You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgesvdx.c 46 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static doublecomplex c_b1 = {0.,0.};
  485. static integer c__6 = 6;
  486. static integer c__0 = 0;
  487. static integer c__2 = 2;
  488. static integer c__1 = 1;
  489. static integer c_n1 = -1;
  490. /* > \brief <b> ZGESVDX computes the singular value decomposition (SVD) for GE matrices</b> */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download ZGESVDX + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgesvdx
  497. .f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgesvdx
  500. .f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgesvdx
  503. .f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE ZGESVDX( JOBU, JOBVT, RANGE, M, N, A, LDA, VL, VU, */
  509. /* $ IL, IU, NS, S, U, LDU, VT, LDVT, WORK, */
  510. /* $ LWORK, RWORK, IWORK, INFO ) */
  511. /* CHARACTER JOBU, JOBVT, RANGE */
  512. /* INTEGER IL, INFO, IU, LDA, LDU, LDVT, LWORK, M, N, NS */
  513. /* DOUBLE PRECISION VL, VU */
  514. /* INTEGER IWORK( * ) */
  515. /* DOUBLE PRECISION S( * ), RWORK( * ) */
  516. /* COMPLEX*16 A( LDA, * ), U( LDU, * ), VT( LDVT, * ), */
  517. /* $ WORK( * ) */
  518. /* > \par Purpose: */
  519. /* ============= */
  520. /* > */
  521. /* > \verbatim */
  522. /* > */
  523. /* > ZGESVDX computes the singular value decomposition (SVD) of a complex */
  524. /* > M-by-N matrix A, optionally computing the left and/or right singular */
  525. /* > vectors. The SVD is written */
  526. /* > */
  527. /* > A = U * SIGMA * transpose(V) */
  528. /* > */
  529. /* > where SIGMA is an M-by-N matrix which is zero except for its */
  530. /* > f2cmin(m,n) diagonal elements, U is an M-by-M unitary matrix, and */
  531. /* > V is an N-by-N unitary matrix. The diagonal elements of SIGMA */
  532. /* > are the singular values of A; they are real and non-negative, and */
  533. /* > are returned in descending order. The first f2cmin(m,n) columns of */
  534. /* > U and V are the left and right singular vectors of A. */
  535. /* > */
  536. /* > ZGESVDX uses an eigenvalue problem for obtaining the SVD, which */
  537. /* > allows for the computation of a subset of singular values and */
  538. /* > vectors. See DBDSVDX for details. */
  539. /* > */
  540. /* > Note that the routine returns V**T, not V. */
  541. /* > \endverbatim */
  542. /* Arguments: */
  543. /* ========== */
  544. /* > \param[in] JOBU */
  545. /* > \verbatim */
  546. /* > JOBU is CHARACTER*1 */
  547. /* > Specifies options for computing all or part of the matrix U: */
  548. /* > = 'V': the first f2cmin(m,n) columns of U (the left singular */
  549. /* > vectors) or as specified by RANGE are returned in */
  550. /* > the array U; */
  551. /* > = 'N': no columns of U (no left singular vectors) are */
  552. /* > computed. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in] JOBVT */
  556. /* > \verbatim */
  557. /* > JOBVT is CHARACTER*1 */
  558. /* > Specifies options for computing all or part of the matrix */
  559. /* > V**T: */
  560. /* > = 'V': the first f2cmin(m,n) rows of V**T (the right singular */
  561. /* > vectors) or as specified by RANGE are returned in */
  562. /* > the array VT; */
  563. /* > = 'N': no rows of V**T (no right singular vectors) are */
  564. /* > computed. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] RANGE */
  568. /* > \verbatim */
  569. /* > RANGE is CHARACTER*1 */
  570. /* > = 'A': all singular values will be found. */
  571. /* > = 'V': all singular values in the half-open interval (VL,VU] */
  572. /* > will be found. */
  573. /* > = 'I': the IL-th through IU-th singular values will be found. */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[in] M */
  577. /* > \verbatim */
  578. /* > M is INTEGER */
  579. /* > The number of rows of the input matrix A. M >= 0. */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[in] N */
  583. /* > \verbatim */
  584. /* > N is INTEGER */
  585. /* > The number of columns of the input matrix A. N >= 0. */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[in,out] A */
  589. /* > \verbatim */
  590. /* > A is COMPLEX*16 array, dimension (LDA,N) */
  591. /* > On entry, the M-by-N matrix A. */
  592. /* > On exit, the contents of A are destroyed. */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[in] LDA */
  596. /* > \verbatim */
  597. /* > LDA is INTEGER */
  598. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[in] VL */
  602. /* > \verbatim */
  603. /* > VL is DOUBLE PRECISION */
  604. /* > If RANGE='V', the lower bound of the interval to */
  605. /* > be searched for singular values. VU > VL. */
  606. /* > Not referenced if RANGE = 'A' or 'I'. */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[in] VU */
  610. /* > \verbatim */
  611. /* > VU is DOUBLE PRECISION */
  612. /* > If RANGE='V', the upper bound of the interval to */
  613. /* > be searched for singular values. VU > VL. */
  614. /* > Not referenced if RANGE = 'A' or 'I'. */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[in] IL */
  618. /* > \verbatim */
  619. /* > IL is INTEGER */
  620. /* > If RANGE='I', the index of the */
  621. /* > smallest singular value to be returned. */
  622. /* > 1 <= IL <= IU <= f2cmin(M,N), if f2cmin(M,N) > 0. */
  623. /* > Not referenced if RANGE = 'A' or 'V'. */
  624. /* > \endverbatim */
  625. /* > */
  626. /* > \param[in] IU */
  627. /* > \verbatim */
  628. /* > IU is INTEGER */
  629. /* > If RANGE='I', the index of the */
  630. /* > largest singular value to be returned. */
  631. /* > 1 <= IL <= IU <= f2cmin(M,N), if f2cmin(M,N) > 0. */
  632. /* > Not referenced if RANGE = 'A' or 'V'. */
  633. /* > \endverbatim */
  634. /* > */
  635. /* > \param[out] NS */
  636. /* > \verbatim */
  637. /* > NS is INTEGER */
  638. /* > The total number of singular values found, */
  639. /* > 0 <= NS <= f2cmin(M,N). */
  640. /* > If RANGE = 'A', NS = f2cmin(M,N); if RANGE = 'I', NS = IU-IL+1. */
  641. /* > \endverbatim */
  642. /* > */
  643. /* > \param[out] S */
  644. /* > \verbatim */
  645. /* > S is DOUBLE PRECISION array, dimension (f2cmin(M,N)) */
  646. /* > The singular values of A, sorted so that S(i) >= S(i+1). */
  647. /* > \endverbatim */
  648. /* > */
  649. /* > \param[out] U */
  650. /* > \verbatim */
  651. /* > U is COMPLEX*16 array, dimension (LDU,UCOL) */
  652. /* > If JOBU = 'V', U contains columns of U (the left singular */
  653. /* > vectors, stored columnwise) as specified by RANGE; if */
  654. /* > JOBU = 'N', U is not referenced. */
  655. /* > Note: The user must ensure that UCOL >= NS; if RANGE = 'V', */
  656. /* > the exact value of NS is not known in advance and an upper */
  657. /* > bound must be used. */
  658. /* > \endverbatim */
  659. /* > */
  660. /* > \param[in] LDU */
  661. /* > \verbatim */
  662. /* > LDU is INTEGER */
  663. /* > The leading dimension of the array U. LDU >= 1; if */
  664. /* > JOBU = 'V', LDU >= M. */
  665. /* > \endverbatim */
  666. /* > */
  667. /* > \param[out] VT */
  668. /* > \verbatim */
  669. /* > VT is COMPLEX*16 array, dimension (LDVT,N) */
  670. /* > If JOBVT = 'V', VT contains the rows of V**T (the right singular */
  671. /* > vectors, stored rowwise) as specified by RANGE; if JOBVT = 'N', */
  672. /* > VT is not referenced. */
  673. /* > Note: The user must ensure that LDVT >= NS; if RANGE = 'V', */
  674. /* > the exact value of NS is not known in advance and an upper */
  675. /* > bound must be used. */
  676. /* > \endverbatim */
  677. /* > */
  678. /* > \param[in] LDVT */
  679. /* > \verbatim */
  680. /* > LDVT is INTEGER */
  681. /* > The leading dimension of the array VT. LDVT >= 1; if */
  682. /* > JOBVT = 'V', LDVT >= NS (see above). */
  683. /* > \endverbatim */
  684. /* > */
  685. /* > \param[out] WORK */
  686. /* > \verbatim */
  687. /* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
  688. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK; */
  689. /* > \endverbatim */
  690. /* > */
  691. /* > \param[in] LWORK */
  692. /* > \verbatim */
  693. /* > LWORK is INTEGER */
  694. /* > The dimension of the array WORK. */
  695. /* > LWORK >= MAX(1,MIN(M,N)*(MIN(M,N)+4)) for the paths (see */
  696. /* > comments inside the code): */
  697. /* > - PATH 1 (M much larger than N) */
  698. /* > - PATH 1t (N much larger than M) */
  699. /* > LWORK >= MAX(1,MIN(M,N)*2+MAX(M,N)) for the other paths. */
  700. /* > For good performance, LWORK should generally be larger. */
  701. /* > */
  702. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  703. /* > only calculates the optimal size of the WORK array, returns */
  704. /* > this value as the first entry of the WORK array, and no error */
  705. /* > message related to LWORK is issued by XERBLA. */
  706. /* > \endverbatim */
  707. /* > */
  708. /* > \param[out] RWORK */
  709. /* > \verbatim */
  710. /* > RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK)) */
  711. /* > LRWORK >= MIN(M,N)*(MIN(M,N)*2+15*MIN(M,N)). */
  712. /* > \endverbatim */
  713. /* > */
  714. /* > \param[out] IWORK */
  715. /* > \verbatim */
  716. /* > IWORK is INTEGER array, dimension (12*MIN(M,N)) */
  717. /* > If INFO = 0, the first NS elements of IWORK are zero. If INFO > 0, */
  718. /* > then IWORK contains the indices of the eigenvectors that failed */
  719. /* > to converge in DBDSVDX/DSTEVX. */
  720. /* > \endverbatim */
  721. /* > */
  722. /* > \param[out] INFO */
  723. /* > \verbatim */
  724. /* > INFO is INTEGER */
  725. /* > = 0: successful exit */
  726. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  727. /* > > 0: if INFO = i, then i eigenvectors failed to converge */
  728. /* > in DBDSVDX/DSTEVX. */
  729. /* > if INFO = N*2 + 1, an internal error occurred in */
  730. /* > DBDSVDX */
  731. /* > \endverbatim */
  732. /* Authors: */
  733. /* ======== */
  734. /* > \author Univ. of Tennessee */
  735. /* > \author Univ. of California Berkeley */
  736. /* > \author Univ. of Colorado Denver */
  737. /* > \author NAG Ltd. */
  738. /* > \date June 2016 */
  739. /* > \ingroup complex16GEsing */
  740. /* ===================================================================== */
  741. /* Subroutine */ void zgesvdx_(char *jobu, char *jobvt, char *range, integer *
  742. m, integer *n, doublecomplex *a, integer *lda, doublereal *vl,
  743. doublereal *vu, integer *il, integer *iu, integer *ns, doublereal *s,
  744. doublecomplex *u, integer *ldu, doublecomplex *vt, integer *ldvt,
  745. doublecomplex *work, integer *lwork, doublereal *rwork, integer *
  746. iwork, integer *info)
  747. {
  748. /* System generated locals */
  749. address a__1[2];
  750. integer a_dim1, a_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1[2],
  751. i__2, i__3, i__4, i__5;
  752. doublereal d__1;
  753. doublecomplex z__1;
  754. char ch__1[2];
  755. /* Local variables */
  756. integer iscl;
  757. logical alls, inds;
  758. integer ilqf;
  759. doublereal anrm;
  760. integer ierr, iqrf, itau;
  761. char jobz[1];
  762. logical vals;
  763. integer i__, j, k;
  764. extern logical lsame_(char *, char *);
  765. integer iltgk, itemp, minmn, itaup, itauq, iutgk, itgkz, mnthr;
  766. logical wantu;
  767. integer id, ie;
  768. extern doublereal dlamch_(char *);
  769. extern /* Subroutine */ void dlascl_(char *, integer *, integer *,
  770. doublereal *, doublereal *, integer *, integer *, doublereal *,
  771. integer *, integer *), zgebrd_(integer *, integer *,
  772. doublecomplex *, integer *, doublereal *, doublereal *,
  773. doublecomplex *, doublecomplex *, doublecomplex *, integer *,
  774. integer *);
  775. extern int xerbla_(char *, integer *, ftnlen);
  776. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  777. integer *, integer *, ftnlen, ftnlen);
  778. extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
  779. integer *, doublereal *);
  780. doublereal bignum, abstol;
  781. extern /* Subroutine */ void zgelqf_(integer *, integer *, doublecomplex *,
  782. integer *, doublecomplex *, doublecomplex *, integer *, integer *
  783. ), zlascl_(char *, integer *, integer *, doublereal *, doublereal
  784. *, integer *, integer *, doublecomplex *, integer *, integer *);
  785. char rngtgk[1];
  786. extern /* Subroutine */ void zgeqrf_(integer *, integer *, doublecomplex *,
  787. integer *, doublecomplex *, doublecomplex *, integer *, integer *
  788. );
  789. integer itempr;
  790. extern /* Subroutine */ void zlaset_(char *, integer *, integer *,
  791. doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *,
  792. integer *, doublecomplex *, integer *);
  793. integer minwrk, maxwrk;
  794. doublereal smlnum;
  795. extern /* Subroutine */ void zunmbr_(char *, char *, char *, integer *,
  796. integer *, integer *, doublecomplex *, integer *, doublecomplex *,
  797. doublecomplex *, integer *, doublecomplex *, integer *, integer *
  798. );
  799. logical lquery, wantvt;
  800. extern /* Subroutine */ void zunmlq_(char *, char *, integer *, integer *,
  801. integer *, doublecomplex *, integer *, doublecomplex *,
  802. doublecomplex *, integer *, doublecomplex *, integer *, integer *), zunmqr_(char *, char *, integer *, integer *,
  803. integer *, doublecomplex *, integer *, doublecomplex *,
  804. doublecomplex *, integer *, doublecomplex *, integer *, integer *);
  805. doublereal dum[1], eps;
  806. extern /* Subroutine */ void dbdsvdx_(char *, char *, char *, integer *,
  807. doublereal *, doublereal *, doublereal *, doublereal *, integer *,
  808. integer *, integer *, doublereal *, doublereal *, integer *,
  809. doublereal *, integer *, integer *);
  810. /* -- LAPACK driver routine (version 3.8.0) -- */
  811. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  812. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  813. /* June 2016 */
  814. /* ===================================================================== */
  815. /* Test the input arguments. */
  816. /* Parameter adjustments */
  817. a_dim1 = *lda;
  818. a_offset = 1 + a_dim1 * 1;
  819. a -= a_offset;
  820. --s;
  821. u_dim1 = *ldu;
  822. u_offset = 1 + u_dim1 * 1;
  823. u -= u_offset;
  824. vt_dim1 = *ldvt;
  825. vt_offset = 1 + vt_dim1 * 1;
  826. vt -= vt_offset;
  827. --work;
  828. --rwork;
  829. --iwork;
  830. /* Function Body */
  831. *ns = 0;
  832. *info = 0;
  833. abstol = dlamch_("S") * 2;
  834. lquery = *lwork == -1;
  835. minmn = f2cmin(*m,*n);
  836. wantu = lsame_(jobu, "V");
  837. wantvt = lsame_(jobvt, "V");
  838. if (wantu || wantvt) {
  839. *(unsigned char *)jobz = 'V';
  840. } else {
  841. *(unsigned char *)jobz = 'N';
  842. }
  843. alls = lsame_(range, "A");
  844. vals = lsame_(range, "V");
  845. inds = lsame_(range, "I");
  846. *info = 0;
  847. if (! lsame_(jobu, "V") && ! lsame_(jobu, "N")) {
  848. *info = -1;
  849. } else if (! lsame_(jobvt, "V") && ! lsame_(jobvt,
  850. "N")) {
  851. *info = -2;
  852. } else if (! (alls || vals || inds)) {
  853. *info = -3;
  854. } else if (*m < 0) {
  855. *info = -4;
  856. } else if (*n < 0) {
  857. *info = -5;
  858. } else if (*m > *lda) {
  859. *info = -7;
  860. } else if (minmn > 0) {
  861. if (vals) {
  862. if (*vl < 0.) {
  863. *info = -8;
  864. } else if (*vu <= *vl) {
  865. *info = -9;
  866. }
  867. } else if (inds) {
  868. if (*il < 1 || *il > f2cmax(1,minmn)) {
  869. *info = -10;
  870. } else if (*iu < f2cmin(minmn,*il) || *iu > minmn) {
  871. *info = -11;
  872. }
  873. }
  874. if (*info == 0) {
  875. if (wantu && *ldu < *m) {
  876. *info = -15;
  877. } else if (wantvt) {
  878. if (inds) {
  879. if (*ldvt < *iu - *il + 1) {
  880. *info = -17;
  881. }
  882. } else if (*ldvt < minmn) {
  883. *info = -17;
  884. }
  885. }
  886. }
  887. }
  888. /* Compute workspace */
  889. /* (Note: Comments in the code beginning "Workspace:" describe the */
  890. /* minimal amount of workspace needed at that point in the code, */
  891. /* as well as the preferred amount for good performance. */
  892. /* NB refers to the optimal block size for the immediately */
  893. /* following subroutine, as returned by ILAENV.) */
  894. if (*info == 0) {
  895. minwrk = 1;
  896. maxwrk = 1;
  897. if (minmn > 0) {
  898. if (*m >= *n) {
  899. /* Writing concatenation */
  900. i__1[0] = 1, a__1[0] = jobu;
  901. i__1[1] = 1, a__1[1] = jobvt;
  902. s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
  903. mnthr = ilaenv_(&c__6, "ZGESVD", ch__1, m, n, &c__0, &c__0, (
  904. ftnlen)6, (ftnlen)2);
  905. if (*m >= mnthr) {
  906. /* Path 1 (M much larger than N) */
  907. minwrk = *n * (*n + 5);
  908. maxwrk = *n + *n * ilaenv_(&c__1, "ZGEQRF", " ", m, n, &
  909. c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  910. /* Computing MAX */
  911. i__2 = maxwrk, i__3 = *n * *n + (*n << 1) + (*n << 1) *
  912. ilaenv_(&c__1, "ZGEBRD", " ", n, n, &c_n1, &c_n1,
  913. (ftnlen)6, (ftnlen)1);
  914. maxwrk = f2cmax(i__2,i__3);
  915. if (wantu || wantvt) {
  916. /* Computing MAX */
  917. i__2 = maxwrk, i__3 = *n * *n + (*n << 1) + *n *
  918. ilaenv_(&c__1, "ZUNMQR", "LN", n, n, n, &c_n1,
  919. (ftnlen)6, (ftnlen)2);
  920. maxwrk = f2cmax(i__2,i__3);
  921. }
  922. } else {
  923. /* Path 2 (M at least N, but not much larger) */
  924. minwrk = *n * 3 + *m;
  925. maxwrk = (*n << 1) + (*m + *n) * ilaenv_(&c__1, "ZGEBRD",
  926. " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  927. if (wantu || wantvt) {
  928. /* Computing MAX */
  929. i__2 = maxwrk, i__3 = (*n << 1) + *n * ilaenv_(&c__1,
  930. "ZUNMQR", "LN", n, n, n, &c_n1, (ftnlen)6, (
  931. ftnlen)2);
  932. maxwrk = f2cmax(i__2,i__3);
  933. }
  934. }
  935. } else {
  936. /* Writing concatenation */
  937. i__1[0] = 1, a__1[0] = jobu;
  938. i__1[1] = 1, a__1[1] = jobvt;
  939. s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
  940. mnthr = ilaenv_(&c__6, "ZGESVD", ch__1, m, n, &c__0, &c__0, (
  941. ftnlen)6, (ftnlen)2);
  942. if (*n >= mnthr) {
  943. /* Path 1t (N much larger than M) */
  944. minwrk = *m * (*m + 5);
  945. maxwrk = *m + *m * ilaenv_(&c__1, "ZGELQF", " ", m, n, &
  946. c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  947. /* Computing MAX */
  948. i__2 = maxwrk, i__3 = *m * *m + (*m << 1) + (*m << 1) *
  949. ilaenv_(&c__1, "ZGEBRD", " ", m, m, &c_n1, &c_n1,
  950. (ftnlen)6, (ftnlen)1);
  951. maxwrk = f2cmax(i__2,i__3);
  952. if (wantu || wantvt) {
  953. /* Computing MAX */
  954. i__2 = maxwrk, i__3 = *m * *m + (*m << 1) + *m *
  955. ilaenv_(&c__1, "ZUNMQR", "LN", m, m, m, &c_n1,
  956. (ftnlen)6, (ftnlen)2);
  957. maxwrk = f2cmax(i__2,i__3);
  958. }
  959. } else {
  960. /* Path 2t (N greater than M, but not much larger) */
  961. minwrk = *m * 3 + *n;
  962. maxwrk = (*m << 1) + (*m + *n) * ilaenv_(&c__1, "ZGEBRD",
  963. " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  964. if (wantu || wantvt) {
  965. /* Computing MAX */
  966. i__2 = maxwrk, i__3 = (*m << 1) + *m * ilaenv_(&c__1,
  967. "ZUNMQR", "LN", m, m, m, &c_n1, (ftnlen)6, (
  968. ftnlen)2);
  969. maxwrk = f2cmax(i__2,i__3);
  970. }
  971. }
  972. }
  973. }
  974. maxwrk = f2cmax(maxwrk,minwrk);
  975. d__1 = (doublereal) maxwrk;
  976. z__1.r = d__1, z__1.i = 0.;
  977. work[1].r = z__1.r, work[1].i = z__1.i;
  978. if (*lwork < minwrk && ! lquery) {
  979. *info = -19;
  980. }
  981. }
  982. if (*info != 0) {
  983. i__2 = -(*info);
  984. xerbla_("ZGESVDX", &i__2, (ftnlen)7);
  985. return;
  986. } else if (lquery) {
  987. return;
  988. }
  989. /* Quick return if possible */
  990. if (*m == 0 || *n == 0) {
  991. return;
  992. }
  993. /* Set singular values indices accord to RANGE='A'. */
  994. if (alls) {
  995. *(unsigned char *)rngtgk = 'I';
  996. iltgk = 1;
  997. iutgk = f2cmin(*m,*n);
  998. } else if (inds) {
  999. *(unsigned char *)rngtgk = 'I';
  1000. iltgk = *il;
  1001. iutgk = *iu;
  1002. } else {
  1003. *(unsigned char *)rngtgk = 'V';
  1004. iltgk = 0;
  1005. iutgk = 0;
  1006. }
  1007. /* Get machine constants */
  1008. eps = dlamch_("P");
  1009. smlnum = sqrt(dlamch_("S")) / eps;
  1010. bignum = 1. / smlnum;
  1011. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  1012. anrm = zlange_("M", m, n, &a[a_offset], lda, dum);
  1013. iscl = 0;
  1014. if (anrm > 0. && anrm < smlnum) {
  1015. iscl = 1;
  1016. zlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
  1017. info);
  1018. } else if (anrm > bignum) {
  1019. iscl = 1;
  1020. zlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
  1021. info);
  1022. }
  1023. if (*m >= *n) {
  1024. /* A has at least as many rows as columns. If A has sufficiently */
  1025. /* more rows than columns, first reduce A using the QR */
  1026. /* decomposition. */
  1027. if (*m >= mnthr) {
  1028. /* Path 1 (M much larger than N): */
  1029. /* A = Q * R = Q * ( QB * B * PB**T ) */
  1030. /* = Q * ( QB * ( UB * S * VB**T ) * PB**T ) */
  1031. /* U = Q * QB * UB; V**T = VB**T * PB**T */
  1032. /* Compute A=Q*R */
  1033. /* (Workspace: need 2*N, prefer N+N*NB) */
  1034. itau = 1;
  1035. itemp = itau + *n;
  1036. i__2 = *lwork - itemp + 1;
  1037. zgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[itemp], &i__2,
  1038. info);
  1039. /* Copy R into WORK and bidiagonalize it: */
  1040. /* (Workspace: need N*N+3*N, prefer N*N+N+2*N*NB) */
  1041. iqrf = itemp;
  1042. itauq = itemp + *n * *n;
  1043. itaup = itauq + *n;
  1044. itemp = itaup + *n;
  1045. id = 1;
  1046. ie = id + *n;
  1047. itgkz = ie + *n;
  1048. zlacpy_("U", n, n, &a[a_offset], lda, &work[iqrf], n);
  1049. i__2 = *n - 1;
  1050. i__3 = *n - 1;
  1051. zlaset_("L", &i__2, &i__3, &c_b1, &c_b1, &work[iqrf + 1], n);
  1052. i__2 = *lwork - itemp + 1;
  1053. zgebrd_(n, n, &work[iqrf], n, &rwork[id], &rwork[ie], &work[itauq]
  1054. , &work[itaup], &work[itemp], &i__2, info);
  1055. itempr = itgkz + *n * ((*n << 1) + 1);
  1056. /* Solve eigenvalue problem TGK*Z=Z*S. */
  1057. /* (Workspace: need 2*N*N+14*N) */
  1058. i__2 = *n << 1;
  1059. dbdsvdx_("U", jobz, rngtgk, n, &rwork[id], &rwork[ie], vl, vu, &
  1060. iltgk, &iutgk, ns, &s[1], &rwork[itgkz], &i__2, &rwork[
  1061. itempr], &iwork[1], info)
  1062. ;
  1063. /* If needed, compute left singular vectors. */
  1064. if (wantu) {
  1065. k = itgkz;
  1066. i__2 = *ns;
  1067. for (i__ = 1; i__ <= i__2; ++i__) {
  1068. i__3 = *n;
  1069. for (j = 1; j <= i__3; ++j) {
  1070. i__4 = j + i__ * u_dim1;
  1071. i__5 = k;
  1072. z__1.r = rwork[i__5], z__1.i = 0.;
  1073. u[i__4].r = z__1.r, u[i__4].i = z__1.i;
  1074. ++k;
  1075. }
  1076. k += *n;
  1077. }
  1078. i__2 = *m - *n;
  1079. zlaset_("A", &i__2, ns, &c_b1, &c_b1, &u[*n + 1 + u_dim1],
  1080. ldu);
  1081. /* Call ZUNMBR to compute QB*UB. */
  1082. /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
  1083. i__2 = *lwork - itemp + 1;
  1084. zunmbr_("Q", "L", "N", n, ns, n, &work[iqrf], n, &work[itauq],
  1085. &u[u_offset], ldu, &work[itemp], &i__2, info);
  1086. /* Call ZUNMQR to compute Q*(QB*UB). */
  1087. /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
  1088. i__2 = *lwork - itemp + 1;
  1089. zunmqr_("L", "N", m, ns, n, &a[a_offset], lda, &work[itau], &
  1090. u[u_offset], ldu, &work[itemp], &i__2, info);
  1091. }
  1092. /* If needed, compute right singular vectors. */
  1093. if (wantvt) {
  1094. k = itgkz + *n;
  1095. i__2 = *ns;
  1096. for (i__ = 1; i__ <= i__2; ++i__) {
  1097. i__3 = *n;
  1098. for (j = 1; j <= i__3; ++j) {
  1099. i__4 = i__ + j * vt_dim1;
  1100. i__5 = k;
  1101. z__1.r = rwork[i__5], z__1.i = 0.;
  1102. vt[i__4].r = z__1.r, vt[i__4].i = z__1.i;
  1103. ++k;
  1104. }
  1105. k += *n;
  1106. }
  1107. /* Call ZUNMBR to compute VB**T * PB**T */
  1108. /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
  1109. i__2 = *lwork - itemp + 1;
  1110. zunmbr_("P", "R", "C", ns, n, n, &work[iqrf], n, &work[itaup],
  1111. &vt[vt_offset], ldvt, &work[itemp], &i__2, info);
  1112. }
  1113. } else {
  1114. /* Path 2 (M at least N, but not much larger) */
  1115. /* Reduce A to bidiagonal form without QR decomposition */
  1116. /* A = QB * B * PB**T = QB * ( UB * S * VB**T ) * PB**T */
  1117. /* U = QB * UB; V**T = VB**T * PB**T */
  1118. /* Bidiagonalize A */
  1119. /* (Workspace: need 2*N+M, prefer 2*N+(M+N)*NB) */
  1120. itauq = 1;
  1121. itaup = itauq + *n;
  1122. itemp = itaup + *n;
  1123. id = 1;
  1124. ie = id + *n;
  1125. itgkz = ie + *n;
  1126. i__2 = *lwork - itemp + 1;
  1127. zgebrd_(m, n, &a[a_offset], lda, &rwork[id], &rwork[ie], &work[
  1128. itauq], &work[itaup], &work[itemp], &i__2, info);
  1129. itempr = itgkz + *n * ((*n << 1) + 1);
  1130. /* Solve eigenvalue problem TGK*Z=Z*S. */
  1131. /* (Workspace: need 2*N*N+14*N) */
  1132. i__2 = *n << 1;
  1133. dbdsvdx_("U", jobz, rngtgk, n, &rwork[id], &rwork[ie], vl, vu, &
  1134. iltgk, &iutgk, ns, &s[1], &rwork[itgkz], &i__2, &rwork[
  1135. itempr], &iwork[1], info)
  1136. ;
  1137. /* If needed, compute left singular vectors. */
  1138. if (wantu) {
  1139. k = itgkz;
  1140. i__2 = *ns;
  1141. for (i__ = 1; i__ <= i__2; ++i__) {
  1142. i__3 = *n;
  1143. for (j = 1; j <= i__3; ++j) {
  1144. i__4 = j + i__ * u_dim1;
  1145. i__5 = k;
  1146. z__1.r = rwork[i__5], z__1.i = 0.;
  1147. u[i__4].r = z__1.r, u[i__4].i = z__1.i;
  1148. ++k;
  1149. }
  1150. k += *n;
  1151. }
  1152. i__2 = *m - *n;
  1153. zlaset_("A", &i__2, ns, &c_b1, &c_b1, &u[*n + 1 + u_dim1],
  1154. ldu);
  1155. /* Call ZUNMBR to compute QB*UB. */
  1156. /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
  1157. i__2 = *lwork - itemp + 1;
  1158. zunmbr_("Q", "L", "N", m, ns, n, &a[a_offset], lda, &work[
  1159. itauq], &u[u_offset], ldu, &work[itemp], &i__2, &ierr);
  1160. }
  1161. /* If needed, compute right singular vectors. */
  1162. if (wantvt) {
  1163. k = itgkz + *n;
  1164. i__2 = *ns;
  1165. for (i__ = 1; i__ <= i__2; ++i__) {
  1166. i__3 = *n;
  1167. for (j = 1; j <= i__3; ++j) {
  1168. i__4 = i__ + j * vt_dim1;
  1169. i__5 = k;
  1170. z__1.r = rwork[i__5], z__1.i = 0.;
  1171. vt[i__4].r = z__1.r, vt[i__4].i = z__1.i;
  1172. ++k;
  1173. }
  1174. k += *n;
  1175. }
  1176. /* Call ZUNMBR to compute VB**T * PB**T */
  1177. /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
  1178. i__2 = *lwork - itemp + 1;
  1179. zunmbr_("P", "R", "C", ns, n, n, &a[a_offset], lda, &work[
  1180. itaup], &vt[vt_offset], ldvt, &work[itemp], &i__2, &
  1181. ierr);
  1182. }
  1183. }
  1184. } else {
  1185. /* A has more columns than rows. If A has sufficiently more */
  1186. /* columns than rows, first reduce A using the LQ decomposition. */
  1187. if (*n >= mnthr) {
  1188. /* Path 1t (N much larger than M): */
  1189. /* A = L * Q = ( QB * B * PB**T ) * Q */
  1190. /* = ( QB * ( UB * S * VB**T ) * PB**T ) * Q */
  1191. /* U = QB * UB ; V**T = VB**T * PB**T * Q */
  1192. /* Compute A=L*Q */
  1193. /* (Workspace: need 2*M, prefer M+M*NB) */
  1194. itau = 1;
  1195. itemp = itau + *m;
  1196. i__2 = *lwork - itemp + 1;
  1197. zgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[itemp], &i__2,
  1198. info);
  1199. /* Copy L into WORK and bidiagonalize it: */
  1200. /* (Workspace in WORK( ITEMP ): need M*M+3*M, prefer M*M+M+2*M*NB) */
  1201. ilqf = itemp;
  1202. itauq = ilqf + *m * *m;
  1203. itaup = itauq + *m;
  1204. itemp = itaup + *m;
  1205. id = 1;
  1206. ie = id + *m;
  1207. itgkz = ie + *m;
  1208. zlacpy_("L", m, m, &a[a_offset], lda, &work[ilqf], m);
  1209. i__2 = *m - 1;
  1210. i__3 = *m - 1;
  1211. zlaset_("U", &i__2, &i__3, &c_b1, &c_b1, &work[ilqf + *m], m);
  1212. i__2 = *lwork - itemp + 1;
  1213. zgebrd_(m, m, &work[ilqf], m, &rwork[id], &rwork[ie], &work[itauq]
  1214. , &work[itaup], &work[itemp], &i__2, info);
  1215. itempr = itgkz + *m * ((*m << 1) + 1);
  1216. /* Solve eigenvalue problem TGK*Z=Z*S. */
  1217. /* (Workspace: need 2*M*M+14*M) */
  1218. i__2 = *m << 1;
  1219. dbdsvdx_("U", jobz, rngtgk, m, &rwork[id], &rwork[ie], vl, vu, &
  1220. iltgk, &iutgk, ns, &s[1], &rwork[itgkz], &i__2, &rwork[
  1221. itempr], &iwork[1], info)
  1222. ;
  1223. /* If needed, compute left singular vectors. */
  1224. if (wantu) {
  1225. k = itgkz;
  1226. i__2 = *ns;
  1227. for (i__ = 1; i__ <= i__2; ++i__) {
  1228. i__3 = *m;
  1229. for (j = 1; j <= i__3; ++j) {
  1230. i__4 = j + i__ * u_dim1;
  1231. i__5 = k;
  1232. z__1.r = rwork[i__5], z__1.i = 0.;
  1233. u[i__4].r = z__1.r, u[i__4].i = z__1.i;
  1234. ++k;
  1235. }
  1236. k += *m;
  1237. }
  1238. /* Call ZUNMBR to compute QB*UB. */
  1239. /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
  1240. i__2 = *lwork - itemp + 1;
  1241. zunmbr_("Q", "L", "N", m, ns, m, &work[ilqf], m, &work[itauq],
  1242. &u[u_offset], ldu, &work[itemp], &i__2, info);
  1243. }
  1244. /* If needed, compute right singular vectors. */
  1245. if (wantvt) {
  1246. k = itgkz + *m;
  1247. i__2 = *ns;
  1248. for (i__ = 1; i__ <= i__2; ++i__) {
  1249. i__3 = *m;
  1250. for (j = 1; j <= i__3; ++j) {
  1251. i__4 = i__ + j * vt_dim1;
  1252. i__5 = k;
  1253. z__1.r = rwork[i__5], z__1.i = 0.;
  1254. vt[i__4].r = z__1.r, vt[i__4].i = z__1.i;
  1255. ++k;
  1256. }
  1257. k += *m;
  1258. }
  1259. i__2 = *n - *m;
  1260. zlaset_("A", ns, &i__2, &c_b1, &c_b1, &vt[(*m + 1) * vt_dim1
  1261. + 1], ldvt);
  1262. /* Call ZUNMBR to compute (VB**T)*(PB**T) */
  1263. /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
  1264. i__2 = *lwork - itemp + 1;
  1265. zunmbr_("P", "R", "C", ns, m, m, &work[ilqf], m, &work[itaup],
  1266. &vt[vt_offset], ldvt, &work[itemp], &i__2, info);
  1267. /* Call ZUNMLQ to compute ((VB**T)*(PB**T))*Q. */
  1268. /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
  1269. i__2 = *lwork - itemp + 1;
  1270. zunmlq_("R", "N", ns, n, m, &a[a_offset], lda, &work[itau], &
  1271. vt[vt_offset], ldvt, &work[itemp], &i__2, info);
  1272. }
  1273. } else {
  1274. /* Path 2t (N greater than M, but not much larger) */
  1275. /* Reduce to bidiagonal form without LQ decomposition */
  1276. /* A = QB * B * PB**T = QB * ( UB * S * VB**T ) * PB**T */
  1277. /* U = QB * UB; V**T = VB**T * PB**T */
  1278. /* Bidiagonalize A */
  1279. /* (Workspace: need 2*M+N, prefer 2*M+(M+N)*NB) */
  1280. itauq = 1;
  1281. itaup = itauq + *m;
  1282. itemp = itaup + *m;
  1283. id = 1;
  1284. ie = id + *m;
  1285. itgkz = ie + *m;
  1286. i__2 = *lwork - itemp + 1;
  1287. zgebrd_(m, n, &a[a_offset], lda, &rwork[id], &rwork[ie], &work[
  1288. itauq], &work[itaup], &work[itemp], &i__2, info);
  1289. itempr = itgkz + *m * ((*m << 1) + 1);
  1290. /* Solve eigenvalue problem TGK*Z=Z*S. */
  1291. /* (Workspace: need 2*M*M+14*M) */
  1292. i__2 = *m << 1;
  1293. dbdsvdx_("L", jobz, rngtgk, m, &rwork[id], &rwork[ie], vl, vu, &
  1294. iltgk, &iutgk, ns, &s[1], &rwork[itgkz], &i__2, &rwork[
  1295. itempr], &iwork[1], info)
  1296. ;
  1297. /* If needed, compute left singular vectors. */
  1298. if (wantu) {
  1299. k = itgkz;
  1300. i__2 = *ns;
  1301. for (i__ = 1; i__ <= i__2; ++i__) {
  1302. i__3 = *m;
  1303. for (j = 1; j <= i__3; ++j) {
  1304. i__4 = j + i__ * u_dim1;
  1305. i__5 = k;
  1306. z__1.r = rwork[i__5], z__1.i = 0.;
  1307. u[i__4].r = z__1.r, u[i__4].i = z__1.i;
  1308. ++k;
  1309. }
  1310. k += *m;
  1311. }
  1312. /* Call ZUNMBR to compute QB*UB. */
  1313. /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
  1314. i__2 = *lwork - itemp + 1;
  1315. zunmbr_("Q", "L", "N", m, ns, n, &a[a_offset], lda, &work[
  1316. itauq], &u[u_offset], ldu, &work[itemp], &i__2, info);
  1317. }
  1318. /* If needed, compute right singular vectors. */
  1319. if (wantvt) {
  1320. k = itgkz + *m;
  1321. i__2 = *ns;
  1322. for (i__ = 1; i__ <= i__2; ++i__) {
  1323. i__3 = *m;
  1324. for (j = 1; j <= i__3; ++j) {
  1325. i__4 = i__ + j * vt_dim1;
  1326. i__5 = k;
  1327. z__1.r = rwork[i__5], z__1.i = 0.;
  1328. vt[i__4].r = z__1.r, vt[i__4].i = z__1.i;
  1329. ++k;
  1330. }
  1331. k += *m;
  1332. }
  1333. i__2 = *n - *m;
  1334. zlaset_("A", ns, &i__2, &c_b1, &c_b1, &vt[(*m + 1) * vt_dim1
  1335. + 1], ldvt);
  1336. /* Call ZUNMBR to compute VB**T * PB**T */
  1337. /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
  1338. i__2 = *lwork - itemp + 1;
  1339. zunmbr_("P", "R", "C", ns, n, m, &a[a_offset], lda, &work[
  1340. itaup], &vt[vt_offset], ldvt, &work[itemp], &i__2,
  1341. info);
  1342. }
  1343. }
  1344. }
  1345. /* Undo scaling if necessary */
  1346. if (iscl == 1) {
  1347. if (anrm > bignum) {
  1348. dlascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
  1349. minmn, info);
  1350. }
  1351. if (anrm < smlnum) {
  1352. dlascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
  1353. minmn, info);
  1354. }
  1355. }
  1356. /* Return optimal workspace in WORK(1) */
  1357. d__1 = (doublereal) maxwrk;
  1358. z__1.r = d__1, z__1.i = 0.;
  1359. work[1].r = z__1.r, work[1].i = z__1.i;
  1360. return;
  1361. /* End of ZGESVDX */
  1362. } /* zgesvdx_ */