You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zcposv.c 30 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static doublecomplex c_b1 = {-1.,0.};
  485. static doublecomplex c_b2 = {1.,0.};
  486. static integer c__1 = 1;
  487. /* > \brief <b> ZCPOSV computes the solution to system of linear equations A * X = B for PO matrices</b> */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download ZCPOSV + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zcposv.
  494. f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zcposv.
  497. f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zcposv.
  500. f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE ZCPOSV( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, WORK, */
  506. /* SWORK, RWORK, ITER, INFO ) */
  507. /* CHARACTER UPLO */
  508. /* INTEGER INFO, ITER, LDA, LDB, LDX, N, NRHS */
  509. /* DOUBLE PRECISION RWORK( * ) */
  510. /* COMPLEX SWORK( * ) */
  511. /* COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( N, * ), */
  512. /* $ X( LDX, * ) */
  513. /* > \par Purpose: */
  514. /* ============= */
  515. /* > */
  516. /* > \verbatim */
  517. /* > */
  518. /* > ZCPOSV computes the solution to a complex system of linear equations */
  519. /* > A * X = B, */
  520. /* > where A is an N-by-N Hermitian positive definite matrix and X and B */
  521. /* > are N-by-NRHS matrices. */
  522. /* > */
  523. /* > ZCPOSV first attempts to factorize the matrix in COMPLEX and use this */
  524. /* > factorization within an iterative refinement procedure to produce a */
  525. /* > solution with COMPLEX*16 normwise backward error quality (see below). */
  526. /* > If the approach fails the method switches to a COMPLEX*16 */
  527. /* > factorization and solve. */
  528. /* > */
  529. /* > The iterative refinement is not going to be a winning strategy if */
  530. /* > the ratio COMPLEX performance over COMPLEX*16 performance is too */
  531. /* > small. A reasonable strategy should take the number of right-hand */
  532. /* > sides and the size of the matrix into account. This might be done */
  533. /* > with a call to ILAENV in the future. Up to now, we always try */
  534. /* > iterative refinement. */
  535. /* > */
  536. /* > The iterative refinement process is stopped if */
  537. /* > ITER > ITERMAX */
  538. /* > or for all the RHS we have: */
  539. /* > RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX */
  540. /* > where */
  541. /* > o ITER is the number of the current iteration in the iterative */
  542. /* > refinement process */
  543. /* > o RNRM is the infinity-norm of the residual */
  544. /* > o XNRM is the infinity-norm of the solution */
  545. /* > o ANRM is the infinity-operator-norm of the matrix A */
  546. /* > o EPS is the machine epsilon returned by DLAMCH('Epsilon') */
  547. /* > The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00 */
  548. /* > respectively. */
  549. /* > \endverbatim */
  550. /* Arguments: */
  551. /* ========== */
  552. /* > \param[in] UPLO */
  553. /* > \verbatim */
  554. /* > UPLO is CHARACTER*1 */
  555. /* > = 'U': Upper triangle of A is stored; */
  556. /* > = 'L': Lower triangle of A is stored. */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in] N */
  560. /* > \verbatim */
  561. /* > N is INTEGER */
  562. /* > The number of linear equations, i.e., the order of the */
  563. /* > matrix A. N >= 0. */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in] NRHS */
  567. /* > \verbatim */
  568. /* > NRHS is INTEGER */
  569. /* > The number of right hand sides, i.e., the number of columns */
  570. /* > of the matrix B. NRHS >= 0. */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[in,out] A */
  574. /* > \verbatim */
  575. /* > A is COMPLEX*16 array, */
  576. /* > dimension (LDA,N) */
  577. /* > On entry, the Hermitian matrix A. If UPLO = 'U', the leading */
  578. /* > N-by-N upper triangular part of A contains the upper */
  579. /* > triangular part of the matrix A, and the strictly lower */
  580. /* > triangular part of A is not referenced. If UPLO = 'L', the */
  581. /* > leading N-by-N lower triangular part of A contains the lower */
  582. /* > triangular part of the matrix A, and the strictly upper */
  583. /* > triangular part of A is not referenced. */
  584. /* > */
  585. /* > Note that the imaginary parts of the diagonal */
  586. /* > elements need not be set and are assumed to be zero. */
  587. /* > */
  588. /* > On exit, if iterative refinement has been successfully used */
  589. /* > (INFO = 0 and ITER >= 0, see description below), then A is */
  590. /* > unchanged, if double precision factorization has been used */
  591. /* > (INFO = 0 and ITER < 0, see description below), then the */
  592. /* > array A contains the factor U or L from the Cholesky */
  593. /* > factorization A = U**H*U or A = L*L**H. */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[in] LDA */
  597. /* > \verbatim */
  598. /* > LDA is INTEGER */
  599. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in] B */
  603. /* > \verbatim */
  604. /* > B is COMPLEX*16 array, dimension (LDB,NRHS) */
  605. /* > The N-by-NRHS right hand side matrix B. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[in] LDB */
  609. /* > \verbatim */
  610. /* > LDB is INTEGER */
  611. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[out] X */
  615. /* > \verbatim */
  616. /* > X is COMPLEX*16 array, dimension (LDX,NRHS) */
  617. /* > If INFO = 0, the N-by-NRHS solution matrix X. */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[in] LDX */
  621. /* > \verbatim */
  622. /* > LDX is INTEGER */
  623. /* > The leading dimension of the array X. LDX >= f2cmax(1,N). */
  624. /* > \endverbatim */
  625. /* > */
  626. /* > \param[out] WORK */
  627. /* > \verbatim */
  628. /* > WORK is COMPLEX*16 array, dimension (N,NRHS) */
  629. /* > This array is used to hold the residual vectors. */
  630. /* > \endverbatim */
  631. /* > */
  632. /* > \param[out] SWORK */
  633. /* > \verbatim */
  634. /* > SWORK is COMPLEX array, dimension (N*(N+NRHS)) */
  635. /* > This array is used to use the single precision matrix and the */
  636. /* > right-hand sides or solutions in single precision. */
  637. /* > \endverbatim */
  638. /* > */
  639. /* > \param[out] RWORK */
  640. /* > \verbatim */
  641. /* > RWORK is DOUBLE PRECISION array, dimension (N) */
  642. /* > \endverbatim */
  643. /* > */
  644. /* > \param[out] ITER */
  645. /* > \verbatim */
  646. /* > ITER is INTEGER */
  647. /* > < 0: iterative refinement has failed, COMPLEX*16 */
  648. /* > factorization has been performed */
  649. /* > -1 : the routine fell back to full precision for */
  650. /* > implementation- or machine-specific reasons */
  651. /* > -2 : narrowing the precision induced an overflow, */
  652. /* > the routine fell back to full precision */
  653. /* > -3 : failure of CPOTRF */
  654. /* > -31: stop the iterative refinement after the 30th */
  655. /* > iterations */
  656. /* > > 0: iterative refinement has been successfully used. */
  657. /* > Returns the number of iterations */
  658. /* > \endverbatim */
  659. /* > */
  660. /* > \param[out] INFO */
  661. /* > \verbatim */
  662. /* > INFO is INTEGER */
  663. /* > = 0: successful exit */
  664. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  665. /* > > 0: if INFO = i, the leading minor of order i of */
  666. /* > (COMPLEX*16) A is not positive definite, so the */
  667. /* > factorization could not be completed, and the solution */
  668. /* > has not been computed. */
  669. /* > \endverbatim */
  670. /* Authors: */
  671. /* ======== */
  672. /* > \author Univ. of Tennessee */
  673. /* > \author Univ. of California Berkeley */
  674. /* > \author Univ. of Colorado Denver */
  675. /* > \author NAG Ltd. */
  676. /* > \date June 2016 */
  677. /* > \ingroup complex16POsolve */
  678. /* ===================================================================== */
  679. /* Subroutine */ void zcposv_(char *uplo, integer *n, integer *nrhs,
  680. doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb,
  681. doublecomplex *x, integer *ldx, doublecomplex *work, complex *swork,
  682. doublereal *rwork, integer *iter, integer *info)
  683. {
  684. /* System generated locals */
  685. integer a_dim1, a_offset, b_dim1, b_offset, work_dim1, work_offset,
  686. x_dim1, x_offset, i__1, i__2;
  687. doublereal d__1, d__2;
  688. /* Local variables */
  689. doublereal anrm;
  690. integer ptsa;
  691. doublereal rnrm, xnrm;
  692. integer ptsx, i__;
  693. extern logical lsame_(char *, char *);
  694. integer iiter;
  695. extern /* Subroutine */ void zhemm_(char *, char *, integer *, integer *,
  696. doublecomplex *, doublecomplex *, integer *, doublecomplex *,
  697. integer *, doublecomplex *, doublecomplex *, integer *), zaxpy_(integer *, doublecomplex *, doublecomplex *,
  698. integer *, doublecomplex *, integer *), zlag2c_(integer *,
  699. integer *, doublecomplex *, integer *, complex *, integer *,
  700. integer *), clag2z_(integer *, integer *, complex *, integer *,
  701. doublecomplex *, integer *, integer *), zlat2c_(char *, integer *,
  702. doublecomplex *, integer *, complex *, integer *, integer *);
  703. extern doublereal dlamch_(char *);
  704. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  705. extern doublereal zlanhe_(char *, char *, integer *, doublecomplex *,
  706. integer *, doublereal *);
  707. extern integer izamax_(integer *, doublecomplex *, integer *);
  708. extern /* Subroutine */ int cpotrf_(char *, integer *, complex *, integer
  709. *, integer *);
  710. extern void zlacpy_(char *, integer *, integer *,
  711. doublecomplex *, integer *, doublecomplex *, integer *),
  712. cpotrs_(char *, integer *, integer *, complex *, integer *,
  713. complex *, integer *, integer *);
  714. extern int zpotrf_(char *, integer
  715. *, doublecomplex *, integer *, integer *);
  716. extern void zpotrs_(char *,
  717. integer *, integer *, doublecomplex *, integer *, doublecomplex *
  718. , integer *, integer *);
  719. doublereal cte, eps;
  720. /* -- LAPACK driver routine (version 3.8.0) -- */
  721. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  722. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  723. /* June 2016 */
  724. /* ===================================================================== */
  725. /* Parameter adjustments */
  726. work_dim1 = *n;
  727. work_offset = 1 + work_dim1 * 1;
  728. work -= work_offset;
  729. a_dim1 = *lda;
  730. a_offset = 1 + a_dim1 * 1;
  731. a -= a_offset;
  732. b_dim1 = *ldb;
  733. b_offset = 1 + b_dim1 * 1;
  734. b -= b_offset;
  735. x_dim1 = *ldx;
  736. x_offset = 1 + x_dim1 * 1;
  737. x -= x_offset;
  738. --swork;
  739. --rwork;
  740. /* Function Body */
  741. *info = 0;
  742. *iter = 0;
  743. /* Test the input parameters. */
  744. if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
  745. *info = -1;
  746. } else if (*n < 0) {
  747. *info = -2;
  748. } else if (*nrhs < 0) {
  749. *info = -3;
  750. } else if (*lda < f2cmax(1,*n)) {
  751. *info = -5;
  752. } else if (*ldb < f2cmax(1,*n)) {
  753. *info = -7;
  754. } else if (*ldx < f2cmax(1,*n)) {
  755. *info = -9;
  756. }
  757. if (*info != 0) {
  758. i__1 = -(*info);
  759. xerbla_("ZCPOSV", &i__1, (ftnlen)6);
  760. return;
  761. }
  762. /* Quick return if (N.EQ.0). */
  763. if (*n == 0) {
  764. return;
  765. }
  766. /* Skip single precision iterative refinement if a priori slower */
  767. /* than double precision factorization. */
  768. if (FALSE_) {
  769. *iter = -1;
  770. goto L40;
  771. }
  772. /* Compute some constants. */
  773. anrm = zlanhe_("I", uplo, n, &a[a_offset], lda, &rwork[1]);
  774. eps = dlamch_("Epsilon");
  775. cte = anrm * eps * sqrt((doublereal) (*n)) * 1.;
  776. /* Set the indices PTSA, PTSX for referencing SA and SX in SWORK. */
  777. ptsa = 1;
  778. ptsx = ptsa + *n * *n;
  779. /* Convert B from double precision to single precision and store the */
  780. /* result in SX. */
  781. zlag2c_(n, nrhs, &b[b_offset], ldb, &swork[ptsx], n, info);
  782. if (*info != 0) {
  783. *iter = -2;
  784. goto L40;
  785. }
  786. /* Convert A from double precision to single precision and store the */
  787. /* result in SA. */
  788. zlat2c_(uplo, n, &a[a_offset], lda, &swork[ptsa], n, info);
  789. if (*info != 0) {
  790. *iter = -2;
  791. goto L40;
  792. }
  793. /* Compute the Cholesky factorization of SA. */
  794. cpotrf_(uplo, n, &swork[ptsa], n, info);
  795. if (*info != 0) {
  796. *iter = -3;
  797. goto L40;
  798. }
  799. /* Solve the system SA*SX = SB. */
  800. cpotrs_(uplo, n, nrhs, &swork[ptsa], n, &swork[ptsx], n, info);
  801. /* Convert SX back to COMPLEX*16 */
  802. clag2z_(n, nrhs, &swork[ptsx], n, &x[x_offset], ldx, info);
  803. /* Compute R = B - AX (R is WORK). */
  804. zlacpy_("All", n, nrhs, &b[b_offset], ldb, &work[work_offset], n);
  805. zhemm_("Left", uplo, n, nrhs, &c_b1, &a[a_offset], lda, &x[x_offset], ldx,
  806. &c_b2, &work[work_offset], n);
  807. /* Check whether the NRHS normwise backward errors satisfy the */
  808. /* stopping criterion. If yes, set ITER=0 and return. */
  809. i__1 = *nrhs;
  810. for (i__ = 1; i__ <= i__1; ++i__) {
  811. i__2 = izamax_(n, &x[i__ * x_dim1 + 1], &c__1) + i__ * x_dim1;
  812. xnrm = (d__1 = x[i__2].r, abs(d__1)) + (d__2 = d_imag(&x[izamax_(n, &
  813. x[i__ * x_dim1 + 1], &c__1) + i__ * x_dim1]), abs(d__2));
  814. i__2 = izamax_(n, &work[i__ * work_dim1 + 1], &c__1) + i__ *
  815. work_dim1;
  816. rnrm = (d__1 = work[i__2].r, abs(d__1)) + (d__2 = d_imag(&work[
  817. izamax_(n, &work[i__ * work_dim1 + 1], &c__1) + i__ *
  818. work_dim1]), abs(d__2));
  819. if (rnrm > xnrm * cte) {
  820. goto L10;
  821. }
  822. }
  823. /* If we are here, the NRHS normwise backward errors satisfy the */
  824. /* stopping criterion. We are good to exit. */
  825. *iter = 0;
  826. return;
  827. L10:
  828. for (iiter = 1; iiter <= 30; ++iiter) {
  829. /* Convert R (in WORK) from double precision to single precision */
  830. /* and store the result in SX. */
  831. zlag2c_(n, nrhs, &work[work_offset], n, &swork[ptsx], n, info);
  832. if (*info != 0) {
  833. *iter = -2;
  834. goto L40;
  835. }
  836. /* Solve the system SA*SX = SR. */
  837. cpotrs_(uplo, n, nrhs, &swork[ptsa], n, &swork[ptsx], n, info);
  838. /* Convert SX back to double precision and update the current */
  839. /* iterate. */
  840. clag2z_(n, nrhs, &swork[ptsx], n, &work[work_offset], n, info);
  841. i__1 = *nrhs;
  842. for (i__ = 1; i__ <= i__1; ++i__) {
  843. zaxpy_(n, &c_b2, &work[i__ * work_dim1 + 1], &c__1, &x[i__ *
  844. x_dim1 + 1], &c__1);
  845. }
  846. /* Compute R = B - AX (R is WORK). */
  847. zlacpy_("All", n, nrhs, &b[b_offset], ldb, &work[work_offset], n);
  848. zhemm_("L", uplo, n, nrhs, &c_b1, &a[a_offset], lda, &x[x_offset],
  849. ldx, &c_b2, &work[work_offset], n);
  850. /* Check whether the NRHS normwise backward errors satisfy the */
  851. /* stopping criterion. If yes, set ITER=IITER>0 and return. */
  852. i__1 = *nrhs;
  853. for (i__ = 1; i__ <= i__1; ++i__) {
  854. i__2 = izamax_(n, &x[i__ * x_dim1 + 1], &c__1) + i__ * x_dim1;
  855. xnrm = (d__1 = x[i__2].r, abs(d__1)) + (d__2 = d_imag(&x[izamax_(
  856. n, &x[i__ * x_dim1 + 1], &c__1) + i__ * x_dim1]), abs(
  857. d__2));
  858. i__2 = izamax_(n, &work[i__ * work_dim1 + 1], &c__1) + i__ *
  859. work_dim1;
  860. rnrm = (d__1 = work[i__2].r, abs(d__1)) + (d__2 = d_imag(&work[
  861. izamax_(n, &work[i__ * work_dim1 + 1], &c__1) + i__ *
  862. work_dim1]), abs(d__2));
  863. if (rnrm > xnrm * cte) {
  864. goto L20;
  865. }
  866. }
  867. /* If we are here, the NRHS normwise backward errors satisfy the */
  868. /* stopping criterion, we are good to exit. */
  869. *iter = iiter;
  870. return;
  871. L20:
  872. /* L30: */
  873. ;
  874. }
  875. /* If we are at this place of the code, this is because we have */
  876. /* performed ITER=ITERMAX iterations and never satisfied the */
  877. /* stopping criterion, set up the ITER flag accordingly and follow */
  878. /* up on double precision routine. */
  879. *iter = -31;
  880. L40:
  881. /* Single-precision iterative refinement failed to converge to a */
  882. /* satisfactory solution, so we resort to double precision. */
  883. zpotrf_(uplo, n, &a[a_offset], lda, info);
  884. if (*info != 0) {
  885. return;
  886. }
  887. zlacpy_("All", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
  888. zpotrs_(uplo, n, nrhs, &a[a_offset], lda, &x[x_offset], ldx, info);
  889. return;
  890. /* End of ZCPOSV. */
  891. } /* zcposv_ */