You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slasda.c 33 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__0 = 0;
  485. static real c_b11 = 0.f;
  486. static real c_b12 = 1.f;
  487. static integer c__1 = 1;
  488. static integer c__2 = 2;
  489. /* > \brief \b SLASDA computes the singular value decomposition (SVD) of a real upper bidiagonal matrix with d
  490. iagonal d and off-diagonal e. Used by sbdsdc. */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download SLASDA + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasda.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasda.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasda.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE SLASDA( ICOMPQ, SMLSIZ, N, SQRE, D, E, U, LDU, VT, K, */
  509. /* DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL, */
  510. /* PERM, GIVNUM, C, S, WORK, IWORK, INFO ) */
  511. /* INTEGER ICOMPQ, INFO, LDGCOL, LDU, N, SMLSIZ, SQRE */
  512. /* INTEGER GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ), */
  513. /* $ K( * ), PERM( LDGCOL, * ) */
  514. /* REAL C( * ), D( * ), DIFL( LDU, * ), DIFR( LDU, * ), */
  515. /* $ E( * ), GIVNUM( LDU, * ), POLES( LDU, * ), */
  516. /* $ S( * ), U( LDU, * ), VT( LDU, * ), WORK( * ), */
  517. /* $ Z( LDU, * ) */
  518. /* > \par Purpose: */
  519. /* ============= */
  520. /* > */
  521. /* > \verbatim */
  522. /* > */
  523. /* > Using a divide and conquer approach, SLASDA computes the singular */
  524. /* > value decomposition (SVD) of a real upper bidiagonal N-by-M matrix */
  525. /* > B with diagonal D and offdiagonal E, where M = N + SQRE. The */
  526. /* > algorithm computes the singular values in the SVD B = U * S * VT. */
  527. /* > The orthogonal matrices U and VT are optionally computed in */
  528. /* > compact form. */
  529. /* > */
  530. /* > A related subroutine, SLASD0, computes the singular values and */
  531. /* > the singular vectors in explicit form. */
  532. /* > \endverbatim */
  533. /* Arguments: */
  534. /* ========== */
  535. /* > \param[in] ICOMPQ */
  536. /* > \verbatim */
  537. /* > ICOMPQ is INTEGER */
  538. /* > Specifies whether singular vectors are to be computed */
  539. /* > in compact form, as follows */
  540. /* > = 0: Compute singular values only. */
  541. /* > = 1: Compute singular vectors of upper bidiagonal */
  542. /* > matrix in compact form. */
  543. /* > \endverbatim */
  544. /* > */
  545. /* > \param[in] SMLSIZ */
  546. /* > \verbatim */
  547. /* > SMLSIZ is INTEGER */
  548. /* > The maximum size of the subproblems at the bottom of the */
  549. /* > computation tree. */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in] N */
  553. /* > \verbatim */
  554. /* > N is INTEGER */
  555. /* > The row dimension of the upper bidiagonal matrix. This is */
  556. /* > also the dimension of the main diagonal array D. */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in] SQRE */
  560. /* > \verbatim */
  561. /* > SQRE is INTEGER */
  562. /* > Specifies the column dimension of the bidiagonal matrix. */
  563. /* > = 0: The bidiagonal matrix has column dimension M = N; */
  564. /* > = 1: The bidiagonal matrix has column dimension M = N + 1. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in,out] D */
  568. /* > \verbatim */
  569. /* > D is REAL array, dimension ( N ) */
  570. /* > On entry D contains the main diagonal of the bidiagonal */
  571. /* > matrix. On exit D, if INFO = 0, contains its singular values. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in] E */
  575. /* > \verbatim */
  576. /* > E is REAL array, dimension ( M-1 ) */
  577. /* > Contains the subdiagonal entries of the bidiagonal matrix. */
  578. /* > On exit, E has been destroyed. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[out] U */
  582. /* > \verbatim */
  583. /* > U is REAL array, */
  584. /* > dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced */
  585. /* > if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left */
  586. /* > singular vector matrices of all subproblems at the bottom */
  587. /* > level. */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[in] LDU */
  591. /* > \verbatim */
  592. /* > LDU is INTEGER, LDU = > N. */
  593. /* > The leading dimension of arrays U, VT, DIFL, DIFR, POLES, */
  594. /* > GIVNUM, and Z. */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[out] VT */
  598. /* > \verbatim */
  599. /* > VT is REAL array, */
  600. /* > dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced */
  601. /* > if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT**T contains the right */
  602. /* > singular vector matrices of all subproblems at the bottom */
  603. /* > level. */
  604. /* > \endverbatim */
  605. /* > */
  606. /* > \param[out] K */
  607. /* > \verbatim */
  608. /* > K is INTEGER array, dimension ( N ) */
  609. /* > if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0. */
  610. /* > If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th */
  611. /* > secular equation on the computation tree. */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[out] DIFL */
  615. /* > \verbatim */
  616. /* > DIFL is REAL array, dimension ( LDU, NLVL ), */
  617. /* > where NLVL = floor(log_2 (N/SMLSIZ))). */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[out] DIFR */
  621. /* > \verbatim */
  622. /* > DIFR is REAL array, */
  623. /* > dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and */
  624. /* > dimension ( N ) if ICOMPQ = 0. */
  625. /* > If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1) */
  626. /* > record distances between singular values on the I-th */
  627. /* > level and singular values on the (I -1)-th level, and */
  628. /* > DIFR(1:N, 2 * I ) contains the normalizing factors for */
  629. /* > the right singular vector matrix. See SLASD8 for details. */
  630. /* > \endverbatim */
  631. /* > */
  632. /* > \param[out] Z */
  633. /* > \verbatim */
  634. /* > Z is REAL array, */
  635. /* > dimension ( LDU, NLVL ) if ICOMPQ = 1 and */
  636. /* > dimension ( N ) if ICOMPQ = 0. */
  637. /* > The first K elements of Z(1, I) contain the components of */
  638. /* > the deflation-adjusted updating row vector for subproblems */
  639. /* > on the I-th level. */
  640. /* > \endverbatim */
  641. /* > */
  642. /* > \param[out] POLES */
  643. /* > \verbatim */
  644. /* > POLES is REAL array, */
  645. /* > dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced */
  646. /* > if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and */
  647. /* > POLES(1, 2*I) contain the new and old singular values */
  648. /* > involved in the secular equations on the I-th level. */
  649. /* > \endverbatim */
  650. /* > */
  651. /* > \param[out] GIVPTR */
  652. /* > \verbatim */
  653. /* > GIVPTR is INTEGER array, */
  654. /* > dimension ( N ) if ICOMPQ = 1, and not referenced if */
  655. /* > ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records */
  656. /* > the number of Givens rotations performed on the I-th */
  657. /* > problem on the computation tree. */
  658. /* > \endverbatim */
  659. /* > */
  660. /* > \param[out] GIVCOL */
  661. /* > \verbatim */
  662. /* > GIVCOL is INTEGER array, */
  663. /* > dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not */
  664. /* > referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, */
  665. /* > GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations */
  666. /* > of Givens rotations performed on the I-th level on the */
  667. /* > computation tree. */
  668. /* > \endverbatim */
  669. /* > */
  670. /* > \param[in] LDGCOL */
  671. /* > \verbatim */
  672. /* > LDGCOL is INTEGER, LDGCOL = > N. */
  673. /* > The leading dimension of arrays GIVCOL and PERM. */
  674. /* > \endverbatim */
  675. /* > */
  676. /* > \param[out] PERM */
  677. /* > \verbatim */
  678. /* > PERM is INTEGER array, dimension ( LDGCOL, NLVL ) */
  679. /* > if ICOMPQ = 1, and not referenced */
  680. /* > if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records */
  681. /* > permutations done on the I-th level of the computation tree. */
  682. /* > \endverbatim */
  683. /* > */
  684. /* > \param[out] GIVNUM */
  685. /* > \verbatim */
  686. /* > GIVNUM is REAL array, */
  687. /* > dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not */
  688. /* > referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, */
  689. /* > GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S- */
  690. /* > values of Givens rotations performed on the I-th level on */
  691. /* > the computation tree. */
  692. /* > \endverbatim */
  693. /* > */
  694. /* > \param[out] C */
  695. /* > \verbatim */
  696. /* > C is REAL array, */
  697. /* > dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. */
  698. /* > If ICOMPQ = 1 and the I-th subproblem is not square, on exit, */
  699. /* > C( I ) contains the C-value of a Givens rotation related to */
  700. /* > the right null space of the I-th subproblem. */
  701. /* > \endverbatim */
  702. /* > */
  703. /* > \param[out] S */
  704. /* > \verbatim */
  705. /* > S is REAL array, dimension ( N ) if */
  706. /* > ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1 */
  707. /* > and the I-th subproblem is not square, on exit, S( I ) */
  708. /* > contains the S-value of a Givens rotation related to */
  709. /* > the right null space of the I-th subproblem. */
  710. /* > \endverbatim */
  711. /* > */
  712. /* > \param[out] WORK */
  713. /* > \verbatim */
  714. /* > WORK is REAL array, dimension */
  715. /* > (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)). */
  716. /* > \endverbatim */
  717. /* > */
  718. /* > \param[out] IWORK */
  719. /* > \verbatim */
  720. /* > IWORK is INTEGER array, dimension (7*N). */
  721. /* > \endverbatim */
  722. /* > */
  723. /* > \param[out] INFO */
  724. /* > \verbatim */
  725. /* > INFO is INTEGER */
  726. /* > = 0: successful exit. */
  727. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  728. /* > > 0: if INFO = 1, a singular value did not converge */
  729. /* > \endverbatim */
  730. /* Authors: */
  731. /* ======== */
  732. /* > \author Univ. of Tennessee */
  733. /* > \author Univ. of California Berkeley */
  734. /* > \author Univ. of Colorado Denver */
  735. /* > \author NAG Ltd. */
  736. /* > \date December 2016 */
  737. /* > \ingroup OTHERauxiliary */
  738. /* > \par Contributors: */
  739. /* ================== */
  740. /* > */
  741. /* > Ming Gu and Huan Ren, Computer Science Division, University of */
  742. /* > California at Berkeley, USA */
  743. /* > */
  744. /* ===================================================================== */
  745. /* Subroutine */ void slasda_(integer *icompq, integer *smlsiz, integer *n,
  746. integer *sqre, real *d__, real *e, real *u, integer *ldu, real *vt,
  747. integer *k, real *difl, real *difr, real *z__, real *poles, integer *
  748. givptr, integer *givcol, integer *ldgcol, integer *perm, real *givnum,
  749. real *c__, real *s, real *work, integer *iwork, integer *info)
  750. {
  751. /* System generated locals */
  752. integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, difl_dim1,
  753. difl_offset, difr_dim1, difr_offset, givnum_dim1, givnum_offset,
  754. poles_dim1, poles_offset, u_dim1, u_offset, vt_dim1, vt_offset,
  755. z_dim1, z_offset, i__1, i__2;
  756. /* Local variables */
  757. real beta;
  758. integer idxq, nlvl, i__, j, m;
  759. real alpha;
  760. integer inode, ndiml, ndimr, idxqi, itemp, sqrei, i1;
  761. extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
  762. integer *), slasd6_(integer *, integer *, integer *, integer *,
  763. real *, real *, real *, real *, real *, integer *, integer *,
  764. integer *, integer *, integer *, real *, integer *, real *, real *
  765. , real *, real *, integer *, real *, real *, real *, integer *,
  766. integer *);
  767. integer ic, nwork1, lf, nd, nwork2, ll, nl, vf, nr, vl;
  768. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  769. extern void slasdq_(
  770. char *, integer *, integer *, integer *, integer *, integer *,
  771. real *, real *, real *, integer *, real *, integer *, real *,
  772. integer *, real *, integer *), slasdt_(integer *, integer
  773. *, integer *, integer *, integer *, integer *, integer *),
  774. slaset_(char *, integer *, integer *, real *, real *, real *,
  775. integer *);
  776. integer im1, smlszp, ncc, nlf, nrf, vfi, iwk, vli, lvl, nru, ndb1, nlp1,
  777. lvl2, nrp1;
  778. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  779. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  780. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  781. /* December 2016 */
  782. /* ===================================================================== */
  783. /* Test the input parameters. */
  784. /* Parameter adjustments */
  785. --d__;
  786. --e;
  787. givnum_dim1 = *ldu;
  788. givnum_offset = 1 + givnum_dim1 * 1;
  789. givnum -= givnum_offset;
  790. poles_dim1 = *ldu;
  791. poles_offset = 1 + poles_dim1 * 1;
  792. poles -= poles_offset;
  793. z_dim1 = *ldu;
  794. z_offset = 1 + z_dim1 * 1;
  795. z__ -= z_offset;
  796. difr_dim1 = *ldu;
  797. difr_offset = 1 + difr_dim1 * 1;
  798. difr -= difr_offset;
  799. difl_dim1 = *ldu;
  800. difl_offset = 1 + difl_dim1 * 1;
  801. difl -= difl_offset;
  802. vt_dim1 = *ldu;
  803. vt_offset = 1 + vt_dim1 * 1;
  804. vt -= vt_offset;
  805. u_dim1 = *ldu;
  806. u_offset = 1 + u_dim1 * 1;
  807. u -= u_offset;
  808. --k;
  809. --givptr;
  810. perm_dim1 = *ldgcol;
  811. perm_offset = 1 + perm_dim1 * 1;
  812. perm -= perm_offset;
  813. givcol_dim1 = *ldgcol;
  814. givcol_offset = 1 + givcol_dim1 * 1;
  815. givcol -= givcol_offset;
  816. --c__;
  817. --s;
  818. --work;
  819. --iwork;
  820. /* Function Body */
  821. *info = 0;
  822. if (*icompq < 0 || *icompq > 1) {
  823. *info = -1;
  824. } else if (*smlsiz < 3) {
  825. *info = -2;
  826. } else if (*n < 0) {
  827. *info = -3;
  828. } else if (*sqre < 0 || *sqre > 1) {
  829. *info = -4;
  830. } else if (*ldu < *n + *sqre) {
  831. *info = -8;
  832. } else if (*ldgcol < *n) {
  833. *info = -17;
  834. }
  835. if (*info != 0) {
  836. i__1 = -(*info);
  837. xerbla_("SLASDA", &i__1, (ftnlen)6);
  838. return;
  839. }
  840. m = *n + *sqre;
  841. /* If the input matrix is too small, call SLASDQ to find the SVD. */
  842. if (*n <= *smlsiz) {
  843. if (*icompq == 0) {
  844. slasdq_("U", sqre, n, &c__0, &c__0, &c__0, &d__[1], &e[1], &vt[
  845. vt_offset], ldu, &u[u_offset], ldu, &u[u_offset], ldu, &
  846. work[1], info);
  847. } else {
  848. slasdq_("U", sqre, n, &m, n, &c__0, &d__[1], &e[1], &vt[vt_offset]
  849. , ldu, &u[u_offset], ldu, &u[u_offset], ldu, &work[1],
  850. info);
  851. }
  852. return;
  853. }
  854. /* Book-keeping and set up the computation tree. */
  855. inode = 1;
  856. ndiml = inode + *n;
  857. ndimr = ndiml + *n;
  858. idxq = ndimr + *n;
  859. iwk = idxq + *n;
  860. ncc = 0;
  861. nru = 0;
  862. smlszp = *smlsiz + 1;
  863. vf = 1;
  864. vl = vf + m;
  865. nwork1 = vl + m;
  866. nwork2 = nwork1 + smlszp * smlszp;
  867. slasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr],
  868. smlsiz);
  869. /* for the nodes on bottom level of the tree, solve */
  870. /* their subproblems by SLASDQ. */
  871. ndb1 = (nd + 1) / 2;
  872. i__1 = nd;
  873. for (i__ = ndb1; i__ <= i__1; ++i__) {
  874. /* IC : center row of each node */
  875. /* NL : number of rows of left subproblem */
  876. /* NR : number of rows of right subproblem */
  877. /* NLF: starting row of the left subproblem */
  878. /* NRF: starting row of the right subproblem */
  879. i1 = i__ - 1;
  880. ic = iwork[inode + i1];
  881. nl = iwork[ndiml + i1];
  882. nlp1 = nl + 1;
  883. nr = iwork[ndimr + i1];
  884. nlf = ic - nl;
  885. nrf = ic + 1;
  886. idxqi = idxq + nlf - 2;
  887. vfi = vf + nlf - 1;
  888. vli = vl + nlf - 1;
  889. sqrei = 1;
  890. if (*icompq == 0) {
  891. slaset_("A", &nlp1, &nlp1, &c_b11, &c_b12, &work[nwork1], &smlszp);
  892. slasdq_("U", &sqrei, &nl, &nlp1, &nru, &ncc, &d__[nlf], &e[nlf], &
  893. work[nwork1], &smlszp, &work[nwork2], &nl, &work[nwork2],
  894. &nl, &work[nwork2], info);
  895. itemp = nwork1 + nl * smlszp;
  896. scopy_(&nlp1, &work[nwork1], &c__1, &work[vfi], &c__1);
  897. scopy_(&nlp1, &work[itemp], &c__1, &work[vli], &c__1);
  898. } else {
  899. slaset_("A", &nl, &nl, &c_b11, &c_b12, &u[nlf + u_dim1], ldu);
  900. slaset_("A", &nlp1, &nlp1, &c_b11, &c_b12, &vt[nlf + vt_dim1],
  901. ldu);
  902. slasdq_("U", &sqrei, &nl, &nlp1, &nl, &ncc, &d__[nlf], &e[nlf], &
  903. vt[nlf + vt_dim1], ldu, &u[nlf + u_dim1], ldu, &u[nlf +
  904. u_dim1], ldu, &work[nwork1], info);
  905. scopy_(&nlp1, &vt[nlf + vt_dim1], &c__1, &work[vfi], &c__1);
  906. scopy_(&nlp1, &vt[nlf + nlp1 * vt_dim1], &c__1, &work[vli], &c__1)
  907. ;
  908. }
  909. if (*info != 0) {
  910. return;
  911. }
  912. i__2 = nl;
  913. for (j = 1; j <= i__2; ++j) {
  914. iwork[idxqi + j] = j;
  915. /* L10: */
  916. }
  917. if (i__ == nd && *sqre == 0) {
  918. sqrei = 0;
  919. } else {
  920. sqrei = 1;
  921. }
  922. idxqi += nlp1;
  923. vfi += nlp1;
  924. vli += nlp1;
  925. nrp1 = nr + sqrei;
  926. if (*icompq == 0) {
  927. slaset_("A", &nrp1, &nrp1, &c_b11, &c_b12, &work[nwork1], &smlszp);
  928. slasdq_("U", &sqrei, &nr, &nrp1, &nru, &ncc, &d__[nrf], &e[nrf], &
  929. work[nwork1], &smlszp, &work[nwork2], &nr, &work[nwork2],
  930. &nr, &work[nwork2], info);
  931. itemp = nwork1 + (nrp1 - 1) * smlszp;
  932. scopy_(&nrp1, &work[nwork1], &c__1, &work[vfi], &c__1);
  933. scopy_(&nrp1, &work[itemp], &c__1, &work[vli], &c__1);
  934. } else {
  935. slaset_("A", &nr, &nr, &c_b11, &c_b12, &u[nrf + u_dim1], ldu);
  936. slaset_("A", &nrp1, &nrp1, &c_b11, &c_b12, &vt[nrf + vt_dim1],
  937. ldu);
  938. slasdq_("U", &sqrei, &nr, &nrp1, &nr, &ncc, &d__[nrf], &e[nrf], &
  939. vt[nrf + vt_dim1], ldu, &u[nrf + u_dim1], ldu, &u[nrf +
  940. u_dim1], ldu, &work[nwork1], info);
  941. scopy_(&nrp1, &vt[nrf + vt_dim1], &c__1, &work[vfi], &c__1);
  942. scopy_(&nrp1, &vt[nrf + nrp1 * vt_dim1], &c__1, &work[vli], &c__1)
  943. ;
  944. }
  945. if (*info != 0) {
  946. return;
  947. }
  948. i__2 = nr;
  949. for (j = 1; j <= i__2; ++j) {
  950. iwork[idxqi + j] = j;
  951. /* L20: */
  952. }
  953. /* L30: */
  954. }
  955. /* Now conquer each subproblem bottom-up. */
  956. j = pow_ii(c__2, nlvl);
  957. for (lvl = nlvl; lvl >= 1; --lvl) {
  958. lvl2 = (lvl << 1) - 1;
  959. /* Find the first node LF and last node LL on */
  960. /* the current level LVL. */
  961. if (lvl == 1) {
  962. lf = 1;
  963. ll = 1;
  964. } else {
  965. i__1 = lvl - 1;
  966. lf = pow_ii(c__2, i__1);
  967. ll = (lf << 1) - 1;
  968. }
  969. i__1 = ll;
  970. for (i__ = lf; i__ <= i__1; ++i__) {
  971. im1 = i__ - 1;
  972. ic = iwork[inode + im1];
  973. nl = iwork[ndiml + im1];
  974. nr = iwork[ndimr + im1];
  975. nlf = ic - nl;
  976. nrf = ic + 1;
  977. if (i__ == ll) {
  978. sqrei = *sqre;
  979. } else {
  980. sqrei = 1;
  981. }
  982. vfi = vf + nlf - 1;
  983. vli = vl + nlf - 1;
  984. idxqi = idxq + nlf - 1;
  985. alpha = d__[ic];
  986. beta = e[ic];
  987. if (*icompq == 0) {
  988. slasd6_(icompq, &nl, &nr, &sqrei, &d__[nlf], &work[vfi], &
  989. work[vli], &alpha, &beta, &iwork[idxqi], &perm[
  990. perm_offset], &givptr[1], &givcol[givcol_offset],
  991. ldgcol, &givnum[givnum_offset], ldu, &poles[
  992. poles_offset], &difl[difl_offset], &difr[difr_offset],
  993. &z__[z_offset], &k[1], &c__[1], &s[1], &work[nwork1],
  994. &iwork[iwk], info);
  995. } else {
  996. --j;
  997. slasd6_(icompq, &nl, &nr, &sqrei, &d__[nlf], &work[vfi], &
  998. work[vli], &alpha, &beta, &iwork[idxqi], &perm[nlf +
  999. lvl * perm_dim1], &givptr[j], &givcol[nlf + lvl2 *
  1000. givcol_dim1], ldgcol, &givnum[nlf + lvl2 *
  1001. givnum_dim1], ldu, &poles[nlf + lvl2 * poles_dim1], &
  1002. difl[nlf + lvl * difl_dim1], &difr[nlf + lvl2 *
  1003. difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[j],
  1004. &s[j], &work[nwork1], &iwork[iwk], info);
  1005. }
  1006. if (*info != 0) {
  1007. return;
  1008. }
  1009. /* L40: */
  1010. }
  1011. /* L50: */
  1012. }
  1013. return;
  1014. /* End of SLASDA */
  1015. } /* slasda_ */