You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhptrf.c 39 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. /* > \brief \b ZHPTRF */
  486. /* =========== DOCUMENTATION =========== */
  487. /* Online html documentation available at */
  488. /* http://www.netlib.org/lapack/explore-html/ */
  489. /* > \htmlonly */
  490. /* > Download ZHPTRF + dependencies */
  491. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhptrf.
  492. f"> */
  493. /* > [TGZ]</a> */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhptrf.
  495. f"> */
  496. /* > [ZIP]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhptrf.
  498. f"> */
  499. /* > [TXT]</a> */
  500. /* > \endhtmlonly */
  501. /* Definition: */
  502. /* =========== */
  503. /* SUBROUTINE ZHPTRF( UPLO, N, AP, IPIV, INFO ) */
  504. /* CHARACTER UPLO */
  505. /* INTEGER INFO, N */
  506. /* INTEGER IPIV( * ) */
  507. /* COMPLEX*16 AP( * ) */
  508. /* > \par Purpose: */
  509. /* ============= */
  510. /* > */
  511. /* > \verbatim */
  512. /* > */
  513. /* > ZHPTRF computes the factorization of a complex Hermitian packed */
  514. /* > matrix A using the Bunch-Kaufman diagonal pivoting method: */
  515. /* > */
  516. /* > A = U*D*U**H or A = L*D*L**H */
  517. /* > */
  518. /* > where U (or L) is a product of permutation and unit upper (lower) */
  519. /* > triangular matrices, and D is Hermitian and block diagonal with */
  520. /* > 1-by-1 and 2-by-2 diagonal blocks. */
  521. /* > \endverbatim */
  522. /* Arguments: */
  523. /* ========== */
  524. /* > \param[in] UPLO */
  525. /* > \verbatim */
  526. /* > UPLO is CHARACTER*1 */
  527. /* > = 'U': Upper triangle of A is stored; */
  528. /* > = 'L': Lower triangle of A is stored. */
  529. /* > \endverbatim */
  530. /* > */
  531. /* > \param[in] N */
  532. /* > \verbatim */
  533. /* > N is INTEGER */
  534. /* > The order of the matrix A. N >= 0. */
  535. /* > \endverbatim */
  536. /* > */
  537. /* > \param[in,out] AP */
  538. /* > \verbatim */
  539. /* > AP is COMPLEX*16 array, dimension (N*(N+1)/2) */
  540. /* > On entry, the upper or lower triangle of the Hermitian matrix */
  541. /* > A, packed columnwise in a linear array. The j-th column of A */
  542. /* > is stored in the array AP as follows: */
  543. /* > if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
  544. /* > if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
  545. /* > */
  546. /* > On exit, the block diagonal matrix D and the multipliers used */
  547. /* > to obtain the factor U or L, stored as a packed triangular */
  548. /* > matrix overwriting A (see below for further details). */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[out] IPIV */
  552. /* > \verbatim */
  553. /* > IPIV is INTEGER array, dimension (N) */
  554. /* > Details of the interchanges and the block structure of D. */
  555. /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
  556. /* > interchanged and D(k,k) is a 1-by-1 diagonal block. */
  557. /* > If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */
  558. /* > columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
  559. /* > is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = */
  560. /* > IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */
  561. /* > interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[out] INFO */
  565. /* > \verbatim */
  566. /* > INFO is INTEGER */
  567. /* > = 0: successful exit */
  568. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  569. /* > > 0: if INFO = i, D(i,i) is exactly zero. The factorization */
  570. /* > has been completed, but the block diagonal matrix D is */
  571. /* > exactly singular, and division by zero will occur if it */
  572. /* > is used to solve a system of equations. */
  573. /* > \endverbatim */
  574. /* Authors: */
  575. /* ======== */
  576. /* > \author Univ. of Tennessee */
  577. /* > \author Univ. of California Berkeley */
  578. /* > \author Univ. of Colorado Denver */
  579. /* > \author NAG Ltd. */
  580. /* > \date December 2016 */
  581. /* > \ingroup complex16OTHERcomputational */
  582. /* > \par Further Details: */
  583. /* ===================== */
  584. /* > */
  585. /* > \verbatim */
  586. /* > */
  587. /* > If UPLO = 'U', then A = U*D*U**H, where */
  588. /* > U = P(n)*U(n)* ... *P(k)U(k)* ..., */
  589. /* > i.e., U is a product of terms P(k)*U(k), where k decreases from n to */
  590. /* > 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
  591. /* > and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
  592. /* > defined by IPIV(k), and U(k) is a unit upper triangular matrix, such */
  593. /* > that if the diagonal block D(k) is of order s (s = 1 or 2), then */
  594. /* > */
  595. /* > ( I v 0 ) k-s */
  596. /* > U(k) = ( 0 I 0 ) s */
  597. /* > ( 0 0 I ) n-k */
  598. /* > k-s s n-k */
  599. /* > */
  600. /* > If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). */
  601. /* > If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), */
  602. /* > and A(k,k), and v overwrites A(1:k-2,k-1:k). */
  603. /* > */
  604. /* > If UPLO = 'L', then A = L*D*L**H, where */
  605. /* > L = P(1)*L(1)* ... *P(k)*L(k)* ..., */
  606. /* > i.e., L is a product of terms P(k)*L(k), where k increases from 1 to */
  607. /* > n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
  608. /* > and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
  609. /* > defined by IPIV(k), and L(k) is a unit lower triangular matrix, such */
  610. /* > that if the diagonal block D(k) is of order s (s = 1 or 2), then */
  611. /* > */
  612. /* > ( I 0 0 ) k-1 */
  613. /* > L(k) = ( 0 I 0 ) s */
  614. /* > ( 0 v I ) n-k-s+1 */
  615. /* > k-1 s n-k-s+1 */
  616. /* > */
  617. /* > If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). */
  618. /* > If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), */
  619. /* > and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). */
  620. /* > \endverbatim */
  621. /* > \par Contributors: */
  622. /* ================== */
  623. /* > */
  624. /* > J. Lewis, Boeing Computer Services Company */
  625. /* ===================================================================== */
  626. /* Subroutine */ void zhptrf_(char *uplo, integer *n, doublecomplex *ap,
  627. integer *ipiv, integer *info)
  628. {
  629. /* System generated locals */
  630. integer i__1, i__2, i__3, i__4, i__5, i__6;
  631. doublereal d__1, d__2, d__3, d__4;
  632. doublecomplex z__1, z__2, z__3, z__4, z__5, z__6;
  633. /* Local variables */
  634. integer imax, jmax;
  635. extern /* Subroutine */ void zhpr_(char *, integer *, doublereal *,
  636. doublecomplex *, integer *, doublecomplex *);
  637. doublereal d__;
  638. integer i__, j, k;
  639. doublecomplex t;
  640. doublereal alpha;
  641. extern logical lsame_(char *, char *);
  642. integer kstep;
  643. logical upper;
  644. doublereal r1;
  645. extern /* Subroutine */ void zswap_(integer *, doublecomplex *, integer *,
  646. doublecomplex *, integer *);
  647. extern doublereal dlapy2_(doublereal *, doublereal *);
  648. doublereal d11;
  649. doublecomplex d12;
  650. doublereal d22;
  651. doublecomplex d21;
  652. integer kc, kk, kp;
  653. doublereal absakk;
  654. doublecomplex wk;
  655. integer kx;
  656. doublereal tt;
  657. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  658. extern void zdscal_(
  659. integer *, doublereal *, doublecomplex *, integer *);
  660. doublereal colmax;
  661. extern integer izamax_(integer *, doublecomplex *, integer *);
  662. doublereal rowmax;
  663. integer knc, kpc, npp;
  664. doublecomplex wkm1, wkp1;
  665. /* -- LAPACK computational routine (version 3.7.0) -- */
  666. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  667. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  668. /* December 2016 */
  669. /* ===================================================================== */
  670. /* Test the input parameters. */
  671. /* Parameter adjustments */
  672. --ipiv;
  673. --ap;
  674. /* Function Body */
  675. *info = 0;
  676. upper = lsame_(uplo, "U");
  677. if (! upper && ! lsame_(uplo, "L")) {
  678. *info = -1;
  679. } else if (*n < 0) {
  680. *info = -2;
  681. }
  682. if (*info != 0) {
  683. i__1 = -(*info);
  684. xerbla_("ZHPTRF", &i__1, (ftnlen)6);
  685. return;
  686. }
  687. /* Initialize ALPHA for use in choosing pivot block size. */
  688. alpha = (sqrt(17.) + 1.) / 8.;
  689. if (upper) {
  690. /* Factorize A as U*D*U**H using the upper triangle of A */
  691. /* K is the main loop index, decreasing from N to 1 in steps of */
  692. /* 1 or 2 */
  693. k = *n;
  694. kc = (*n - 1) * *n / 2 + 1;
  695. L10:
  696. knc = kc;
  697. /* If K < 1, exit from loop */
  698. if (k < 1) {
  699. goto L110;
  700. }
  701. kstep = 1;
  702. /* Determine rows and columns to be interchanged and whether */
  703. /* a 1-by-1 or 2-by-2 pivot block will be used */
  704. i__1 = kc + k - 1;
  705. absakk = (d__1 = ap[i__1].r, abs(d__1));
  706. /* IMAX is the row-index of the largest off-diagonal element in */
  707. /* column K, and COLMAX is its absolute value */
  708. if (k > 1) {
  709. i__1 = k - 1;
  710. imax = izamax_(&i__1, &ap[kc], &c__1);
  711. i__1 = kc + imax - 1;
  712. colmax = (d__1 = ap[i__1].r, abs(d__1)) + (d__2 = d_imag(&ap[kc +
  713. imax - 1]), abs(d__2));
  714. } else {
  715. colmax = 0.;
  716. }
  717. if (f2cmax(absakk,colmax) == 0.) {
  718. /* Column K is zero: set INFO and continue */
  719. if (*info == 0) {
  720. *info = k;
  721. }
  722. kp = k;
  723. i__1 = kc + k - 1;
  724. i__2 = kc + k - 1;
  725. d__1 = ap[i__2].r;
  726. ap[i__1].r = d__1, ap[i__1].i = 0.;
  727. } else {
  728. if (absakk >= alpha * colmax) {
  729. /* no interchange, use 1-by-1 pivot block */
  730. kp = k;
  731. } else {
  732. /* JMAX is the column-index of the largest off-diagonal */
  733. /* element in row IMAX, and ROWMAX is its absolute value */
  734. rowmax = 0.;
  735. jmax = imax;
  736. kx = imax * (imax + 1) / 2 + imax;
  737. i__1 = k;
  738. for (j = imax + 1; j <= i__1; ++j) {
  739. i__2 = kx;
  740. if ((d__1 = ap[i__2].r, abs(d__1)) + (d__2 = d_imag(&ap[
  741. kx]), abs(d__2)) > rowmax) {
  742. i__2 = kx;
  743. rowmax = (d__1 = ap[i__2].r, abs(d__1)) + (d__2 =
  744. d_imag(&ap[kx]), abs(d__2));
  745. jmax = j;
  746. }
  747. kx += j;
  748. /* L20: */
  749. }
  750. kpc = (imax - 1) * imax / 2 + 1;
  751. if (imax > 1) {
  752. i__1 = imax - 1;
  753. jmax = izamax_(&i__1, &ap[kpc], &c__1);
  754. /* Computing MAX */
  755. i__1 = kpc + jmax - 1;
  756. d__3 = rowmax, d__4 = (d__1 = ap[i__1].r, abs(d__1)) + (
  757. d__2 = d_imag(&ap[kpc + jmax - 1]), abs(d__2));
  758. rowmax = f2cmax(d__3,d__4);
  759. }
  760. if (absakk >= alpha * colmax * (colmax / rowmax)) {
  761. /* no interchange, use 1-by-1 pivot block */
  762. kp = k;
  763. } else /* if(complicated condition) */ {
  764. i__1 = kpc + imax - 1;
  765. if ((d__1 = ap[i__1].r, abs(d__1)) >= alpha * rowmax) {
  766. /* interchange rows and columns K and IMAX, use 1-by-1 */
  767. /* pivot block */
  768. kp = imax;
  769. } else {
  770. /* interchange rows and columns K-1 and IMAX, use 2-by-2 */
  771. /* pivot block */
  772. kp = imax;
  773. kstep = 2;
  774. }
  775. }
  776. }
  777. kk = k - kstep + 1;
  778. if (kstep == 2) {
  779. knc = knc - k + 1;
  780. }
  781. if (kp != kk) {
  782. /* Interchange rows and columns KK and KP in the leading */
  783. /* submatrix A(1:k,1:k) */
  784. i__1 = kp - 1;
  785. zswap_(&i__1, &ap[knc], &c__1, &ap[kpc], &c__1);
  786. kx = kpc + kp - 1;
  787. i__1 = kk - 1;
  788. for (j = kp + 1; j <= i__1; ++j) {
  789. kx = kx + j - 1;
  790. d_cnjg(&z__1, &ap[knc + j - 1]);
  791. t.r = z__1.r, t.i = z__1.i;
  792. i__2 = knc + j - 1;
  793. d_cnjg(&z__1, &ap[kx]);
  794. ap[i__2].r = z__1.r, ap[i__2].i = z__1.i;
  795. i__2 = kx;
  796. ap[i__2].r = t.r, ap[i__2].i = t.i;
  797. /* L30: */
  798. }
  799. i__1 = kx + kk - 1;
  800. d_cnjg(&z__1, &ap[kx + kk - 1]);
  801. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  802. i__1 = knc + kk - 1;
  803. r1 = ap[i__1].r;
  804. i__1 = knc + kk - 1;
  805. i__2 = kpc + kp - 1;
  806. d__1 = ap[i__2].r;
  807. ap[i__1].r = d__1, ap[i__1].i = 0.;
  808. i__1 = kpc + kp - 1;
  809. ap[i__1].r = r1, ap[i__1].i = 0.;
  810. if (kstep == 2) {
  811. i__1 = kc + k - 1;
  812. i__2 = kc + k - 1;
  813. d__1 = ap[i__2].r;
  814. ap[i__1].r = d__1, ap[i__1].i = 0.;
  815. i__1 = kc + k - 2;
  816. t.r = ap[i__1].r, t.i = ap[i__1].i;
  817. i__1 = kc + k - 2;
  818. i__2 = kc + kp - 1;
  819. ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
  820. i__1 = kc + kp - 1;
  821. ap[i__1].r = t.r, ap[i__1].i = t.i;
  822. }
  823. } else {
  824. i__1 = kc + k - 1;
  825. i__2 = kc + k - 1;
  826. d__1 = ap[i__2].r;
  827. ap[i__1].r = d__1, ap[i__1].i = 0.;
  828. if (kstep == 2) {
  829. i__1 = kc - 1;
  830. i__2 = kc - 1;
  831. d__1 = ap[i__2].r;
  832. ap[i__1].r = d__1, ap[i__1].i = 0.;
  833. }
  834. }
  835. /* Update the leading submatrix */
  836. if (kstep == 1) {
  837. /* 1-by-1 pivot block D(k): column k now holds */
  838. /* W(k) = U(k)*D(k) */
  839. /* where U(k) is the k-th column of U */
  840. /* Perform a rank-1 update of A(1:k-1,1:k-1) as */
  841. /* A := A - U(k)*D(k)*U(k)**H = A - W(k)*1/D(k)*W(k)**H */
  842. i__1 = kc + k - 1;
  843. r1 = 1. / ap[i__1].r;
  844. i__1 = k - 1;
  845. d__1 = -r1;
  846. zhpr_(uplo, &i__1, &d__1, &ap[kc], &c__1, &ap[1]);
  847. /* Store U(k) in column k */
  848. i__1 = k - 1;
  849. zdscal_(&i__1, &r1, &ap[kc], &c__1);
  850. } else {
  851. /* 2-by-2 pivot block D(k): columns k and k-1 now hold */
  852. /* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
  853. /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
  854. /* of U */
  855. /* Perform a rank-2 update of A(1:k-2,1:k-2) as */
  856. /* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**H */
  857. /* = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**H */
  858. if (k > 2) {
  859. i__1 = k - 1 + (k - 1) * k / 2;
  860. d__1 = ap[i__1].r;
  861. d__2 = d_imag(&ap[k - 1 + (k - 1) * k / 2]);
  862. d__ = dlapy2_(&d__1, &d__2);
  863. i__1 = k - 1 + (k - 2) * (k - 1) / 2;
  864. d22 = ap[i__1].r / d__;
  865. i__1 = k + (k - 1) * k / 2;
  866. d11 = ap[i__1].r / d__;
  867. tt = 1. / (d11 * d22 - 1.);
  868. i__1 = k - 1 + (k - 1) * k / 2;
  869. z__1.r = ap[i__1].r / d__, z__1.i = ap[i__1].i / d__;
  870. d12.r = z__1.r, d12.i = z__1.i;
  871. d__ = tt / d__;
  872. for (j = k - 2; j >= 1; --j) {
  873. i__1 = j + (k - 2) * (k - 1) / 2;
  874. z__3.r = d11 * ap[i__1].r, z__3.i = d11 * ap[i__1].i;
  875. d_cnjg(&z__5, &d12);
  876. i__2 = j + (k - 1) * k / 2;
  877. z__4.r = z__5.r * ap[i__2].r - z__5.i * ap[i__2].i,
  878. z__4.i = z__5.r * ap[i__2].i + z__5.i * ap[
  879. i__2].r;
  880. z__2.r = z__3.r - z__4.r, z__2.i = z__3.i - z__4.i;
  881. z__1.r = d__ * z__2.r, z__1.i = d__ * z__2.i;
  882. wkm1.r = z__1.r, wkm1.i = z__1.i;
  883. i__1 = j + (k - 1) * k / 2;
  884. z__3.r = d22 * ap[i__1].r, z__3.i = d22 * ap[i__1].i;
  885. i__2 = j + (k - 2) * (k - 1) / 2;
  886. z__4.r = d12.r * ap[i__2].r - d12.i * ap[i__2].i,
  887. z__4.i = d12.r * ap[i__2].i + d12.i * ap[i__2]
  888. .r;
  889. z__2.r = z__3.r - z__4.r, z__2.i = z__3.i - z__4.i;
  890. z__1.r = d__ * z__2.r, z__1.i = d__ * z__2.i;
  891. wk.r = z__1.r, wk.i = z__1.i;
  892. for (i__ = j; i__ >= 1; --i__) {
  893. i__1 = i__ + (j - 1) * j / 2;
  894. i__2 = i__ + (j - 1) * j / 2;
  895. i__3 = i__ + (k - 1) * k / 2;
  896. d_cnjg(&z__4, &wk);
  897. z__3.r = ap[i__3].r * z__4.r - ap[i__3].i *
  898. z__4.i, z__3.i = ap[i__3].r * z__4.i + ap[
  899. i__3].i * z__4.r;
  900. z__2.r = ap[i__2].r - z__3.r, z__2.i = ap[i__2].i
  901. - z__3.i;
  902. i__4 = i__ + (k - 2) * (k - 1) / 2;
  903. d_cnjg(&z__6, &wkm1);
  904. z__5.r = ap[i__4].r * z__6.r - ap[i__4].i *
  905. z__6.i, z__5.i = ap[i__4].r * z__6.i + ap[
  906. i__4].i * z__6.r;
  907. z__1.r = z__2.r - z__5.r, z__1.i = z__2.i -
  908. z__5.i;
  909. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  910. /* L40: */
  911. }
  912. i__1 = j + (k - 1) * k / 2;
  913. ap[i__1].r = wk.r, ap[i__1].i = wk.i;
  914. i__1 = j + (k - 2) * (k - 1) / 2;
  915. ap[i__1].r = wkm1.r, ap[i__1].i = wkm1.i;
  916. i__1 = j + (j - 1) * j / 2;
  917. i__2 = j + (j - 1) * j / 2;
  918. d__1 = ap[i__2].r;
  919. z__1.r = d__1, z__1.i = 0.;
  920. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  921. /* L50: */
  922. }
  923. }
  924. }
  925. }
  926. /* Store details of the interchanges in IPIV */
  927. if (kstep == 1) {
  928. ipiv[k] = kp;
  929. } else {
  930. ipiv[k] = -kp;
  931. ipiv[k - 1] = -kp;
  932. }
  933. /* Decrease K and return to the start of the main loop */
  934. k -= kstep;
  935. kc = knc - k;
  936. goto L10;
  937. } else {
  938. /* Factorize A as L*D*L**H using the lower triangle of A */
  939. /* K is the main loop index, increasing from 1 to N in steps of */
  940. /* 1 or 2 */
  941. k = 1;
  942. kc = 1;
  943. npp = *n * (*n + 1) / 2;
  944. L60:
  945. knc = kc;
  946. /* If K > N, exit from loop */
  947. if (k > *n) {
  948. goto L110;
  949. }
  950. kstep = 1;
  951. /* Determine rows and columns to be interchanged and whether */
  952. /* a 1-by-1 or 2-by-2 pivot block will be used */
  953. i__1 = kc;
  954. absakk = (d__1 = ap[i__1].r, abs(d__1));
  955. /* IMAX is the row-index of the largest off-diagonal element in */
  956. /* column K, and COLMAX is its absolute value */
  957. if (k < *n) {
  958. i__1 = *n - k;
  959. imax = k + izamax_(&i__1, &ap[kc + 1], &c__1);
  960. i__1 = kc + imax - k;
  961. colmax = (d__1 = ap[i__1].r, abs(d__1)) + (d__2 = d_imag(&ap[kc +
  962. imax - k]), abs(d__2));
  963. } else {
  964. colmax = 0.;
  965. }
  966. if (f2cmax(absakk,colmax) == 0.) {
  967. /* Column K is zero: set INFO and continue */
  968. if (*info == 0) {
  969. *info = k;
  970. }
  971. kp = k;
  972. i__1 = kc;
  973. i__2 = kc;
  974. d__1 = ap[i__2].r;
  975. ap[i__1].r = d__1, ap[i__1].i = 0.;
  976. } else {
  977. if (absakk >= alpha * colmax) {
  978. /* no interchange, use 1-by-1 pivot block */
  979. kp = k;
  980. } else {
  981. /* JMAX is the column-index of the largest off-diagonal */
  982. /* element in row IMAX, and ROWMAX is its absolute value */
  983. rowmax = 0.;
  984. kx = kc + imax - k;
  985. i__1 = imax - 1;
  986. for (j = k; j <= i__1; ++j) {
  987. i__2 = kx;
  988. if ((d__1 = ap[i__2].r, abs(d__1)) + (d__2 = d_imag(&ap[
  989. kx]), abs(d__2)) > rowmax) {
  990. i__2 = kx;
  991. rowmax = (d__1 = ap[i__2].r, abs(d__1)) + (d__2 =
  992. d_imag(&ap[kx]), abs(d__2));
  993. jmax = j;
  994. }
  995. kx = kx + *n - j;
  996. /* L70: */
  997. }
  998. kpc = npp - (*n - imax + 1) * (*n - imax + 2) / 2 + 1;
  999. if (imax < *n) {
  1000. i__1 = *n - imax;
  1001. jmax = imax + izamax_(&i__1, &ap[kpc + 1], &c__1);
  1002. /* Computing MAX */
  1003. i__1 = kpc + jmax - imax;
  1004. d__3 = rowmax, d__4 = (d__1 = ap[i__1].r, abs(d__1)) + (
  1005. d__2 = d_imag(&ap[kpc + jmax - imax]), abs(d__2));
  1006. rowmax = f2cmax(d__3,d__4);
  1007. }
  1008. if (absakk >= alpha * colmax * (colmax / rowmax)) {
  1009. /* no interchange, use 1-by-1 pivot block */
  1010. kp = k;
  1011. } else /* if(complicated condition) */ {
  1012. i__1 = kpc;
  1013. if ((d__1 = ap[i__1].r, abs(d__1)) >= alpha * rowmax) {
  1014. /* interchange rows and columns K and IMAX, use 1-by-1 */
  1015. /* pivot block */
  1016. kp = imax;
  1017. } else {
  1018. /* interchange rows and columns K+1 and IMAX, use 2-by-2 */
  1019. /* pivot block */
  1020. kp = imax;
  1021. kstep = 2;
  1022. }
  1023. }
  1024. }
  1025. kk = k + kstep - 1;
  1026. if (kstep == 2) {
  1027. knc = knc + *n - k + 1;
  1028. }
  1029. if (kp != kk) {
  1030. /* Interchange rows and columns KK and KP in the trailing */
  1031. /* submatrix A(k:n,k:n) */
  1032. if (kp < *n) {
  1033. i__1 = *n - kp;
  1034. zswap_(&i__1, &ap[knc + kp - kk + 1], &c__1, &ap[kpc + 1],
  1035. &c__1);
  1036. }
  1037. kx = knc + kp - kk;
  1038. i__1 = kp - 1;
  1039. for (j = kk + 1; j <= i__1; ++j) {
  1040. kx = kx + *n - j + 1;
  1041. d_cnjg(&z__1, &ap[knc + j - kk]);
  1042. t.r = z__1.r, t.i = z__1.i;
  1043. i__2 = knc + j - kk;
  1044. d_cnjg(&z__1, &ap[kx]);
  1045. ap[i__2].r = z__1.r, ap[i__2].i = z__1.i;
  1046. i__2 = kx;
  1047. ap[i__2].r = t.r, ap[i__2].i = t.i;
  1048. /* L80: */
  1049. }
  1050. i__1 = knc + kp - kk;
  1051. d_cnjg(&z__1, &ap[knc + kp - kk]);
  1052. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  1053. i__1 = knc;
  1054. r1 = ap[i__1].r;
  1055. i__1 = knc;
  1056. i__2 = kpc;
  1057. d__1 = ap[i__2].r;
  1058. ap[i__1].r = d__1, ap[i__1].i = 0.;
  1059. i__1 = kpc;
  1060. ap[i__1].r = r1, ap[i__1].i = 0.;
  1061. if (kstep == 2) {
  1062. i__1 = kc;
  1063. i__2 = kc;
  1064. d__1 = ap[i__2].r;
  1065. ap[i__1].r = d__1, ap[i__1].i = 0.;
  1066. i__1 = kc + 1;
  1067. t.r = ap[i__1].r, t.i = ap[i__1].i;
  1068. i__1 = kc + 1;
  1069. i__2 = kc + kp - k;
  1070. ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
  1071. i__1 = kc + kp - k;
  1072. ap[i__1].r = t.r, ap[i__1].i = t.i;
  1073. }
  1074. } else {
  1075. i__1 = kc;
  1076. i__2 = kc;
  1077. d__1 = ap[i__2].r;
  1078. ap[i__1].r = d__1, ap[i__1].i = 0.;
  1079. if (kstep == 2) {
  1080. i__1 = knc;
  1081. i__2 = knc;
  1082. d__1 = ap[i__2].r;
  1083. ap[i__1].r = d__1, ap[i__1].i = 0.;
  1084. }
  1085. }
  1086. /* Update the trailing submatrix */
  1087. if (kstep == 1) {
  1088. /* 1-by-1 pivot block D(k): column k now holds */
  1089. /* W(k) = L(k)*D(k) */
  1090. /* where L(k) is the k-th column of L */
  1091. if (k < *n) {
  1092. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  1093. /* A := A - L(k)*D(k)*L(k)**H = A - W(k)*(1/D(k))*W(k)**H */
  1094. i__1 = kc;
  1095. r1 = 1. / ap[i__1].r;
  1096. i__1 = *n - k;
  1097. d__1 = -r1;
  1098. zhpr_(uplo, &i__1, &d__1, &ap[kc + 1], &c__1, &ap[kc + *n
  1099. - k + 1]);
  1100. /* Store L(k) in column K */
  1101. i__1 = *n - k;
  1102. zdscal_(&i__1, &r1, &ap[kc + 1], &c__1);
  1103. }
  1104. } else {
  1105. /* 2-by-2 pivot block D(k): columns K and K+1 now hold */
  1106. /* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
  1107. /* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
  1108. /* of L */
  1109. if (k < *n - 1) {
  1110. /* Perform a rank-2 update of A(k+2:n,k+2:n) as */
  1111. /* A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**H */
  1112. /* = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**H */
  1113. /* where L(k) and L(k+1) are the k-th and (k+1)-th */
  1114. /* columns of L */
  1115. i__1 = k + 1 + (k - 1) * ((*n << 1) - k) / 2;
  1116. d__1 = ap[i__1].r;
  1117. d__2 = d_imag(&ap[k + 1 + (k - 1) * ((*n << 1) - k) / 2]);
  1118. d__ = dlapy2_(&d__1, &d__2);
  1119. i__1 = k + 1 + k * ((*n << 1) - k - 1) / 2;
  1120. d11 = ap[i__1].r / d__;
  1121. i__1 = k + (k - 1) * ((*n << 1) - k) / 2;
  1122. d22 = ap[i__1].r / d__;
  1123. tt = 1. / (d11 * d22 - 1.);
  1124. i__1 = k + 1 + (k - 1) * ((*n << 1) - k) / 2;
  1125. z__1.r = ap[i__1].r / d__, z__1.i = ap[i__1].i / d__;
  1126. d21.r = z__1.r, d21.i = z__1.i;
  1127. d__ = tt / d__;
  1128. i__1 = *n;
  1129. for (j = k + 2; j <= i__1; ++j) {
  1130. i__2 = j + (k - 1) * ((*n << 1) - k) / 2;
  1131. z__3.r = d11 * ap[i__2].r, z__3.i = d11 * ap[i__2].i;
  1132. i__3 = j + k * ((*n << 1) - k - 1) / 2;
  1133. z__4.r = d21.r * ap[i__3].r - d21.i * ap[i__3].i,
  1134. z__4.i = d21.r * ap[i__3].i + d21.i * ap[i__3]
  1135. .r;
  1136. z__2.r = z__3.r - z__4.r, z__2.i = z__3.i - z__4.i;
  1137. z__1.r = d__ * z__2.r, z__1.i = d__ * z__2.i;
  1138. wk.r = z__1.r, wk.i = z__1.i;
  1139. i__2 = j + k * ((*n << 1) - k - 1) / 2;
  1140. z__3.r = d22 * ap[i__2].r, z__3.i = d22 * ap[i__2].i;
  1141. d_cnjg(&z__5, &d21);
  1142. i__3 = j + (k - 1) * ((*n << 1) - k) / 2;
  1143. z__4.r = z__5.r * ap[i__3].r - z__5.i * ap[i__3].i,
  1144. z__4.i = z__5.r * ap[i__3].i + z__5.i * ap[
  1145. i__3].r;
  1146. z__2.r = z__3.r - z__4.r, z__2.i = z__3.i - z__4.i;
  1147. z__1.r = d__ * z__2.r, z__1.i = d__ * z__2.i;
  1148. wkp1.r = z__1.r, wkp1.i = z__1.i;
  1149. i__2 = *n;
  1150. for (i__ = j; i__ <= i__2; ++i__) {
  1151. i__3 = i__ + (j - 1) * ((*n << 1) - j) / 2;
  1152. i__4 = i__ + (j - 1) * ((*n << 1) - j) / 2;
  1153. i__5 = i__ + (k - 1) * ((*n << 1) - k) / 2;
  1154. d_cnjg(&z__4, &wk);
  1155. z__3.r = ap[i__5].r * z__4.r - ap[i__5].i *
  1156. z__4.i, z__3.i = ap[i__5].r * z__4.i + ap[
  1157. i__5].i * z__4.r;
  1158. z__2.r = ap[i__4].r - z__3.r, z__2.i = ap[i__4].i
  1159. - z__3.i;
  1160. i__6 = i__ + k * ((*n << 1) - k - 1) / 2;
  1161. d_cnjg(&z__6, &wkp1);
  1162. z__5.r = ap[i__6].r * z__6.r - ap[i__6].i *
  1163. z__6.i, z__5.i = ap[i__6].r * z__6.i + ap[
  1164. i__6].i * z__6.r;
  1165. z__1.r = z__2.r - z__5.r, z__1.i = z__2.i -
  1166. z__5.i;
  1167. ap[i__3].r = z__1.r, ap[i__3].i = z__1.i;
  1168. /* L90: */
  1169. }
  1170. i__2 = j + (k - 1) * ((*n << 1) - k) / 2;
  1171. ap[i__2].r = wk.r, ap[i__2].i = wk.i;
  1172. i__2 = j + k * ((*n << 1) - k - 1) / 2;
  1173. ap[i__2].r = wkp1.r, ap[i__2].i = wkp1.i;
  1174. i__2 = j + (j - 1) * ((*n << 1) - j) / 2;
  1175. i__3 = j + (j - 1) * ((*n << 1) - j) / 2;
  1176. d__1 = ap[i__3].r;
  1177. z__1.r = d__1, z__1.i = 0.;
  1178. ap[i__2].r = z__1.r, ap[i__2].i = z__1.i;
  1179. /* L100: */
  1180. }
  1181. }
  1182. }
  1183. }
  1184. /* Store details of the interchanges in IPIV */
  1185. if (kstep == 1) {
  1186. ipiv[k] = kp;
  1187. } else {
  1188. ipiv[k] = -kp;
  1189. ipiv[k + 1] = -kp;
  1190. }
  1191. /* Increase K and return to the start of the main loop */
  1192. k += kstep;
  1193. kc = knc + *n - k + 2;
  1194. goto L60;
  1195. }
  1196. L110:
  1197. return;
  1198. /* End of ZHPTRF */
  1199. } /* zhptrf_ */