You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgbbrd.c 35 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static doublecomplex c_b1 = {0.,0.};
  485. static doublecomplex c_b2 = {1.,0.};
  486. static integer c__1 = 1;
  487. /* > \brief \b ZGBBRD */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download ZGBBRD + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgbbrd.
  494. f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgbbrd.
  497. f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgbbrd.
  500. f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE ZGBBRD( VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q, */
  506. /* LDQ, PT, LDPT, C, LDC, WORK, RWORK, INFO ) */
  507. /* CHARACTER VECT */
  508. /* INTEGER INFO, KL, KU, LDAB, LDC, LDPT, LDQ, M, N, NCC */
  509. /* DOUBLE PRECISION D( * ), E( * ), RWORK( * ) */
  510. /* COMPLEX*16 AB( LDAB, * ), C( LDC, * ), PT( LDPT, * ), */
  511. /* $ Q( LDQ, * ), WORK( * ) */
  512. /* > \par Purpose: */
  513. /* ============= */
  514. /* > */
  515. /* > \verbatim */
  516. /* > */
  517. /* > ZGBBRD reduces a complex general m-by-n band matrix A to real upper */
  518. /* > bidiagonal form B by a unitary transformation: Q**H * A * P = B. */
  519. /* > */
  520. /* > The routine computes B, and optionally forms Q or P**H, or computes */
  521. /* > Q**H*C for a given matrix C. */
  522. /* > \endverbatim */
  523. /* Arguments: */
  524. /* ========== */
  525. /* > \param[in] VECT */
  526. /* > \verbatim */
  527. /* > VECT is CHARACTER*1 */
  528. /* > Specifies whether or not the matrices Q and P**H are to be */
  529. /* > formed. */
  530. /* > = 'N': do not form Q or P**H; */
  531. /* > = 'Q': form Q only; */
  532. /* > = 'P': form P**H only; */
  533. /* > = 'B': form both. */
  534. /* > \endverbatim */
  535. /* > */
  536. /* > \param[in] M */
  537. /* > \verbatim */
  538. /* > M is INTEGER */
  539. /* > The number of rows of the matrix A. M >= 0. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] N */
  543. /* > \verbatim */
  544. /* > N is INTEGER */
  545. /* > The number of columns of the matrix A. N >= 0. */
  546. /* > \endverbatim */
  547. /* > */
  548. /* > \param[in] NCC */
  549. /* > \verbatim */
  550. /* > NCC is INTEGER */
  551. /* > The number of columns of the matrix C. NCC >= 0. */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] KL */
  555. /* > \verbatim */
  556. /* > KL is INTEGER */
  557. /* > The number of subdiagonals of the matrix A. KL >= 0. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[in] KU */
  561. /* > \verbatim */
  562. /* > KU is INTEGER */
  563. /* > The number of superdiagonals of the matrix A. KU >= 0. */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in,out] AB */
  567. /* > \verbatim */
  568. /* > AB is COMPLEX*16 array, dimension (LDAB,N) */
  569. /* > On entry, the m-by-n band matrix A, stored in rows 1 to */
  570. /* > KL+KU+1. The j-th column of A is stored in the j-th column of */
  571. /* > the array AB as follows: */
  572. /* > AB(ku+1+i-j,j) = A(i,j) for f2cmax(1,j-ku)<=i<=f2cmin(m,j+kl). */
  573. /* > On exit, A is overwritten by values generated during the */
  574. /* > reduction. */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in] LDAB */
  578. /* > \verbatim */
  579. /* > LDAB is INTEGER */
  580. /* > The leading dimension of the array A. LDAB >= KL+KU+1. */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[out] D */
  584. /* > \verbatim */
  585. /* > D is DOUBLE PRECISION array, dimension (f2cmin(M,N)) */
  586. /* > The diagonal elements of the bidiagonal matrix B. */
  587. /* > \endverbatim */
  588. /* > */
  589. /* > \param[out] E */
  590. /* > \verbatim */
  591. /* > E is DOUBLE PRECISION array, dimension (f2cmin(M,N)-1) */
  592. /* > The superdiagonal elements of the bidiagonal matrix B. */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[out] Q */
  596. /* > \verbatim */
  597. /* > Q is COMPLEX*16 array, dimension (LDQ,M) */
  598. /* > If VECT = 'Q' or 'B', the m-by-m unitary matrix Q. */
  599. /* > If VECT = 'N' or 'P', the array Q is not referenced. */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in] LDQ */
  603. /* > \verbatim */
  604. /* > LDQ is INTEGER */
  605. /* > The leading dimension of the array Q. */
  606. /* > LDQ >= f2cmax(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise. */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[out] PT */
  610. /* > \verbatim */
  611. /* > PT is COMPLEX*16 array, dimension (LDPT,N) */
  612. /* > If VECT = 'P' or 'B', the n-by-n unitary matrix P'. */
  613. /* > If VECT = 'N' or 'Q', the array PT is not referenced. */
  614. /* > \endverbatim */
  615. /* > */
  616. /* > \param[in] LDPT */
  617. /* > \verbatim */
  618. /* > LDPT is INTEGER */
  619. /* > The leading dimension of the array PT. */
  620. /* > LDPT >= f2cmax(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise. */
  621. /* > \endverbatim */
  622. /* > */
  623. /* > \param[in,out] C */
  624. /* > \verbatim */
  625. /* > C is COMPLEX*16 array, dimension (LDC,NCC) */
  626. /* > On entry, an m-by-ncc matrix C. */
  627. /* > On exit, C is overwritten by Q**H*C. */
  628. /* > C is not referenced if NCC = 0. */
  629. /* > \endverbatim */
  630. /* > */
  631. /* > \param[in] LDC */
  632. /* > \verbatim */
  633. /* > LDC is INTEGER */
  634. /* > The leading dimension of the array C. */
  635. /* > LDC >= f2cmax(1,M) if NCC > 0; LDC >= 1 if NCC = 0. */
  636. /* > \endverbatim */
  637. /* > */
  638. /* > \param[out] WORK */
  639. /* > \verbatim */
  640. /* > WORK is COMPLEX*16 array, dimension (f2cmax(M,N)) */
  641. /* > \endverbatim */
  642. /* > */
  643. /* > \param[out] RWORK */
  644. /* > \verbatim */
  645. /* > RWORK is DOUBLE PRECISION array, dimension (f2cmax(M,N)) */
  646. /* > \endverbatim */
  647. /* > */
  648. /* > \param[out] INFO */
  649. /* > \verbatim */
  650. /* > INFO is INTEGER */
  651. /* > = 0: successful exit. */
  652. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  653. /* > \endverbatim */
  654. /* Authors: */
  655. /* ======== */
  656. /* > \author Univ. of Tennessee */
  657. /* > \author Univ. of California Berkeley */
  658. /* > \author Univ. of Colorado Denver */
  659. /* > \author NAG Ltd. */
  660. /* > \date December 2016 */
  661. /* > \ingroup complex16GBcomputational */
  662. /* ===================================================================== */
  663. /* Subroutine */ void zgbbrd_(char *vect, integer *m, integer *n, integer *ncc,
  664. integer *kl, integer *ku, doublecomplex *ab, integer *ldab,
  665. doublereal *d__, doublereal *e, doublecomplex *q, integer *ldq,
  666. doublecomplex *pt, integer *ldpt, doublecomplex *c__, integer *ldc,
  667. doublecomplex *work, doublereal *rwork, integer *info)
  668. {
  669. /* System generated locals */
  670. integer ab_dim1, ab_offset, c_dim1, c_offset, pt_dim1, pt_offset, q_dim1,
  671. q_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7;
  672. doublecomplex z__1, z__2, z__3;
  673. /* Local variables */
  674. integer inca;
  675. doublereal abst;
  676. extern /* Subroutine */ void zrot_(integer *, doublecomplex *, integer *,
  677. doublecomplex *, integer *, doublereal *, doublecomplex *);
  678. integer i__, j, l;
  679. doublecomplex t;
  680. extern logical lsame_(char *, char *);
  681. logical wantb, wantc;
  682. extern /* Subroutine */ void zscal_(integer *, doublecomplex *,
  683. doublecomplex *, integer *);
  684. integer minmn;
  685. logical wantq;
  686. integer j1, j2, kb;
  687. doublecomplex ra, rb;
  688. doublereal rc;
  689. integer kk, ml, nr, mu;
  690. doublecomplex rs;
  691. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  692. integer kb1;
  693. extern /* Subroutine */ void zlaset_(char *, integer *, integer *,
  694. doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlartg_(doublecomplex *, doublecomplex *, doublereal *,
  695. doublecomplex *, doublecomplex *), zlargv_(integer *,
  696. doublecomplex *, integer *, doublecomplex *, integer *,
  697. doublereal *, integer *);
  698. integer ml0;
  699. logical wantpt;
  700. integer mu0;
  701. extern /* Subroutine */ void zlartv_(integer *, doublecomplex *, integer *,
  702. doublecomplex *, integer *, doublereal *, doublecomplex *,
  703. integer *);
  704. integer klm, kun, nrt, klu1;
  705. /* -- LAPACK computational routine (version 3.7.0) -- */
  706. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  707. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  708. /* December 2016 */
  709. /* ===================================================================== */
  710. /* Test the input parameters */
  711. /* Parameter adjustments */
  712. ab_dim1 = *ldab;
  713. ab_offset = 1 + ab_dim1 * 1;
  714. ab -= ab_offset;
  715. --d__;
  716. --e;
  717. q_dim1 = *ldq;
  718. q_offset = 1 + q_dim1 * 1;
  719. q -= q_offset;
  720. pt_dim1 = *ldpt;
  721. pt_offset = 1 + pt_dim1 * 1;
  722. pt -= pt_offset;
  723. c_dim1 = *ldc;
  724. c_offset = 1 + c_dim1 * 1;
  725. c__ -= c_offset;
  726. --work;
  727. --rwork;
  728. /* Function Body */
  729. wantb = lsame_(vect, "B");
  730. wantq = lsame_(vect, "Q") || wantb;
  731. wantpt = lsame_(vect, "P") || wantb;
  732. wantc = *ncc > 0;
  733. klu1 = *kl + *ku + 1;
  734. *info = 0;
  735. if (! wantq && ! wantpt && ! lsame_(vect, "N")) {
  736. *info = -1;
  737. } else if (*m < 0) {
  738. *info = -2;
  739. } else if (*n < 0) {
  740. *info = -3;
  741. } else if (*ncc < 0) {
  742. *info = -4;
  743. } else if (*kl < 0) {
  744. *info = -5;
  745. } else if (*ku < 0) {
  746. *info = -6;
  747. } else if (*ldab < klu1) {
  748. *info = -8;
  749. } else if (*ldq < 1 || wantq && *ldq < f2cmax(1,*m)) {
  750. *info = -12;
  751. } else if (*ldpt < 1 || wantpt && *ldpt < f2cmax(1,*n)) {
  752. *info = -14;
  753. } else if (*ldc < 1 || wantc && *ldc < f2cmax(1,*m)) {
  754. *info = -16;
  755. }
  756. if (*info != 0) {
  757. i__1 = -(*info);
  758. xerbla_("ZGBBRD", &i__1, (ftnlen)6);
  759. return;
  760. }
  761. /* Initialize Q and P**H to the unit matrix, if needed */
  762. if (wantq) {
  763. zlaset_("Full", m, m, &c_b1, &c_b2, &q[q_offset], ldq);
  764. }
  765. if (wantpt) {
  766. zlaset_("Full", n, n, &c_b1, &c_b2, &pt[pt_offset], ldpt);
  767. }
  768. /* Quick return if possible. */
  769. if (*m == 0 || *n == 0) {
  770. return;
  771. }
  772. minmn = f2cmin(*m,*n);
  773. if (*kl + *ku > 1) {
  774. /* Reduce to upper bidiagonal form if KU > 0; if KU = 0, reduce */
  775. /* first to lower bidiagonal form and then transform to upper */
  776. /* bidiagonal */
  777. if (*ku > 0) {
  778. ml0 = 1;
  779. mu0 = 2;
  780. } else {
  781. ml0 = 2;
  782. mu0 = 1;
  783. }
  784. /* Wherever possible, plane rotations are generated and applied in */
  785. /* vector operations of length NR over the index set J1:J2:KLU1. */
  786. /* The complex sines of the plane rotations are stored in WORK, */
  787. /* and the real cosines in RWORK. */
  788. /* Computing MIN */
  789. i__1 = *m - 1;
  790. klm = f2cmin(i__1,*kl);
  791. /* Computing MIN */
  792. i__1 = *n - 1;
  793. kun = f2cmin(i__1,*ku);
  794. kb = klm + kun;
  795. kb1 = kb + 1;
  796. inca = kb1 * *ldab;
  797. nr = 0;
  798. j1 = klm + 2;
  799. j2 = 1 - kun;
  800. i__1 = minmn;
  801. for (i__ = 1; i__ <= i__1; ++i__) {
  802. /* Reduce i-th column and i-th row of matrix to bidiagonal form */
  803. ml = klm + 1;
  804. mu = kun + 1;
  805. i__2 = kb;
  806. for (kk = 1; kk <= i__2; ++kk) {
  807. j1 += kb;
  808. j2 += kb;
  809. /* generate plane rotations to annihilate nonzero elements */
  810. /* which have been created below the band */
  811. if (nr > 0) {
  812. zlargv_(&nr, &ab[klu1 + (j1 - klm - 1) * ab_dim1], &inca,
  813. &work[j1], &kb1, &rwork[j1], &kb1);
  814. }
  815. /* apply plane rotations from the left */
  816. i__3 = kb;
  817. for (l = 1; l <= i__3; ++l) {
  818. if (j2 - klm + l - 1 > *n) {
  819. nrt = nr - 1;
  820. } else {
  821. nrt = nr;
  822. }
  823. if (nrt > 0) {
  824. zlartv_(&nrt, &ab[klu1 - l + (j1 - klm + l - 1) *
  825. ab_dim1], &inca, &ab[klu1 - l + 1 + (j1 - klm
  826. + l - 1) * ab_dim1], &inca, &rwork[j1], &work[
  827. j1], &kb1);
  828. }
  829. /* L10: */
  830. }
  831. if (ml > ml0) {
  832. if (ml <= *m - i__ + 1) {
  833. /* generate plane rotation to annihilate a(i+ml-1,i) */
  834. /* within the band, and apply rotation from the left */
  835. zlartg_(&ab[*ku + ml - 1 + i__ * ab_dim1], &ab[*ku +
  836. ml + i__ * ab_dim1], &rwork[i__ + ml - 1], &
  837. work[i__ + ml - 1], &ra);
  838. i__3 = *ku + ml - 1 + i__ * ab_dim1;
  839. ab[i__3].r = ra.r, ab[i__3].i = ra.i;
  840. if (i__ < *n) {
  841. /* Computing MIN */
  842. i__4 = *ku + ml - 2, i__5 = *n - i__;
  843. i__3 = f2cmin(i__4,i__5);
  844. i__6 = *ldab - 1;
  845. i__7 = *ldab - 1;
  846. zrot_(&i__3, &ab[*ku + ml - 2 + (i__ + 1) *
  847. ab_dim1], &i__6, &ab[*ku + ml - 1 + (i__
  848. + 1) * ab_dim1], &i__7, &rwork[i__ + ml -
  849. 1], &work[i__ + ml - 1]);
  850. }
  851. }
  852. ++nr;
  853. j1 -= kb1;
  854. }
  855. if (wantq) {
  856. /* accumulate product of plane rotations in Q */
  857. i__3 = j2;
  858. i__4 = kb1;
  859. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4)
  860. {
  861. d_cnjg(&z__1, &work[j]);
  862. zrot_(m, &q[(j - 1) * q_dim1 + 1], &c__1, &q[j *
  863. q_dim1 + 1], &c__1, &rwork[j], &z__1);
  864. /* L20: */
  865. }
  866. }
  867. if (wantc) {
  868. /* apply plane rotations to C */
  869. i__4 = j2;
  870. i__3 = kb1;
  871. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3)
  872. {
  873. zrot_(ncc, &c__[j - 1 + c_dim1], ldc, &c__[j + c_dim1]
  874. , ldc, &rwork[j], &work[j]);
  875. /* L30: */
  876. }
  877. }
  878. if (j2 + kun > *n) {
  879. /* adjust J2 to keep within the bounds of the matrix */
  880. --nr;
  881. j2 -= kb1;
  882. }
  883. i__3 = j2;
  884. i__4 = kb1;
  885. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  886. /* create nonzero element a(j-1,j+ku) above the band */
  887. /* and store it in WORK(n+1:2*n) */
  888. i__5 = j + kun;
  889. i__6 = j;
  890. i__7 = (j + kun) * ab_dim1 + 1;
  891. z__1.r = work[i__6].r * ab[i__7].r - work[i__6].i * ab[
  892. i__7].i, z__1.i = work[i__6].r * ab[i__7].i +
  893. work[i__6].i * ab[i__7].r;
  894. work[i__5].r = z__1.r, work[i__5].i = z__1.i;
  895. i__5 = (j + kun) * ab_dim1 + 1;
  896. i__6 = j;
  897. i__7 = (j + kun) * ab_dim1 + 1;
  898. z__1.r = rwork[i__6] * ab[i__7].r, z__1.i = rwork[i__6] *
  899. ab[i__7].i;
  900. ab[i__5].r = z__1.r, ab[i__5].i = z__1.i;
  901. /* L40: */
  902. }
  903. /* generate plane rotations to annihilate nonzero elements */
  904. /* which have been generated above the band */
  905. if (nr > 0) {
  906. zlargv_(&nr, &ab[(j1 + kun - 1) * ab_dim1 + 1], &inca, &
  907. work[j1 + kun], &kb1, &rwork[j1 + kun], &kb1);
  908. }
  909. /* apply plane rotations from the right */
  910. i__4 = kb;
  911. for (l = 1; l <= i__4; ++l) {
  912. if (j2 + l - 1 > *m) {
  913. nrt = nr - 1;
  914. } else {
  915. nrt = nr;
  916. }
  917. if (nrt > 0) {
  918. zlartv_(&nrt, &ab[l + 1 + (j1 + kun - 1) * ab_dim1], &
  919. inca, &ab[l + (j1 + kun) * ab_dim1], &inca, &
  920. rwork[j1 + kun], &work[j1 + kun], &kb1);
  921. }
  922. /* L50: */
  923. }
  924. if (ml == ml0 && mu > mu0) {
  925. if (mu <= *n - i__ + 1) {
  926. /* generate plane rotation to annihilate a(i,i+mu-1) */
  927. /* within the band, and apply rotation from the right */
  928. zlartg_(&ab[*ku - mu + 3 + (i__ + mu - 2) * ab_dim1],
  929. &ab[*ku - mu + 2 + (i__ + mu - 1) * ab_dim1],
  930. &rwork[i__ + mu - 1], &work[i__ + mu - 1], &
  931. ra);
  932. i__4 = *ku - mu + 3 + (i__ + mu - 2) * ab_dim1;
  933. ab[i__4].r = ra.r, ab[i__4].i = ra.i;
  934. /* Computing MIN */
  935. i__3 = *kl + mu - 2, i__5 = *m - i__;
  936. i__4 = f2cmin(i__3,i__5);
  937. zrot_(&i__4, &ab[*ku - mu + 4 + (i__ + mu - 2) *
  938. ab_dim1], &c__1, &ab[*ku - mu + 3 + (i__ + mu
  939. - 1) * ab_dim1], &c__1, &rwork[i__ + mu - 1],
  940. &work[i__ + mu - 1]);
  941. }
  942. ++nr;
  943. j1 -= kb1;
  944. }
  945. if (wantpt) {
  946. /* accumulate product of plane rotations in P**H */
  947. i__4 = j2;
  948. i__3 = kb1;
  949. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3)
  950. {
  951. d_cnjg(&z__1, &work[j + kun]);
  952. zrot_(n, &pt[j + kun - 1 + pt_dim1], ldpt, &pt[j +
  953. kun + pt_dim1], ldpt, &rwork[j + kun], &z__1);
  954. /* L60: */
  955. }
  956. }
  957. if (j2 + kb > *m) {
  958. /* adjust J2 to keep within the bounds of the matrix */
  959. --nr;
  960. j2 -= kb1;
  961. }
  962. i__3 = j2;
  963. i__4 = kb1;
  964. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  965. /* create nonzero element a(j+kl+ku,j+ku-1) below the */
  966. /* band and store it in WORK(1:n) */
  967. i__5 = j + kb;
  968. i__6 = j + kun;
  969. i__7 = klu1 + (j + kun) * ab_dim1;
  970. z__1.r = work[i__6].r * ab[i__7].r - work[i__6].i * ab[
  971. i__7].i, z__1.i = work[i__6].r * ab[i__7].i +
  972. work[i__6].i * ab[i__7].r;
  973. work[i__5].r = z__1.r, work[i__5].i = z__1.i;
  974. i__5 = klu1 + (j + kun) * ab_dim1;
  975. i__6 = j + kun;
  976. i__7 = klu1 + (j + kun) * ab_dim1;
  977. z__1.r = rwork[i__6] * ab[i__7].r, z__1.i = rwork[i__6] *
  978. ab[i__7].i;
  979. ab[i__5].r = z__1.r, ab[i__5].i = z__1.i;
  980. /* L70: */
  981. }
  982. if (ml > ml0) {
  983. --ml;
  984. } else {
  985. --mu;
  986. }
  987. /* L80: */
  988. }
  989. /* L90: */
  990. }
  991. }
  992. if (*ku == 0 && *kl > 0) {
  993. /* A has been reduced to complex lower bidiagonal form */
  994. /* Transform lower bidiagonal form to upper bidiagonal by applying */
  995. /* plane rotations from the left, overwriting superdiagonal */
  996. /* elements on subdiagonal elements */
  997. /* Computing MIN */
  998. i__2 = *m - 1;
  999. i__1 = f2cmin(i__2,*n);
  1000. for (i__ = 1; i__ <= i__1; ++i__) {
  1001. zlartg_(&ab[i__ * ab_dim1 + 1], &ab[i__ * ab_dim1 + 2], &rc, &rs,
  1002. &ra);
  1003. i__2 = i__ * ab_dim1 + 1;
  1004. ab[i__2].r = ra.r, ab[i__2].i = ra.i;
  1005. if (i__ < *n) {
  1006. i__2 = i__ * ab_dim1 + 2;
  1007. i__4 = (i__ + 1) * ab_dim1 + 1;
  1008. z__1.r = rs.r * ab[i__4].r - rs.i * ab[i__4].i, z__1.i = rs.r
  1009. * ab[i__4].i + rs.i * ab[i__4].r;
  1010. ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
  1011. i__2 = (i__ + 1) * ab_dim1 + 1;
  1012. i__4 = (i__ + 1) * ab_dim1 + 1;
  1013. z__1.r = rc * ab[i__4].r, z__1.i = rc * ab[i__4].i;
  1014. ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
  1015. }
  1016. if (wantq) {
  1017. d_cnjg(&z__1, &rs);
  1018. zrot_(m, &q[i__ * q_dim1 + 1], &c__1, &q[(i__ + 1) * q_dim1 +
  1019. 1], &c__1, &rc, &z__1);
  1020. }
  1021. if (wantc) {
  1022. zrot_(ncc, &c__[i__ + c_dim1], ldc, &c__[i__ + 1 + c_dim1],
  1023. ldc, &rc, &rs);
  1024. }
  1025. /* L100: */
  1026. }
  1027. } else {
  1028. /* A has been reduced to complex upper bidiagonal form or is */
  1029. /* diagonal */
  1030. if (*ku > 0 && *m < *n) {
  1031. /* Annihilate a(m,m+1) by applying plane rotations from the */
  1032. /* right */
  1033. i__1 = *ku + (*m + 1) * ab_dim1;
  1034. rb.r = ab[i__1].r, rb.i = ab[i__1].i;
  1035. for (i__ = *m; i__ >= 1; --i__) {
  1036. zlartg_(&ab[*ku + 1 + i__ * ab_dim1], &rb, &rc, &rs, &ra);
  1037. i__1 = *ku + 1 + i__ * ab_dim1;
  1038. ab[i__1].r = ra.r, ab[i__1].i = ra.i;
  1039. if (i__ > 1) {
  1040. d_cnjg(&z__3, &rs);
  1041. z__2.r = -z__3.r, z__2.i = -z__3.i;
  1042. i__1 = *ku + i__ * ab_dim1;
  1043. z__1.r = z__2.r * ab[i__1].r - z__2.i * ab[i__1].i,
  1044. z__1.i = z__2.r * ab[i__1].i + z__2.i * ab[i__1]
  1045. .r;
  1046. rb.r = z__1.r, rb.i = z__1.i;
  1047. i__1 = *ku + i__ * ab_dim1;
  1048. i__2 = *ku + i__ * ab_dim1;
  1049. z__1.r = rc * ab[i__2].r, z__1.i = rc * ab[i__2].i;
  1050. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  1051. }
  1052. if (wantpt) {
  1053. d_cnjg(&z__1, &rs);
  1054. zrot_(n, &pt[i__ + pt_dim1], ldpt, &pt[*m + 1 + pt_dim1],
  1055. ldpt, &rc, &z__1);
  1056. }
  1057. /* L110: */
  1058. }
  1059. }
  1060. }
  1061. /* Make diagonal and superdiagonal elements real, storing them in D */
  1062. /* and E */
  1063. i__1 = *ku + 1 + ab_dim1;
  1064. t.r = ab[i__1].r, t.i = ab[i__1].i;
  1065. i__1 = minmn;
  1066. for (i__ = 1; i__ <= i__1; ++i__) {
  1067. abst = z_abs(&t);
  1068. d__[i__] = abst;
  1069. if (abst != 0.) {
  1070. z__1.r = t.r / abst, z__1.i = t.i / abst;
  1071. t.r = z__1.r, t.i = z__1.i;
  1072. } else {
  1073. t.r = 1., t.i = 0.;
  1074. }
  1075. if (wantq) {
  1076. zscal_(m, &t, &q[i__ * q_dim1 + 1], &c__1);
  1077. }
  1078. if (wantc) {
  1079. d_cnjg(&z__1, &t);
  1080. zscal_(ncc, &z__1, &c__[i__ + c_dim1], ldc);
  1081. }
  1082. if (i__ < minmn) {
  1083. if (*ku == 0 && *kl == 0) {
  1084. e[i__] = 0.;
  1085. i__2 = (i__ + 1) * ab_dim1 + 1;
  1086. t.r = ab[i__2].r, t.i = ab[i__2].i;
  1087. } else {
  1088. if (*ku == 0) {
  1089. i__2 = i__ * ab_dim1 + 2;
  1090. d_cnjg(&z__2, &t);
  1091. z__1.r = ab[i__2].r * z__2.r - ab[i__2].i * z__2.i,
  1092. z__1.i = ab[i__2].r * z__2.i + ab[i__2].i *
  1093. z__2.r;
  1094. t.r = z__1.r, t.i = z__1.i;
  1095. } else {
  1096. i__2 = *ku + (i__ + 1) * ab_dim1;
  1097. d_cnjg(&z__2, &t);
  1098. z__1.r = ab[i__2].r * z__2.r - ab[i__2].i * z__2.i,
  1099. z__1.i = ab[i__2].r * z__2.i + ab[i__2].i *
  1100. z__2.r;
  1101. t.r = z__1.r, t.i = z__1.i;
  1102. }
  1103. abst = z_abs(&t);
  1104. e[i__] = abst;
  1105. if (abst != 0.) {
  1106. z__1.r = t.r / abst, z__1.i = t.i / abst;
  1107. t.r = z__1.r, t.i = z__1.i;
  1108. } else {
  1109. t.r = 1., t.i = 0.;
  1110. }
  1111. if (wantpt) {
  1112. zscal_(n, &t, &pt[i__ + 1 + pt_dim1], ldpt);
  1113. }
  1114. i__2 = *ku + 1 + (i__ + 1) * ab_dim1;
  1115. d_cnjg(&z__2, &t);
  1116. z__1.r = ab[i__2].r * z__2.r - ab[i__2].i * z__2.i, z__1.i =
  1117. ab[i__2].r * z__2.i + ab[i__2].i * z__2.r;
  1118. t.r = z__1.r, t.i = z__1.i;
  1119. }
  1120. }
  1121. /* L120: */
  1122. }
  1123. return;
  1124. /* End of ZGBBRD */
  1125. } /* zgbbrd_ */