You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

strsyl.c 52 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static logical c_false = FALSE_;
  486. static integer c__2 = 2;
  487. static real c_b26 = 1.f;
  488. static real c_b30 = 0.f;
  489. static logical c_true = TRUE_;
  490. /* > \brief \b STRSYL */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download STRSYL + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/strsyl.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/strsyl.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/strsyl.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE STRSYL( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C, */
  509. /* LDC, SCALE, INFO ) */
  510. /* CHARACTER TRANA, TRANB */
  511. /* INTEGER INFO, ISGN, LDA, LDB, LDC, M, N */
  512. /* REAL SCALE */
  513. /* REAL A( LDA, * ), B( LDB, * ), C( LDC, * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > STRSYL solves the real Sylvester matrix equation: */
  520. /* > */
  521. /* > op(A)*X + X*op(B) = scale*C or */
  522. /* > op(A)*X - X*op(B) = scale*C, */
  523. /* > */
  524. /* > where op(A) = A or A**T, and A and B are both upper quasi- */
  525. /* > triangular. A is M-by-M and B is N-by-N; the right hand side C and */
  526. /* > the solution X are M-by-N; and scale is an output scale factor, set */
  527. /* > <= 1 to avoid overflow in X. */
  528. /* > */
  529. /* > A and B must be in Schur canonical form (as returned by SHSEQR), that */
  530. /* > is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; */
  531. /* > each 2-by-2 diagonal block has its diagonal elements equal and its */
  532. /* > off-diagonal elements of opposite sign. */
  533. /* > \endverbatim */
  534. /* Arguments: */
  535. /* ========== */
  536. /* > \param[in] TRANA */
  537. /* > \verbatim */
  538. /* > TRANA is CHARACTER*1 */
  539. /* > Specifies the option op(A): */
  540. /* > = 'N': op(A) = A (No transpose) */
  541. /* > = 'T': op(A) = A**T (Transpose) */
  542. /* > = 'C': op(A) = A**H (Conjugate transpose = Transpose) */
  543. /* > \endverbatim */
  544. /* > */
  545. /* > \param[in] TRANB */
  546. /* > \verbatim */
  547. /* > TRANB is CHARACTER*1 */
  548. /* > Specifies the option op(B): */
  549. /* > = 'N': op(B) = B (No transpose) */
  550. /* > = 'T': op(B) = B**T (Transpose) */
  551. /* > = 'C': op(B) = B**H (Conjugate transpose = Transpose) */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] ISGN */
  555. /* > \verbatim */
  556. /* > ISGN is INTEGER */
  557. /* > Specifies the sign in the equation: */
  558. /* > = +1: solve op(A)*X + X*op(B) = scale*C */
  559. /* > = -1: solve op(A)*X - X*op(B) = scale*C */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in] M */
  563. /* > \verbatim */
  564. /* > M is INTEGER */
  565. /* > The order of the matrix A, and the number of rows in the */
  566. /* > matrices X and C. M >= 0. */
  567. /* > \endverbatim */
  568. /* > */
  569. /* > \param[in] N */
  570. /* > \verbatim */
  571. /* > N is INTEGER */
  572. /* > The order of the matrix B, and the number of columns in the */
  573. /* > matrices X and C. N >= 0. */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[in] A */
  577. /* > \verbatim */
  578. /* > A is REAL array, dimension (LDA,M) */
  579. /* > The upper quasi-triangular matrix A, in Schur canonical form. */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[in] LDA */
  583. /* > \verbatim */
  584. /* > LDA is INTEGER */
  585. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[in] B */
  589. /* > \verbatim */
  590. /* > B is REAL array, dimension (LDB,N) */
  591. /* > The upper quasi-triangular matrix B, in Schur canonical form. */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[in] LDB */
  595. /* > \verbatim */
  596. /* > LDB is INTEGER */
  597. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[in,out] C */
  601. /* > \verbatim */
  602. /* > C is REAL array, dimension (LDC,N) */
  603. /* > On entry, the M-by-N right hand side matrix C. */
  604. /* > On exit, C is overwritten by the solution matrix X. */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[in] LDC */
  608. /* > \verbatim */
  609. /* > LDC is INTEGER */
  610. /* > The leading dimension of the array C. LDC >= f2cmax(1,M) */
  611. /* > \endverbatim */
  612. /* > */
  613. /* > \param[out] SCALE */
  614. /* > \verbatim */
  615. /* > SCALE is REAL */
  616. /* > The scale factor, scale, set <= 1 to avoid overflow in X. */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[out] INFO */
  620. /* > \verbatim */
  621. /* > INFO is INTEGER */
  622. /* > = 0: successful exit */
  623. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  624. /* > = 1: A and B have common or very close eigenvalues; perturbed */
  625. /* > values were used to solve the equation (but the matrices */
  626. /* > A and B are unchanged). */
  627. /* > \endverbatim */
  628. /* Authors: */
  629. /* ======== */
  630. /* > \author Univ. of Tennessee */
  631. /* > \author Univ. of California Berkeley */
  632. /* > \author Univ. of Colorado Denver */
  633. /* > \author NAG Ltd. */
  634. /* > \date December 2016 */
  635. /* > \ingroup realSYcomputational */
  636. /* ===================================================================== */
  637. /* Subroutine */ void strsyl_(char *trana, char *tranb, integer *isgn, integer
  638. *m, integer *n, real *a, integer *lda, real *b, integer *ldb, real *
  639. c__, integer *ldc, real *scale, integer *info)
  640. {
  641. /* System generated locals */
  642. integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
  643. i__3, i__4;
  644. real r__1, r__2;
  645. /* Local variables */
  646. integer ierr;
  647. real smin;
  648. extern real sdot_(integer *, real *, integer *, real *, integer *);
  649. real suml, sumr;
  650. integer j, k, l;
  651. real x[4] /* was [2][2] */;
  652. extern logical lsame_(char *, char *);
  653. extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
  654. integer knext, lnext, k1, k2, l1, l2;
  655. real xnorm;
  656. extern /* Subroutine */ void slaln2_(logical *, integer *, integer *, real
  657. *, real *, real *, integer *, real *, real *, real *, integer *,
  658. real *, real *, real *, integer *, real *, real *, integer *);
  659. real a11, db;
  660. extern /* Subroutine */ void slasy2_(logical *, logical *, integer *,
  661. integer *, integer *, real *, integer *, real *, integer *, real *
  662. , integer *, real *, real *, integer *, real *, integer *),
  663. slabad_(real *, real *);
  664. real scaloc;
  665. extern real slamch_(char *), slange_(char *, integer *, integer *,
  666. real *, integer *, real *);
  667. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  668. real bignum;
  669. logical notrna, notrnb;
  670. real smlnum, da11, vec[4] /* was [2][2] */, dum[1], eps, sgn;
  671. /* -- LAPACK computational routine (version 3.7.0) -- */
  672. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  673. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  674. /* December 2016 */
  675. /* ===================================================================== */
  676. /* Decode and Test input parameters */
  677. /* Parameter adjustments */
  678. a_dim1 = *lda;
  679. a_offset = 1 + a_dim1 * 1;
  680. a -= a_offset;
  681. b_dim1 = *ldb;
  682. b_offset = 1 + b_dim1 * 1;
  683. b -= b_offset;
  684. c_dim1 = *ldc;
  685. c_offset = 1 + c_dim1 * 1;
  686. c__ -= c_offset;
  687. /* Function Body */
  688. notrna = lsame_(trana, "N");
  689. notrnb = lsame_(tranb, "N");
  690. *info = 0;
  691. if (! notrna && ! lsame_(trana, "T") && ! lsame_(
  692. trana, "C")) {
  693. *info = -1;
  694. } else if (! notrnb && ! lsame_(tranb, "T") && !
  695. lsame_(tranb, "C")) {
  696. *info = -2;
  697. } else if (*isgn != 1 && *isgn != -1) {
  698. *info = -3;
  699. } else if (*m < 0) {
  700. *info = -4;
  701. } else if (*n < 0) {
  702. *info = -5;
  703. } else if (*lda < f2cmax(1,*m)) {
  704. *info = -7;
  705. } else if (*ldb < f2cmax(1,*n)) {
  706. *info = -9;
  707. } else if (*ldc < f2cmax(1,*m)) {
  708. *info = -11;
  709. }
  710. if (*info != 0) {
  711. i__1 = -(*info);
  712. xerbla_("STRSYL", &i__1, (ftnlen)6);
  713. return;
  714. }
  715. /* Quick return if possible */
  716. *scale = 1.f;
  717. if (*m == 0 || *n == 0) {
  718. return;
  719. }
  720. /* Set constants to control overflow */
  721. eps = slamch_("P");
  722. smlnum = slamch_("S");
  723. bignum = 1.f / smlnum;
  724. slabad_(&smlnum, &bignum);
  725. smlnum = smlnum * (real) (*m * *n) / eps;
  726. bignum = 1.f / smlnum;
  727. /* Computing MAX */
  728. r__1 = smlnum, r__2 = eps * slange_("M", m, m, &a[a_offset], lda, dum), r__1 = f2cmax(r__1,r__2), r__2 = eps * slange_("M", n, n,
  729. &b[b_offset], ldb, dum);
  730. smin = f2cmax(r__1,r__2);
  731. sgn = (real) (*isgn);
  732. if (notrna && notrnb) {
  733. /* Solve A*X + ISGN*X*B = scale*C. */
  734. /* The (K,L)th block of X is determined starting from */
  735. /* bottom-left corner column by column by */
  736. /* A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) */
  737. /* Where */
  738. /* M L-1 */
  739. /* R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B(J,L)]. */
  740. /* I=K+1 J=1 */
  741. /* Start column loop (index = L) */
  742. /* L1 (L2) : column index of the first (first) row of X(K,L). */
  743. lnext = 1;
  744. i__1 = *n;
  745. for (l = 1; l <= i__1; ++l) {
  746. if (l < lnext) {
  747. goto L70;
  748. }
  749. if (l == *n) {
  750. l1 = l;
  751. l2 = l;
  752. } else {
  753. if (b[l + 1 + l * b_dim1] != 0.f) {
  754. l1 = l;
  755. l2 = l + 1;
  756. lnext = l + 2;
  757. } else {
  758. l1 = l;
  759. l2 = l;
  760. lnext = l + 1;
  761. }
  762. }
  763. /* Start row loop (index = K) */
  764. /* K1 (K2): row index of the first (last) row of X(K,L). */
  765. knext = *m;
  766. for (k = *m; k >= 1; --k) {
  767. if (k > knext) {
  768. goto L60;
  769. }
  770. if (k == 1) {
  771. k1 = k;
  772. k2 = k;
  773. } else {
  774. if (a[k + (k - 1) * a_dim1] != 0.f) {
  775. k1 = k - 1;
  776. k2 = k;
  777. knext = k - 2;
  778. } else {
  779. k1 = k;
  780. k2 = k;
  781. knext = k - 1;
  782. }
  783. }
  784. if (l1 == l2 && k1 == k2) {
  785. i__2 = *m - k1;
  786. /* Computing MIN */
  787. i__3 = k1 + 1;
  788. /* Computing MIN */
  789. i__4 = k1 + 1;
  790. suml = sdot_(&i__2, &a[k1 + f2cmin(i__3,*m) * a_dim1], lda, &
  791. c__[f2cmin(i__4,*m) + l1 * c_dim1], &c__1);
  792. i__2 = l1 - 1;
  793. sumr = sdot_(&i__2, &c__[k1 + c_dim1], ldc, &b[l1 *
  794. b_dim1 + 1], &c__1);
  795. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  796. scaloc = 1.f;
  797. a11 = a[k1 + k1 * a_dim1] + sgn * b[l1 + l1 * b_dim1];
  798. da11 = abs(a11);
  799. if (da11 <= smin) {
  800. a11 = smin;
  801. da11 = smin;
  802. *info = 1;
  803. }
  804. db = abs(vec[0]);
  805. if (da11 < 1.f && db > 1.f) {
  806. if (db > bignum * da11) {
  807. scaloc = 1.f / db;
  808. }
  809. }
  810. x[0] = vec[0] * scaloc / a11;
  811. if (scaloc != 1.f) {
  812. i__2 = *n;
  813. for (j = 1; j <= i__2; ++j) {
  814. sscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  815. /* L10: */
  816. }
  817. *scale *= scaloc;
  818. }
  819. c__[k1 + l1 * c_dim1] = x[0];
  820. } else if (l1 == l2 && k1 != k2) {
  821. i__2 = *m - k2;
  822. /* Computing MIN */
  823. i__3 = k2 + 1;
  824. /* Computing MIN */
  825. i__4 = k2 + 1;
  826. suml = sdot_(&i__2, &a[k1 + f2cmin(i__3,*m) * a_dim1], lda, &
  827. c__[f2cmin(i__4,*m) + l1 * c_dim1], &c__1);
  828. i__2 = l1 - 1;
  829. sumr = sdot_(&i__2, &c__[k1 + c_dim1], ldc, &b[l1 *
  830. b_dim1 + 1], &c__1);
  831. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  832. i__2 = *m - k2;
  833. /* Computing MIN */
  834. i__3 = k2 + 1;
  835. /* Computing MIN */
  836. i__4 = k2 + 1;
  837. suml = sdot_(&i__2, &a[k2 + f2cmin(i__3,*m) * a_dim1], lda, &
  838. c__[f2cmin(i__4,*m) + l1 * c_dim1], &c__1);
  839. i__2 = l1 - 1;
  840. sumr = sdot_(&i__2, &c__[k2 + c_dim1], ldc, &b[l1 *
  841. b_dim1 + 1], &c__1);
  842. vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
  843. r__1 = -sgn * b[l1 + l1 * b_dim1];
  844. slaln2_(&c_false, &c__2, &c__1, &smin, &c_b26, &a[k1 + k1
  845. * a_dim1], lda, &c_b26, &c_b26, vec, &c__2, &r__1,
  846. &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
  847. if (ierr != 0) {
  848. *info = 1;
  849. }
  850. if (scaloc != 1.f) {
  851. i__2 = *n;
  852. for (j = 1; j <= i__2; ++j) {
  853. sscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  854. /* L20: */
  855. }
  856. *scale *= scaloc;
  857. }
  858. c__[k1 + l1 * c_dim1] = x[0];
  859. c__[k2 + l1 * c_dim1] = x[1];
  860. } else if (l1 != l2 && k1 == k2) {
  861. i__2 = *m - k1;
  862. /* Computing MIN */
  863. i__3 = k1 + 1;
  864. /* Computing MIN */
  865. i__4 = k1 + 1;
  866. suml = sdot_(&i__2, &a[k1 + f2cmin(i__3,*m) * a_dim1], lda, &
  867. c__[f2cmin(i__4,*m) + l1 * c_dim1], &c__1);
  868. i__2 = l1 - 1;
  869. sumr = sdot_(&i__2, &c__[k1 + c_dim1], ldc, &b[l1 *
  870. b_dim1 + 1], &c__1);
  871. vec[0] = sgn * (c__[k1 + l1 * c_dim1] - (suml + sgn *
  872. sumr));
  873. i__2 = *m - k1;
  874. /* Computing MIN */
  875. i__3 = k1 + 1;
  876. /* Computing MIN */
  877. i__4 = k1 + 1;
  878. suml = sdot_(&i__2, &a[k1 + f2cmin(i__3,*m) * a_dim1], lda, &
  879. c__[f2cmin(i__4,*m) + l2 * c_dim1], &c__1);
  880. i__2 = l1 - 1;
  881. sumr = sdot_(&i__2, &c__[k1 + c_dim1], ldc, &b[l2 *
  882. b_dim1 + 1], &c__1);
  883. vec[1] = sgn * (c__[k1 + l2 * c_dim1] - (suml + sgn *
  884. sumr));
  885. r__1 = -sgn * a[k1 + k1 * a_dim1];
  886. slaln2_(&c_true, &c__2, &c__1, &smin, &c_b26, &b[l1 + l1 *
  887. b_dim1], ldb, &c_b26, &c_b26, vec, &c__2, &r__1,
  888. &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
  889. if (ierr != 0) {
  890. *info = 1;
  891. }
  892. if (scaloc != 1.f) {
  893. i__2 = *n;
  894. for (j = 1; j <= i__2; ++j) {
  895. sscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  896. /* L40: */
  897. }
  898. *scale *= scaloc;
  899. }
  900. c__[k1 + l1 * c_dim1] = x[0];
  901. c__[k1 + l2 * c_dim1] = x[1];
  902. } else if (l1 != l2 && k1 != k2) {
  903. i__2 = *m - k2;
  904. /* Computing MIN */
  905. i__3 = k2 + 1;
  906. /* Computing MIN */
  907. i__4 = k2 + 1;
  908. suml = sdot_(&i__2, &a[k1 + f2cmin(i__3,*m) * a_dim1], lda, &
  909. c__[f2cmin(i__4,*m) + l1 * c_dim1], &c__1);
  910. i__2 = l1 - 1;
  911. sumr = sdot_(&i__2, &c__[k1 + c_dim1], ldc, &b[l1 *
  912. b_dim1 + 1], &c__1);
  913. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  914. i__2 = *m - k2;
  915. /* Computing MIN */
  916. i__3 = k2 + 1;
  917. /* Computing MIN */
  918. i__4 = k2 + 1;
  919. suml = sdot_(&i__2, &a[k1 + f2cmin(i__3,*m) * a_dim1], lda, &
  920. c__[f2cmin(i__4,*m) + l2 * c_dim1], &c__1);
  921. i__2 = l1 - 1;
  922. sumr = sdot_(&i__2, &c__[k1 + c_dim1], ldc, &b[l2 *
  923. b_dim1 + 1], &c__1);
  924. vec[2] = c__[k1 + l2 * c_dim1] - (suml + sgn * sumr);
  925. i__2 = *m - k2;
  926. /* Computing MIN */
  927. i__3 = k2 + 1;
  928. /* Computing MIN */
  929. i__4 = k2 + 1;
  930. suml = sdot_(&i__2, &a[k2 + f2cmin(i__3,*m) * a_dim1], lda, &
  931. c__[f2cmin(i__4,*m) + l1 * c_dim1], &c__1);
  932. i__2 = l1 - 1;
  933. sumr = sdot_(&i__2, &c__[k2 + c_dim1], ldc, &b[l1 *
  934. b_dim1 + 1], &c__1);
  935. vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
  936. i__2 = *m - k2;
  937. /* Computing MIN */
  938. i__3 = k2 + 1;
  939. /* Computing MIN */
  940. i__4 = k2 + 1;
  941. suml = sdot_(&i__2, &a[k2 + f2cmin(i__3,*m) * a_dim1], lda, &
  942. c__[f2cmin(i__4,*m) + l2 * c_dim1], &c__1);
  943. i__2 = l1 - 1;
  944. sumr = sdot_(&i__2, &c__[k2 + c_dim1], ldc, &b[l2 *
  945. b_dim1 + 1], &c__1);
  946. vec[3] = c__[k2 + l2 * c_dim1] - (suml + sgn * sumr);
  947. slasy2_(&c_false, &c_false, isgn, &c__2, &c__2, &a[k1 +
  948. k1 * a_dim1], lda, &b[l1 + l1 * b_dim1], ldb, vec,
  949. &c__2, &scaloc, x, &c__2, &xnorm, &ierr);
  950. if (ierr != 0) {
  951. *info = 1;
  952. }
  953. if (scaloc != 1.f) {
  954. i__2 = *n;
  955. for (j = 1; j <= i__2; ++j) {
  956. sscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  957. /* L50: */
  958. }
  959. *scale *= scaloc;
  960. }
  961. c__[k1 + l1 * c_dim1] = x[0];
  962. c__[k1 + l2 * c_dim1] = x[2];
  963. c__[k2 + l1 * c_dim1] = x[1];
  964. c__[k2 + l2 * c_dim1] = x[3];
  965. }
  966. L60:
  967. ;
  968. }
  969. L70:
  970. ;
  971. }
  972. } else if (! notrna && notrnb) {
  973. /* Solve A**T *X + ISGN*X*B = scale*C. */
  974. /* The (K,L)th block of X is determined starting from */
  975. /* upper-left corner column by column by */
  976. /* A(K,K)**T*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) */
  977. /* Where */
  978. /* K-1 L-1 */
  979. /* R(K,L) = SUM [A(I,K)**T*X(I,L)] +ISGN*SUM [X(K,J)*B(J,L)] */
  980. /* I=1 J=1 */
  981. /* Start column loop (index = L) */
  982. /* L1 (L2): column index of the first (last) row of X(K,L) */
  983. lnext = 1;
  984. i__1 = *n;
  985. for (l = 1; l <= i__1; ++l) {
  986. if (l < lnext) {
  987. goto L130;
  988. }
  989. if (l == *n) {
  990. l1 = l;
  991. l2 = l;
  992. } else {
  993. if (b[l + 1 + l * b_dim1] != 0.f) {
  994. l1 = l;
  995. l2 = l + 1;
  996. lnext = l + 2;
  997. } else {
  998. l1 = l;
  999. l2 = l;
  1000. lnext = l + 1;
  1001. }
  1002. }
  1003. /* Start row loop (index = K) */
  1004. /* K1 (K2): row index of the first (last) row of X(K,L) */
  1005. knext = 1;
  1006. i__2 = *m;
  1007. for (k = 1; k <= i__2; ++k) {
  1008. if (k < knext) {
  1009. goto L120;
  1010. }
  1011. if (k == *m) {
  1012. k1 = k;
  1013. k2 = k;
  1014. } else {
  1015. if (a[k + 1 + k * a_dim1] != 0.f) {
  1016. k1 = k;
  1017. k2 = k + 1;
  1018. knext = k + 2;
  1019. } else {
  1020. k1 = k;
  1021. k2 = k;
  1022. knext = k + 1;
  1023. }
  1024. }
  1025. if (l1 == l2 && k1 == k2) {
  1026. i__3 = k1 - 1;
  1027. suml = sdot_(&i__3, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 *
  1028. c_dim1 + 1], &c__1);
  1029. i__3 = l1 - 1;
  1030. sumr = sdot_(&i__3, &c__[k1 + c_dim1], ldc, &b[l1 *
  1031. b_dim1 + 1], &c__1);
  1032. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  1033. scaloc = 1.f;
  1034. a11 = a[k1 + k1 * a_dim1] + sgn * b[l1 + l1 * b_dim1];
  1035. da11 = abs(a11);
  1036. if (da11 <= smin) {
  1037. a11 = smin;
  1038. da11 = smin;
  1039. *info = 1;
  1040. }
  1041. db = abs(vec[0]);
  1042. if (da11 < 1.f && db > 1.f) {
  1043. if (db > bignum * da11) {
  1044. scaloc = 1.f / db;
  1045. }
  1046. }
  1047. x[0] = vec[0] * scaloc / a11;
  1048. if (scaloc != 1.f) {
  1049. i__3 = *n;
  1050. for (j = 1; j <= i__3; ++j) {
  1051. sscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1052. /* L80: */
  1053. }
  1054. *scale *= scaloc;
  1055. }
  1056. c__[k1 + l1 * c_dim1] = x[0];
  1057. } else if (l1 == l2 && k1 != k2) {
  1058. i__3 = k1 - 1;
  1059. suml = sdot_(&i__3, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 *
  1060. c_dim1 + 1], &c__1);
  1061. i__3 = l1 - 1;
  1062. sumr = sdot_(&i__3, &c__[k1 + c_dim1], ldc, &b[l1 *
  1063. b_dim1 + 1], &c__1);
  1064. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  1065. i__3 = k1 - 1;
  1066. suml = sdot_(&i__3, &a[k2 * a_dim1 + 1], &c__1, &c__[l1 *
  1067. c_dim1 + 1], &c__1);
  1068. i__3 = l1 - 1;
  1069. sumr = sdot_(&i__3, &c__[k2 + c_dim1], ldc, &b[l1 *
  1070. b_dim1 + 1], &c__1);
  1071. vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
  1072. r__1 = -sgn * b[l1 + l1 * b_dim1];
  1073. slaln2_(&c_true, &c__2, &c__1, &smin, &c_b26, &a[k1 + k1 *
  1074. a_dim1], lda, &c_b26, &c_b26, vec, &c__2, &r__1,
  1075. &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
  1076. if (ierr != 0) {
  1077. *info = 1;
  1078. }
  1079. if (scaloc != 1.f) {
  1080. i__3 = *n;
  1081. for (j = 1; j <= i__3; ++j) {
  1082. sscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1083. /* L90: */
  1084. }
  1085. *scale *= scaloc;
  1086. }
  1087. c__[k1 + l1 * c_dim1] = x[0];
  1088. c__[k2 + l1 * c_dim1] = x[1];
  1089. } else if (l1 != l2 && k1 == k2) {
  1090. i__3 = k1 - 1;
  1091. suml = sdot_(&i__3, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 *
  1092. c_dim1 + 1], &c__1);
  1093. i__3 = l1 - 1;
  1094. sumr = sdot_(&i__3, &c__[k1 + c_dim1], ldc, &b[l1 *
  1095. b_dim1 + 1], &c__1);
  1096. vec[0] = sgn * (c__[k1 + l1 * c_dim1] - (suml + sgn *
  1097. sumr));
  1098. i__3 = k1 - 1;
  1099. suml = sdot_(&i__3, &a[k1 * a_dim1 + 1], &c__1, &c__[l2 *
  1100. c_dim1 + 1], &c__1);
  1101. i__3 = l1 - 1;
  1102. sumr = sdot_(&i__3, &c__[k1 + c_dim1], ldc, &b[l2 *
  1103. b_dim1 + 1], &c__1);
  1104. vec[1] = sgn * (c__[k1 + l2 * c_dim1] - (suml + sgn *
  1105. sumr));
  1106. r__1 = -sgn * a[k1 + k1 * a_dim1];
  1107. slaln2_(&c_true, &c__2, &c__1, &smin, &c_b26, &b[l1 + l1 *
  1108. b_dim1], ldb, &c_b26, &c_b26, vec, &c__2, &r__1,
  1109. &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
  1110. if (ierr != 0) {
  1111. *info = 1;
  1112. }
  1113. if (scaloc != 1.f) {
  1114. i__3 = *n;
  1115. for (j = 1; j <= i__3; ++j) {
  1116. sscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1117. /* L100: */
  1118. }
  1119. *scale *= scaloc;
  1120. }
  1121. c__[k1 + l1 * c_dim1] = x[0];
  1122. c__[k1 + l2 * c_dim1] = x[1];
  1123. } else if (l1 != l2 && k1 != k2) {
  1124. i__3 = k1 - 1;
  1125. suml = sdot_(&i__3, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 *
  1126. c_dim1 + 1], &c__1);
  1127. i__3 = l1 - 1;
  1128. sumr = sdot_(&i__3, &c__[k1 + c_dim1], ldc, &b[l1 *
  1129. b_dim1 + 1], &c__1);
  1130. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  1131. i__3 = k1 - 1;
  1132. suml = sdot_(&i__3, &a[k1 * a_dim1 + 1], &c__1, &c__[l2 *
  1133. c_dim1 + 1], &c__1);
  1134. i__3 = l1 - 1;
  1135. sumr = sdot_(&i__3, &c__[k1 + c_dim1], ldc, &b[l2 *
  1136. b_dim1 + 1], &c__1);
  1137. vec[2] = c__[k1 + l2 * c_dim1] - (suml + sgn * sumr);
  1138. i__3 = k1 - 1;
  1139. suml = sdot_(&i__3, &a[k2 * a_dim1 + 1], &c__1, &c__[l1 *
  1140. c_dim1 + 1], &c__1);
  1141. i__3 = l1 - 1;
  1142. sumr = sdot_(&i__3, &c__[k2 + c_dim1], ldc, &b[l1 *
  1143. b_dim1 + 1], &c__1);
  1144. vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
  1145. i__3 = k1 - 1;
  1146. suml = sdot_(&i__3, &a[k2 * a_dim1 + 1], &c__1, &c__[l2 *
  1147. c_dim1 + 1], &c__1);
  1148. i__3 = l1 - 1;
  1149. sumr = sdot_(&i__3, &c__[k2 + c_dim1], ldc, &b[l2 *
  1150. b_dim1 + 1], &c__1);
  1151. vec[3] = c__[k2 + l2 * c_dim1] - (suml + sgn * sumr);
  1152. slasy2_(&c_true, &c_false, isgn, &c__2, &c__2, &a[k1 + k1
  1153. * a_dim1], lda, &b[l1 + l1 * b_dim1], ldb, vec, &
  1154. c__2, &scaloc, x, &c__2, &xnorm, &ierr);
  1155. if (ierr != 0) {
  1156. *info = 1;
  1157. }
  1158. if (scaloc != 1.f) {
  1159. i__3 = *n;
  1160. for (j = 1; j <= i__3; ++j) {
  1161. sscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1162. /* L110: */
  1163. }
  1164. *scale *= scaloc;
  1165. }
  1166. c__[k1 + l1 * c_dim1] = x[0];
  1167. c__[k1 + l2 * c_dim1] = x[2];
  1168. c__[k2 + l1 * c_dim1] = x[1];
  1169. c__[k2 + l2 * c_dim1] = x[3];
  1170. }
  1171. L120:
  1172. ;
  1173. }
  1174. L130:
  1175. ;
  1176. }
  1177. } else if (! notrna && ! notrnb) {
  1178. /* Solve A**T*X + ISGN*X*B**T = scale*C. */
  1179. /* The (K,L)th block of X is determined starting from */
  1180. /* top-right corner column by column by */
  1181. /* A(K,K)**T*X(K,L) + ISGN*X(K,L)*B(L,L)**T = C(K,L) - R(K,L) */
  1182. /* Where */
  1183. /* K-1 N */
  1184. /* R(K,L) = SUM [A(I,K)**T*X(I,L)] + ISGN*SUM [X(K,J)*B(L,J)**T]. */
  1185. /* I=1 J=L+1 */
  1186. /* Start column loop (index = L) */
  1187. /* L1 (L2): column index of the first (last) row of X(K,L) */
  1188. lnext = *n;
  1189. for (l = *n; l >= 1; --l) {
  1190. if (l > lnext) {
  1191. goto L190;
  1192. }
  1193. if (l == 1) {
  1194. l1 = l;
  1195. l2 = l;
  1196. } else {
  1197. if (b[l + (l - 1) * b_dim1] != 0.f) {
  1198. l1 = l - 1;
  1199. l2 = l;
  1200. lnext = l - 2;
  1201. } else {
  1202. l1 = l;
  1203. l2 = l;
  1204. lnext = l - 1;
  1205. }
  1206. }
  1207. /* Start row loop (index = K) */
  1208. /* K1 (K2): row index of the first (last) row of X(K,L) */
  1209. knext = 1;
  1210. i__1 = *m;
  1211. for (k = 1; k <= i__1; ++k) {
  1212. if (k < knext) {
  1213. goto L180;
  1214. }
  1215. if (k == *m) {
  1216. k1 = k;
  1217. k2 = k;
  1218. } else {
  1219. if (a[k + 1 + k * a_dim1] != 0.f) {
  1220. k1 = k;
  1221. k2 = k + 1;
  1222. knext = k + 2;
  1223. } else {
  1224. k1 = k;
  1225. k2 = k;
  1226. knext = k + 1;
  1227. }
  1228. }
  1229. if (l1 == l2 && k1 == k2) {
  1230. i__2 = k1 - 1;
  1231. suml = sdot_(&i__2, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 *
  1232. c_dim1 + 1], &c__1);
  1233. i__2 = *n - l1;
  1234. /* Computing MIN */
  1235. i__3 = l1 + 1;
  1236. /* Computing MIN */
  1237. i__4 = l1 + 1;
  1238. sumr = sdot_(&i__2, &c__[k1 + f2cmin(i__3,*n) * c_dim1], ldc,
  1239. &b[l1 + f2cmin(i__4,*n) * b_dim1], ldb);
  1240. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  1241. scaloc = 1.f;
  1242. a11 = a[k1 + k1 * a_dim1] + sgn * b[l1 + l1 * b_dim1];
  1243. da11 = abs(a11);
  1244. if (da11 <= smin) {
  1245. a11 = smin;
  1246. da11 = smin;
  1247. *info = 1;
  1248. }
  1249. db = abs(vec[0]);
  1250. if (da11 < 1.f && db > 1.f) {
  1251. if (db > bignum * da11) {
  1252. scaloc = 1.f / db;
  1253. }
  1254. }
  1255. x[0] = vec[0] * scaloc / a11;
  1256. if (scaloc != 1.f) {
  1257. i__2 = *n;
  1258. for (j = 1; j <= i__2; ++j) {
  1259. sscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1260. /* L140: */
  1261. }
  1262. *scale *= scaloc;
  1263. }
  1264. c__[k1 + l1 * c_dim1] = x[0];
  1265. } else if (l1 == l2 && k1 != k2) {
  1266. i__2 = k1 - 1;
  1267. suml = sdot_(&i__2, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 *
  1268. c_dim1 + 1], &c__1);
  1269. i__2 = *n - l2;
  1270. /* Computing MIN */
  1271. i__3 = l2 + 1;
  1272. /* Computing MIN */
  1273. i__4 = l2 + 1;
  1274. sumr = sdot_(&i__2, &c__[k1 + f2cmin(i__3,*n) * c_dim1], ldc,
  1275. &b[l1 + f2cmin(i__4,*n) * b_dim1], ldb);
  1276. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  1277. i__2 = k1 - 1;
  1278. suml = sdot_(&i__2, &a[k2 * a_dim1 + 1], &c__1, &c__[l1 *
  1279. c_dim1 + 1], &c__1);
  1280. i__2 = *n - l2;
  1281. /* Computing MIN */
  1282. i__3 = l2 + 1;
  1283. /* Computing MIN */
  1284. i__4 = l2 + 1;
  1285. sumr = sdot_(&i__2, &c__[k2 + f2cmin(i__3,*n) * c_dim1], ldc,
  1286. &b[l1 + f2cmin(i__4,*n) * b_dim1], ldb);
  1287. vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
  1288. r__1 = -sgn * b[l1 + l1 * b_dim1];
  1289. slaln2_(&c_true, &c__2, &c__1, &smin, &c_b26, &a[k1 + k1 *
  1290. a_dim1], lda, &c_b26, &c_b26, vec, &c__2, &r__1,
  1291. &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
  1292. if (ierr != 0) {
  1293. *info = 1;
  1294. }
  1295. if (scaloc != 1.f) {
  1296. i__2 = *n;
  1297. for (j = 1; j <= i__2; ++j) {
  1298. sscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1299. /* L150: */
  1300. }
  1301. *scale *= scaloc;
  1302. }
  1303. c__[k1 + l1 * c_dim1] = x[0];
  1304. c__[k2 + l1 * c_dim1] = x[1];
  1305. } else if (l1 != l2 && k1 == k2) {
  1306. i__2 = k1 - 1;
  1307. suml = sdot_(&i__2, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 *
  1308. c_dim1 + 1], &c__1);
  1309. i__2 = *n - l2;
  1310. /* Computing MIN */
  1311. i__3 = l2 + 1;
  1312. /* Computing MIN */
  1313. i__4 = l2 + 1;
  1314. sumr = sdot_(&i__2, &c__[k1 + f2cmin(i__3,*n) * c_dim1], ldc,
  1315. &b[l1 + f2cmin(i__4,*n) * b_dim1], ldb);
  1316. vec[0] = sgn * (c__[k1 + l1 * c_dim1] - (suml + sgn *
  1317. sumr));
  1318. i__2 = k1 - 1;
  1319. suml = sdot_(&i__2, &a[k1 * a_dim1 + 1], &c__1, &c__[l2 *
  1320. c_dim1 + 1], &c__1);
  1321. i__2 = *n - l2;
  1322. /* Computing MIN */
  1323. i__3 = l2 + 1;
  1324. /* Computing MIN */
  1325. i__4 = l2 + 1;
  1326. sumr = sdot_(&i__2, &c__[k1 + f2cmin(i__3,*n) * c_dim1], ldc,
  1327. &b[l2 + f2cmin(i__4,*n) * b_dim1], ldb);
  1328. vec[1] = sgn * (c__[k1 + l2 * c_dim1] - (suml + sgn *
  1329. sumr));
  1330. r__1 = -sgn * a[k1 + k1 * a_dim1];
  1331. slaln2_(&c_false, &c__2, &c__1, &smin, &c_b26, &b[l1 + l1
  1332. * b_dim1], ldb, &c_b26, &c_b26, vec, &c__2, &r__1,
  1333. &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
  1334. if (ierr != 0) {
  1335. *info = 1;
  1336. }
  1337. if (scaloc != 1.f) {
  1338. i__2 = *n;
  1339. for (j = 1; j <= i__2; ++j) {
  1340. sscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1341. /* L160: */
  1342. }
  1343. *scale *= scaloc;
  1344. }
  1345. c__[k1 + l1 * c_dim1] = x[0];
  1346. c__[k1 + l2 * c_dim1] = x[1];
  1347. } else if (l1 != l2 && k1 != k2) {
  1348. i__2 = k1 - 1;
  1349. suml = sdot_(&i__2, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 *
  1350. c_dim1 + 1], &c__1);
  1351. i__2 = *n - l2;
  1352. /* Computing MIN */
  1353. i__3 = l2 + 1;
  1354. /* Computing MIN */
  1355. i__4 = l2 + 1;
  1356. sumr = sdot_(&i__2, &c__[k1 + f2cmin(i__3,*n) * c_dim1], ldc,
  1357. &b[l1 + f2cmin(i__4,*n) * b_dim1], ldb);
  1358. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  1359. i__2 = k1 - 1;
  1360. suml = sdot_(&i__2, &a[k1 * a_dim1 + 1], &c__1, &c__[l2 *
  1361. c_dim1 + 1], &c__1);
  1362. i__2 = *n - l2;
  1363. /* Computing MIN */
  1364. i__3 = l2 + 1;
  1365. /* Computing MIN */
  1366. i__4 = l2 + 1;
  1367. sumr = sdot_(&i__2, &c__[k1 + f2cmin(i__3,*n) * c_dim1], ldc,
  1368. &b[l2 + f2cmin(i__4,*n) * b_dim1], ldb);
  1369. vec[2] = c__[k1 + l2 * c_dim1] - (suml + sgn * sumr);
  1370. i__2 = k1 - 1;
  1371. suml = sdot_(&i__2, &a[k2 * a_dim1 + 1], &c__1, &c__[l1 *
  1372. c_dim1 + 1], &c__1);
  1373. i__2 = *n - l2;
  1374. /* Computing MIN */
  1375. i__3 = l2 + 1;
  1376. /* Computing MIN */
  1377. i__4 = l2 + 1;
  1378. sumr = sdot_(&i__2, &c__[k2 + f2cmin(i__3,*n) * c_dim1], ldc,
  1379. &b[l1 + f2cmin(i__4,*n) * b_dim1], ldb);
  1380. vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
  1381. i__2 = k1 - 1;
  1382. suml = sdot_(&i__2, &a[k2 * a_dim1 + 1], &c__1, &c__[l2 *
  1383. c_dim1 + 1], &c__1);
  1384. i__2 = *n - l2;
  1385. /* Computing MIN */
  1386. i__3 = l2 + 1;
  1387. /* Computing MIN */
  1388. i__4 = l2 + 1;
  1389. sumr = sdot_(&i__2, &c__[k2 + f2cmin(i__3,*n) * c_dim1], ldc,
  1390. &b[l2 + f2cmin(i__4,*n) * b_dim1], ldb);
  1391. vec[3] = c__[k2 + l2 * c_dim1] - (suml + sgn * sumr);
  1392. slasy2_(&c_true, &c_true, isgn, &c__2, &c__2, &a[k1 + k1 *
  1393. a_dim1], lda, &b[l1 + l1 * b_dim1], ldb, vec, &
  1394. c__2, &scaloc, x, &c__2, &xnorm, &ierr);
  1395. if (ierr != 0) {
  1396. *info = 1;
  1397. }
  1398. if (scaloc != 1.f) {
  1399. i__2 = *n;
  1400. for (j = 1; j <= i__2; ++j) {
  1401. sscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1402. /* L170: */
  1403. }
  1404. *scale *= scaloc;
  1405. }
  1406. c__[k1 + l1 * c_dim1] = x[0];
  1407. c__[k1 + l2 * c_dim1] = x[2];
  1408. c__[k2 + l1 * c_dim1] = x[1];
  1409. c__[k2 + l2 * c_dim1] = x[3];
  1410. }
  1411. L180:
  1412. ;
  1413. }
  1414. L190:
  1415. ;
  1416. }
  1417. } else if (notrna && ! notrnb) {
  1418. /* Solve A*X + ISGN*X*B**T = scale*C. */
  1419. /* The (K,L)th block of X is determined starting from */
  1420. /* bottom-right corner column by column by */
  1421. /* A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L)**T = C(K,L) - R(K,L) */
  1422. /* Where */
  1423. /* M N */
  1424. /* R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B(L,J)**T]. */
  1425. /* I=K+1 J=L+1 */
  1426. /* Start column loop (index = L) */
  1427. /* L1 (L2): column index of the first (last) row of X(K,L) */
  1428. lnext = *n;
  1429. for (l = *n; l >= 1; --l) {
  1430. if (l > lnext) {
  1431. goto L250;
  1432. }
  1433. if (l == 1) {
  1434. l1 = l;
  1435. l2 = l;
  1436. } else {
  1437. if (b[l + (l - 1) * b_dim1] != 0.f) {
  1438. l1 = l - 1;
  1439. l2 = l;
  1440. lnext = l - 2;
  1441. } else {
  1442. l1 = l;
  1443. l2 = l;
  1444. lnext = l - 1;
  1445. }
  1446. }
  1447. /* Start row loop (index = K) */
  1448. /* K1 (K2): row index of the first (last) row of X(K,L) */
  1449. knext = *m;
  1450. for (k = *m; k >= 1; --k) {
  1451. if (k > knext) {
  1452. goto L240;
  1453. }
  1454. if (k == 1) {
  1455. k1 = k;
  1456. k2 = k;
  1457. } else {
  1458. if (a[k + (k - 1) * a_dim1] != 0.f) {
  1459. k1 = k - 1;
  1460. k2 = k;
  1461. knext = k - 2;
  1462. } else {
  1463. k1 = k;
  1464. k2 = k;
  1465. knext = k - 1;
  1466. }
  1467. }
  1468. if (l1 == l2 && k1 == k2) {
  1469. i__1 = *m - k1;
  1470. /* Computing MIN */
  1471. i__2 = k1 + 1;
  1472. /* Computing MIN */
  1473. i__3 = k1 + 1;
  1474. suml = sdot_(&i__1, &a[k1 + f2cmin(i__2,*m) * a_dim1], lda, &
  1475. c__[f2cmin(i__3,*m) + l1 * c_dim1], &c__1);
  1476. i__1 = *n - l1;
  1477. /* Computing MIN */
  1478. i__2 = l1 + 1;
  1479. /* Computing MIN */
  1480. i__3 = l1 + 1;
  1481. sumr = sdot_(&i__1, &c__[k1 + f2cmin(i__2,*n) * c_dim1], ldc,
  1482. &b[l1 + f2cmin(i__3,*n) * b_dim1], ldb);
  1483. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  1484. scaloc = 1.f;
  1485. a11 = a[k1 + k1 * a_dim1] + sgn * b[l1 + l1 * b_dim1];
  1486. da11 = abs(a11);
  1487. if (da11 <= smin) {
  1488. a11 = smin;
  1489. da11 = smin;
  1490. *info = 1;
  1491. }
  1492. db = abs(vec[0]);
  1493. if (da11 < 1.f && db > 1.f) {
  1494. if (db > bignum * da11) {
  1495. scaloc = 1.f / db;
  1496. }
  1497. }
  1498. x[0] = vec[0] * scaloc / a11;
  1499. if (scaloc != 1.f) {
  1500. i__1 = *n;
  1501. for (j = 1; j <= i__1; ++j) {
  1502. sscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1503. /* L200: */
  1504. }
  1505. *scale *= scaloc;
  1506. }
  1507. c__[k1 + l1 * c_dim1] = x[0];
  1508. } else if (l1 == l2 && k1 != k2) {
  1509. i__1 = *m - k2;
  1510. /* Computing MIN */
  1511. i__2 = k2 + 1;
  1512. /* Computing MIN */
  1513. i__3 = k2 + 1;
  1514. suml = sdot_(&i__1, &a[k1 + f2cmin(i__2,*m) * a_dim1], lda, &
  1515. c__[f2cmin(i__3,*m) + l1 * c_dim1], &c__1);
  1516. i__1 = *n - l2;
  1517. /* Computing MIN */
  1518. i__2 = l2 + 1;
  1519. /* Computing MIN */
  1520. i__3 = l2 + 1;
  1521. sumr = sdot_(&i__1, &c__[k1 + f2cmin(i__2,*n) * c_dim1], ldc,
  1522. &b[l1 + f2cmin(i__3,*n) * b_dim1], ldb);
  1523. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  1524. i__1 = *m - k2;
  1525. /* Computing MIN */
  1526. i__2 = k2 + 1;
  1527. /* Computing MIN */
  1528. i__3 = k2 + 1;
  1529. suml = sdot_(&i__1, &a[k2 + f2cmin(i__2,*m) * a_dim1], lda, &
  1530. c__[f2cmin(i__3,*m) + l1 * c_dim1], &c__1);
  1531. i__1 = *n - l2;
  1532. /* Computing MIN */
  1533. i__2 = l2 + 1;
  1534. /* Computing MIN */
  1535. i__3 = l2 + 1;
  1536. sumr = sdot_(&i__1, &c__[k2 + f2cmin(i__2,*n) * c_dim1], ldc,
  1537. &b[l1 + f2cmin(i__3,*n) * b_dim1], ldb);
  1538. vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
  1539. r__1 = -sgn * b[l1 + l1 * b_dim1];
  1540. slaln2_(&c_false, &c__2, &c__1, &smin, &c_b26, &a[k1 + k1
  1541. * a_dim1], lda, &c_b26, &c_b26, vec, &c__2, &r__1,
  1542. &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
  1543. if (ierr != 0) {
  1544. *info = 1;
  1545. }
  1546. if (scaloc != 1.f) {
  1547. i__1 = *n;
  1548. for (j = 1; j <= i__1; ++j) {
  1549. sscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1550. /* L210: */
  1551. }
  1552. *scale *= scaloc;
  1553. }
  1554. c__[k1 + l1 * c_dim1] = x[0];
  1555. c__[k2 + l1 * c_dim1] = x[1];
  1556. } else if (l1 != l2 && k1 == k2) {
  1557. i__1 = *m - k1;
  1558. /* Computing MIN */
  1559. i__2 = k1 + 1;
  1560. /* Computing MIN */
  1561. i__3 = k1 + 1;
  1562. suml = sdot_(&i__1, &a[k1 + f2cmin(i__2,*m) * a_dim1], lda, &
  1563. c__[f2cmin(i__3,*m) + l1 * c_dim1], &c__1);
  1564. i__1 = *n - l2;
  1565. /* Computing MIN */
  1566. i__2 = l2 + 1;
  1567. /* Computing MIN */
  1568. i__3 = l2 + 1;
  1569. sumr = sdot_(&i__1, &c__[k1 + f2cmin(i__2,*n) * c_dim1], ldc,
  1570. &b[l1 + f2cmin(i__3,*n) * b_dim1], ldb);
  1571. vec[0] = sgn * (c__[k1 + l1 * c_dim1] - (suml + sgn *
  1572. sumr));
  1573. i__1 = *m - k1;
  1574. /* Computing MIN */
  1575. i__2 = k1 + 1;
  1576. /* Computing MIN */
  1577. i__3 = k1 + 1;
  1578. suml = sdot_(&i__1, &a[k1 + f2cmin(i__2,*m) * a_dim1], lda, &
  1579. c__[f2cmin(i__3,*m) + l2 * c_dim1], &c__1);
  1580. i__1 = *n - l2;
  1581. /* Computing MIN */
  1582. i__2 = l2 + 1;
  1583. /* Computing MIN */
  1584. i__3 = l2 + 1;
  1585. sumr = sdot_(&i__1, &c__[k1 + f2cmin(i__2,*n) * c_dim1], ldc,
  1586. &b[l2 + f2cmin(i__3,*n) * b_dim1], ldb);
  1587. vec[1] = sgn * (c__[k1 + l2 * c_dim1] - (suml + sgn *
  1588. sumr));
  1589. r__1 = -sgn * a[k1 + k1 * a_dim1];
  1590. slaln2_(&c_false, &c__2, &c__1, &smin, &c_b26, &b[l1 + l1
  1591. * b_dim1], ldb, &c_b26, &c_b26, vec, &c__2, &r__1,
  1592. &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
  1593. if (ierr != 0) {
  1594. *info = 1;
  1595. }
  1596. if (scaloc != 1.f) {
  1597. i__1 = *n;
  1598. for (j = 1; j <= i__1; ++j) {
  1599. sscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1600. /* L220: */
  1601. }
  1602. *scale *= scaloc;
  1603. }
  1604. c__[k1 + l1 * c_dim1] = x[0];
  1605. c__[k1 + l2 * c_dim1] = x[1];
  1606. } else if (l1 != l2 && k1 != k2) {
  1607. i__1 = *m - k2;
  1608. /* Computing MIN */
  1609. i__2 = k2 + 1;
  1610. /* Computing MIN */
  1611. i__3 = k2 + 1;
  1612. suml = sdot_(&i__1, &a[k1 + f2cmin(i__2,*m) * a_dim1], lda, &
  1613. c__[f2cmin(i__3,*m) + l1 * c_dim1], &c__1);
  1614. i__1 = *n - l2;
  1615. /* Computing MIN */
  1616. i__2 = l2 + 1;
  1617. /* Computing MIN */
  1618. i__3 = l2 + 1;
  1619. sumr = sdot_(&i__1, &c__[k1 + f2cmin(i__2,*n) * c_dim1], ldc,
  1620. &b[l1 + f2cmin(i__3,*n) * b_dim1], ldb);
  1621. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  1622. i__1 = *m - k2;
  1623. /* Computing MIN */
  1624. i__2 = k2 + 1;
  1625. /* Computing MIN */
  1626. i__3 = k2 + 1;
  1627. suml = sdot_(&i__1, &a[k1 + f2cmin(i__2,*m) * a_dim1], lda, &
  1628. c__[f2cmin(i__3,*m) + l2 * c_dim1], &c__1);
  1629. i__1 = *n - l2;
  1630. /* Computing MIN */
  1631. i__2 = l2 + 1;
  1632. /* Computing MIN */
  1633. i__3 = l2 + 1;
  1634. sumr = sdot_(&i__1, &c__[k1 + f2cmin(i__2,*n) * c_dim1], ldc,
  1635. &b[l2 + f2cmin(i__3,*n) * b_dim1], ldb);
  1636. vec[2] = c__[k1 + l2 * c_dim1] - (suml + sgn * sumr);
  1637. i__1 = *m - k2;
  1638. /* Computing MIN */
  1639. i__2 = k2 + 1;
  1640. /* Computing MIN */
  1641. i__3 = k2 + 1;
  1642. suml = sdot_(&i__1, &a[k2 + f2cmin(i__2,*m) * a_dim1], lda, &
  1643. c__[f2cmin(i__3,*m) + l1 * c_dim1], &c__1);
  1644. i__1 = *n - l2;
  1645. /* Computing MIN */
  1646. i__2 = l2 + 1;
  1647. /* Computing MIN */
  1648. i__3 = l2 + 1;
  1649. sumr = sdot_(&i__1, &c__[k2 + f2cmin(i__2,*n) * c_dim1], ldc,
  1650. &b[l1 + f2cmin(i__3,*n) * b_dim1], ldb);
  1651. vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
  1652. i__1 = *m - k2;
  1653. /* Computing MIN */
  1654. i__2 = k2 + 1;
  1655. /* Computing MIN */
  1656. i__3 = k2 + 1;
  1657. suml = sdot_(&i__1, &a[k2 + f2cmin(i__2,*m) * a_dim1], lda, &
  1658. c__[f2cmin(i__3,*m) + l2 * c_dim1], &c__1);
  1659. i__1 = *n - l2;
  1660. /* Computing MIN */
  1661. i__2 = l2 + 1;
  1662. /* Computing MIN */
  1663. i__3 = l2 + 1;
  1664. sumr = sdot_(&i__1, &c__[k2 + f2cmin(i__2,*n) * c_dim1], ldc,
  1665. &b[l2 + f2cmin(i__3,*n) * b_dim1], ldb);
  1666. vec[3] = c__[k2 + l2 * c_dim1] - (suml + sgn * sumr);
  1667. slasy2_(&c_false, &c_true, isgn, &c__2, &c__2, &a[k1 + k1
  1668. * a_dim1], lda, &b[l1 + l1 * b_dim1], ldb, vec, &
  1669. c__2, &scaloc, x, &c__2, &xnorm, &ierr);
  1670. if (ierr != 0) {
  1671. *info = 1;
  1672. }
  1673. if (scaloc != 1.f) {
  1674. i__1 = *n;
  1675. for (j = 1; j <= i__1; ++j) {
  1676. sscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1677. /* L230: */
  1678. }
  1679. *scale *= scaloc;
  1680. }
  1681. c__[k1 + l1 * c_dim1] = x[0];
  1682. c__[k1 + l2 * c_dim1] = x[2];
  1683. c__[k2 + l1 * c_dim1] = x[1];
  1684. c__[k2 + l2 * c_dim1] = x[3];
  1685. }
  1686. L240:
  1687. ;
  1688. }
  1689. L250:
  1690. ;
  1691. }
  1692. }
  1693. return;
  1694. /* End of STRSYL */
  1695. } /* strsyl_ */