work[1].i = 0.;
  899. return;
  900. }
  901. /* ==== Convert to spike-triangular form. (In case of a */
  902. /* . rare QR failure, this routine continues to do */
  903. /* . aggressive early deflation using that part of */
  904. /* . the deflation window that converged using INFQR */
  905. /* . here and there to keep track.) ==== */
  906. zlacpy_("U", &jw, &jw, &h__[kwtop + kwtop * h_dim1], ldh, &t[t_offset],
  907. ldt);
  908. i__1 = jw - 1;
  909. i__2 = *ldh + 1;
  910. i__3 = *ldt + 1;
  911. zcopy_(&i__1, &h__[kwtop + 1 + kwtop * h_dim1], &i__2, &t[t_dim1 + 2], &
  912. i__3);
  913. zlaset_("A", &jw, &jw, &c_b1, &c_b2, &v[v_offset], ldv);
  914. zlahqr_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sh[kwtop],
  915. &c__1, &jw, &v[v_offset], ldv, &infqr);
  916. /* ==== Deflation detection loop ==== */
  917. *ns = jw;
  918. ilst = infqr + 1;
  919. i__1 = jw;
  920. for (knt = infqr + 1; knt <= i__1; ++knt) {
  921. /* ==== Small spike tip deflation test ==== */
  922. i__2 = *ns + *ns * t_dim1;
  923. foo = (d__1 = t[i__2].r, abs(d__1)) + (d__2 = d_imag(&t[*ns + *ns *
  924. t_dim1]), abs(d__2));
  925. if (foo == 0.) {
  926. foo = (d__1 = s.r, abs(d__1)) + (d__2 = d_imag(&s), abs(d__2));
  927. }
  928. i__2 = *ns * v_dim1 + 1;
  929. /* Computing MAX */
  930. d__5 = smlnum, d__6 = ulp * foo;
  931. if (((d__1 = s.r, abs(d__1)) + (d__2 = d_imag(&s), abs(d__2))) * ((
  932. d__3 = v[i__2].r, abs(d__3)) + (d__4 = d_imag(&v[*ns * v_dim1
  933. + 1]), abs(d__4))) <= f2cmax(d__5,d__6)) {
  934. /* ==== One more converged eigenvalue ==== */
  935. --(*ns);
  936. } else {
  937. /* ==== One undeflatable eigenvalue. Move it up out of the */
  938. /* . way. (ZTREXC can not fail in this case.) ==== */
  939. ifst = *ns;
  940. ztrexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst, &
  941. ilst, &info);
  942. ++ilst;
  943. }
  944. /* L10: */
  945. }
  946. /* ==== Return to Hessenberg form ==== */
  947. if (*ns == 0) {
  948. s.r = 0., s.i = 0.;
  949. }
  950. if (*ns < jw) {
  951. /* ==== sorting the diagonal of T improves accuracy for */
  952. /* . graded matrices. ==== */
  953. i__1 = *ns;
  954. for (i__ = infqr + 1; i__ <= i__1; ++i__) {
  955. ifst = i__;
  956. i__2 = *ns;
  957. for (j = i__ + 1; j <= i__2; ++j) {
  958. i__3 = j + j * t_dim1;
  959. i__4 = ifst + ifst * t_dim1;
  960. if ((d__1 = t[i__3].r, abs(d__1)) + (d__2 = d_imag(&t[j + j *
  961. t_dim1]), abs(d__2)) > (d__3 = t[i__4].r, abs(d__3))
  962. + (d__4 = d_imag(&t[ifst + ifst * t_dim1]), abs(d__4))
  963. ) {
  964. ifst = j;
  965. }
  966. /* L20: */
  967. }
  968. ilst = i__;
  969. if (ifst != ilst) {
  970. ztrexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst,
  971. &ilst, &info);
  972. }
  973. /* L30: */
  974. }
  975. }
  976. /* ==== Restore shift/eigenvalue array from T ==== */
  977. i__1 = jw;
  978. for (i__ = infqr + 1; i__ <= i__1; ++i__) {
  979. i__2 = kwtop + i__ - 1;
  980. i__3 = i__ + i__ * t_dim1;
  981. sh[i__2].r = t[i__3].r, sh[i__2].i = t[i__3].i;
  982. /* L40: */
  983. }
  984. if (*ns < jw || s.r == 0. && s.i == 0.) {
  985. if (*ns > 1 && (s.r != 0. || s.i != 0.)) {
  986. /* ==== Reflect spike back into lower triangle ==== */
  987. zcopy_(ns, &v[v_offset], ldv, &work[1], &c__1);
  988. i__1 = *ns;
  989. for (i__ = 1; i__ <= i__1; ++i__) {
  990. i__2 = i__;
  991. d_cnjg(&z__1, &work[i__]);
  992. work[i__2].r = z__1.r, work[i__2].i = z__1.i;
  993. /* L50: */
  994. }
  995. beta.r = work[1].r, beta.i = work[1].i;
  996. zlarfg_(ns, &beta, &work[2], &c__1, &tau);
  997. work[1].r = 1., work[1].i = 0.;
  998. i__1 = jw - 2;
  999. i__2 = jw - 2;
  1000. zlaset_("L", &i__1, &i__2, &c_b1, &c_b1, &t[t_dim1 + 3], ldt);
  1001. d_cnjg(&z__1, &tau);
  1002. zlarf_("L", ns, &jw, &work[1], &c__1, &z__1, &t[t_offset], ldt, &
  1003. work[jw + 1]);
  1004. zlarf_("R", ns, ns, &work[1], &c__1, &tau, &t[t_offset], ldt, &
  1005. work[jw + 1]);
  1006. zlarf_("R", &jw, ns, &work[1], &c__1, &tau, &v[v_offset], ldv, &
  1007. work[jw + 1]);
  1008. i__1 = *lwork - jw;
  1009. zgehrd_(&jw, &c__1, ns, &t[t_offset], ldt, &work[1], &work[jw + 1]
  1010. , &i__1, &info);
  1011. }
  1012. /* ==== Copy updated reduced window into place ==== */
  1013. if (kwtop > 1) {
  1014. i__1 = kwtop + (kwtop - 1) * h_dim1;
  1015. d_cnjg(&z__2, &v[v_dim1 + 1]);
  1016. z__1.r = s.r * z__2.r - s.i * z__2.i, z__1.i = s.r * z__2.i + s.i
  1017. * z__2.r;
  1018. h__[i__1].r = z__1.r, h__[i__1].i = z__1.i;
  1019. }
  1020. zlacpy_("U", &jw, &jw, &t[t_offset], ldt, &h__[kwtop + kwtop * h_dim1]
  1021. , ldh);
  1022. i__1 = jw - 1;
  1023. i__2 = *ldt + 1;
  1024. i__3 = *ldh + 1;
  1025. zcopy_(&i__1, &t[t_dim1 + 2], &i__2, &h__[kwtop + 1 + kwtop * h_dim1],
  1026. &i__3);
  1027. /* ==== Accumulate orthogonal matrix in order update */
  1028. /* . H and Z, if requested. ==== */
  1029. if (*ns > 1 && (s.r != 0. || s.i != 0.)) {
  1030. i__1 = *lwork - jw;
  1031. zunmhr_("R", "N", &jw, ns, &c__1, ns, &t[t_offset], ldt, &work[1],
  1032. &v[v_offset], ldv, &work[jw + 1], &i__1, &info);
  1033. }
  1034. /* ==== Update vertical slab in H ==== */
  1035. if (*wantt) {
  1036. ltop = 1;
  1037. } else {
  1038. ltop = *ktop;
  1039. }
  1040. i__1 = kwtop - 1;
  1041. i__2 = *nv;
  1042. for (krow = ltop; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow +=
  1043. i__2) {
  1044. /* Computing MIN */
  1045. i__3 = *nv, i__4 = kwtop - krow;
  1046. kln = f2cmin(i__3,i__4);
  1047. zgemm_("N", "N", &kln, &jw, &jw, &c_b2, &h__[krow + kwtop *
  1048. h_dim1], ldh, &v[v_offset], ldv, &c_b1, &wv[wv_offset],
  1049. ldwv);
  1050. zlacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &h__[krow + kwtop *
  1051. h_dim1], ldh);
  1052. /* L60: */
  1053. }
  1054. /* ==== Update horizontal slab in H ==== */
  1055. if (*wantt) {
  1056. i__2 = *n;
  1057. i__1 = *nh;
  1058. for (kcol = *kbot + 1; i__1 < 0 ? kcol >= i__2 : kcol <= i__2;
  1059. kcol += i__1) {
  1060. /* Computing MIN */
  1061. i__3 = *nh, i__4 = *n - kcol + 1;
  1062. kln = f2cmin(i__3,i__4);
  1063. zgemm_("C", "N", &jw, &kln, &jw, &c_b2, &v[v_offset], ldv, &
  1064. h__[kwtop + kcol * h_dim1], ldh, &c_b1, &t[t_offset],
  1065. ldt);
  1066. zlacpy_("A", &jw, &kln, &t[t_offset], ldt, &h__[kwtop + kcol *
  1067. h_dim1], ldh);
  1068. /* L70: */
  1069. }
  1070. }
  1071. /* ==== Update vertical slab in Z ==== */
  1072. if (*wantz) {
  1073. i__1 = *ihiz;
  1074. i__2 = *nv;
  1075. for (krow = *iloz; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow +=
  1076. i__2) {
  1077. /* Computing MIN */
  1078. i__3 = *nv, i__4 = *ihiz - krow + 1;
  1079. kln = f2cmin(i__3,i__4);
  1080. zgemm_("N", "N", &kln, &jw, &jw, &c_b2, &z__[krow + kwtop *
  1081. z_dim1], ldz, &v[v_offset], ldv, &c_b1, &wv[wv_offset]
  1082. , ldwv);
  1083. zlacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &z__[krow +
  1084. kwtop * z_dim1], ldz);
  1085. /* L80: */
  1086. }
  1087. }
  1088. }
  1089. /* ==== Return the number of deflations ... ==== */
  1090. *nd = jw - *ns;
  1091. /* ==== ... and the number of shifts. (Subtracting */
  1092. /* . INFQR from the spike length takes care */
  1093. /* . of the case of a rare QR failure while */
  1094. /* . calculating eigenvalues of the deflation */
  1095. /* . window.) ==== */
  1096. *ns -= infqr;
  1097. /* ==== Return optimal workspace. ==== */
  1098. d__1 = (doublereal) lwkopt;
  1099. z__1.r = d__1, z__1.i = 0.;
  1100. work[1].r = z__1.r, work[1].i = z__1.i;
  1101. /* ==== End of ZLAQR2 ==== */
  1102. return;
  1103. } /* zlaqr2_ */