You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dptsvx.c 26 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. /* > \brief <b> DPTSVX computes the solution to system of linear equations A * X = B for PT matrices</b> */
  486. /* =========== DOCUMENTATION =========== */
  487. /* Online html documentation available at */
  488. /* http://www.netlib.org/lapack/explore-html/ */
  489. /* > \htmlonly */
  490. /* > Download DPTSVX + dependencies */
  491. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dptsvx.
  492. f"> */
  493. /* > [TGZ]</a> */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dptsvx.
  495. f"> */
  496. /* > [ZIP]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dptsvx.
  498. f"> */
  499. /* > [TXT]</a> */
  500. /* > \endhtmlonly */
  501. /* Definition: */
  502. /* =========== */
  503. /* SUBROUTINE DPTSVX( FACT, N, NRHS, D, E, DF, EF, B, LDB, X, LDX, */
  504. /* RCOND, FERR, BERR, WORK, INFO ) */
  505. /* CHARACTER FACT */
  506. /* INTEGER INFO, LDB, LDX, N, NRHS */
  507. /* DOUBLE PRECISION RCOND */
  508. /* DOUBLE PRECISION B( LDB, * ), BERR( * ), D( * ), DF( * ), */
  509. /* $ E( * ), EF( * ), FERR( * ), WORK( * ), */
  510. /* $ X( LDX, * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > */
  516. /* > DPTSVX uses the factorization A = L*D*L**T to compute the solution */
  517. /* > to a real system of linear equations A*X = B, where A is an N-by-N */
  518. /* > symmetric positive definite tridiagonal matrix and X and B are */
  519. /* > N-by-NRHS matrices. */
  520. /* > */
  521. /* > Error bounds on the solution and a condition estimate are also */
  522. /* > provided. */
  523. /* > \endverbatim */
  524. /* > \par Description: */
  525. /* ================= */
  526. /* > */
  527. /* > \verbatim */
  528. /* > */
  529. /* > The following steps are performed: */
  530. /* > */
  531. /* > 1. If FACT = 'N', the matrix A is factored as A = L*D*L**T, where L */
  532. /* > is a unit lower bidiagonal matrix and D is diagonal. The */
  533. /* > factorization can also be regarded as having the form */
  534. /* > A = U**T*D*U. */
  535. /* > */
  536. /* > 2. If the leading i-by-i principal minor is not positive definite, */
  537. /* > then the routine returns with INFO = i. Otherwise, the factored */
  538. /* > form of A is used to estimate the condition number of the matrix */
  539. /* > A. If the reciprocal of the condition number is less than machine */
  540. /* > precision, INFO = N+1 is returned as a warning, but the routine */
  541. /* > still goes on to solve for X and compute error bounds as */
  542. /* > described below. */
  543. /* > */
  544. /* > 3. The system of equations is solved for X using the factored form */
  545. /* > of A. */
  546. /* > */
  547. /* > 4. Iterative refinement is applied to improve the computed solution */
  548. /* > matrix and calculate error bounds and backward error estimates */
  549. /* > for it. */
  550. /* > \endverbatim */
  551. /* Arguments: */
  552. /* ========== */
  553. /* > \param[in] FACT */
  554. /* > \verbatim */
  555. /* > FACT is CHARACTER*1 */
  556. /* > Specifies whether or not the factored form of A has been */
  557. /* > supplied on entry. */
  558. /* > = 'F': On entry, DF and EF contain the factored form of A. */
  559. /* > D, E, DF, and EF will not be modified. */
  560. /* > = 'N': The matrix A will be copied to DF and EF and */
  561. /* > factored. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] N */
  565. /* > \verbatim */
  566. /* > N is INTEGER */
  567. /* > The order of the matrix A. N >= 0. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] NRHS */
  571. /* > \verbatim */
  572. /* > NRHS is INTEGER */
  573. /* > The number of right hand sides, i.e., the number of columns */
  574. /* > of the matrices B and X. NRHS >= 0. */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in] D */
  578. /* > \verbatim */
  579. /* > D is DOUBLE PRECISION array, dimension (N) */
  580. /* > The n diagonal elements of the tridiagonal matrix A. */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[in] E */
  584. /* > \verbatim */
  585. /* > E is DOUBLE PRECISION array, dimension (N-1) */
  586. /* > The (n-1) subdiagonal elements of the tridiagonal matrix A. */
  587. /* > \endverbatim */
  588. /* > */
  589. /* > \param[in,out] DF */
  590. /* > \verbatim */
  591. /* > DF is DOUBLE PRECISION array, dimension (N) */
  592. /* > If FACT = 'F', then DF is an input argument and on entry */
  593. /* > contains the n diagonal elements of the diagonal matrix D */
  594. /* > from the L*D*L**T factorization of A. */
  595. /* > If FACT = 'N', then DF is an output argument and on exit */
  596. /* > contains the n diagonal elements of the diagonal matrix D */
  597. /* > from the L*D*L**T factorization of A. */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[in,out] EF */
  601. /* > \verbatim */
  602. /* > EF is DOUBLE PRECISION array, dimension (N-1) */
  603. /* > If FACT = 'F', then EF is an input argument and on entry */
  604. /* > contains the (n-1) subdiagonal elements of the unit */
  605. /* > bidiagonal factor L from the L*D*L**T factorization of A. */
  606. /* > If FACT = 'N', then EF is an output argument and on exit */
  607. /* > contains the (n-1) subdiagonal elements of the unit */
  608. /* > bidiagonal factor L from the L*D*L**T factorization of A. */
  609. /* > \endverbatim */
  610. /* > */
  611. /* > \param[in] B */
  612. /* > \verbatim */
  613. /* > B is DOUBLE PRECISION array, dimension (LDB,NRHS) */
  614. /* > The N-by-NRHS right hand side matrix B. */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[in] LDB */
  618. /* > \verbatim */
  619. /* > LDB is INTEGER */
  620. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  621. /* > \endverbatim */
  622. /* > */
  623. /* > \param[out] X */
  624. /* > \verbatim */
  625. /* > X is DOUBLE PRECISION array, dimension (LDX,NRHS) */
  626. /* > If INFO = 0 of INFO = N+1, the N-by-NRHS solution matrix X. */
  627. /* > \endverbatim */
  628. /* > */
  629. /* > \param[in] LDX */
  630. /* > \verbatim */
  631. /* > LDX is INTEGER */
  632. /* > The leading dimension of the array X. LDX >= f2cmax(1,N). */
  633. /* > \endverbatim */
  634. /* > */
  635. /* > \param[out] RCOND */
  636. /* > \verbatim */
  637. /* > RCOND is DOUBLE PRECISION */
  638. /* > The reciprocal condition number of the matrix A. If RCOND */
  639. /* > is less than the machine precision (in particular, if */
  640. /* > RCOND = 0), the matrix is singular to working precision. */
  641. /* > This condition is indicated by a return code of INFO > 0. */
  642. /* > \endverbatim */
  643. /* > */
  644. /* > \param[out] FERR */
  645. /* > \verbatim */
  646. /* > FERR is DOUBLE PRECISION array, dimension (NRHS) */
  647. /* > The forward error bound for each solution vector */
  648. /* > X(j) (the j-th column of the solution matrix X). */
  649. /* > If XTRUE is the true solution corresponding to X(j), FERR(j) */
  650. /* > is an estimated upper bound for the magnitude of the largest */
  651. /* > element in (X(j) - XTRUE) divided by the magnitude of the */
  652. /* > largest element in X(j). */
  653. /* > \endverbatim */
  654. /* > */
  655. /* > \param[out] BERR */
  656. /* > \verbatim */
  657. /* > BERR is DOUBLE PRECISION array, dimension (NRHS) */
  658. /* > The componentwise relative backward error of each solution */
  659. /* > vector X(j) (i.e., the smallest relative change in any */
  660. /* > element of A or B that makes X(j) an exact solution). */
  661. /* > \endverbatim */
  662. /* > */
  663. /* > \param[out] WORK */
  664. /* > \verbatim */
  665. /* > WORK is DOUBLE PRECISION array, dimension (2*N) */
  666. /* > \endverbatim */
  667. /* > */
  668. /* > \param[out] INFO */
  669. /* > \verbatim */
  670. /* > INFO is INTEGER */
  671. /* > = 0: successful exit */
  672. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  673. /* > > 0: if INFO = i, and i is */
  674. /* > <= N: the leading minor of order i of A is */
  675. /* > not positive definite, so the factorization */
  676. /* > could not be completed, and the solution has not */
  677. /* > been computed. RCOND = 0 is returned. */
  678. /* > = N+1: U is nonsingular, but RCOND is less than machine */
  679. /* > precision, meaning that the matrix is singular */
  680. /* > to working precision. Nevertheless, the */
  681. /* > solution and error bounds are computed because */
  682. /* > there are a number of situations where the */
  683. /* > computed solution can be more accurate than the */
  684. /* > value of RCOND would suggest. */
  685. /* > \endverbatim */
  686. /* Authors: */
  687. /* ======== */
  688. /* > \author Univ. of Tennessee */
  689. /* > \author Univ. of California Berkeley */
  690. /* > \author Univ. of Colorado Denver */
  691. /* > \author NAG Ltd. */
  692. /* > \date December 2016 */
  693. /* > \ingroup doublePTsolve */
  694. /* ===================================================================== */
  695. /* Subroutine */ void dptsvx_(char *fact, integer *n, integer *nrhs,
  696. doublereal *d__, doublereal *e, doublereal *df, doublereal *ef,
  697. doublereal *b, integer *ldb, doublereal *x, integer *ldx, doublereal *
  698. rcond, doublereal *ferr, doublereal *berr, doublereal *work, integer *
  699. info)
  700. {
  701. /* System generated locals */
  702. integer b_dim1, b_offset, x_dim1, x_offset, i__1;
  703. /* Local variables */
  704. extern logical lsame_(char *, char *);
  705. doublereal anorm;
  706. extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
  707. doublereal *, integer *);
  708. extern doublereal dlamch_(char *);
  709. logical nofact;
  710. extern /* Subroutine */ void dlacpy_(char *, integer *, integer *,
  711. doublereal *, integer *, doublereal *, integer *);
  712. extern int xerbla_(char *, integer *, ftnlen);
  713. extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
  714. extern /* Subroutine */ void dptcon_(integer *, doublereal *, doublereal *,
  715. doublereal *, doublereal *, doublereal *, integer *), dptrfs_(
  716. integer *, integer *, doublereal *, doublereal *, doublereal *,
  717. doublereal *, doublereal *, integer *, doublereal *, integer *,
  718. doublereal *, doublereal *, doublereal *, integer *), dpttrf_(
  719. integer *, doublereal *, doublereal *, integer *), dpttrs_(
  720. integer *, integer *, doublereal *, doublereal *, doublereal *,
  721. integer *, integer *);
  722. /* -- LAPACK driver routine (version 3.7.0) -- */
  723. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  724. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  725. /* December 2016 */
  726. /* ===================================================================== */
  727. /* Test the input parameters. */
  728. /* Parameter adjustments */
  729. --d__;
  730. --e;
  731. --df;
  732. --ef;
  733. b_dim1 = *ldb;
  734. b_offset = 1 + b_dim1 * 1;
  735. b -= b_offset;
  736. x_dim1 = *ldx;
  737. x_offset = 1 + x_dim1 * 1;
  738. x -= x_offset;
  739. --ferr;
  740. --berr;
  741. --work;
  742. /* Function Body */
  743. *info = 0;
  744. nofact = lsame_(fact, "N");
  745. if (! nofact && ! lsame_(fact, "F")) {
  746. *info = -1;
  747. } else if (*n < 0) {
  748. *info = -2;
  749. } else if (*nrhs < 0) {
  750. *info = -3;
  751. } else if (*ldb < f2cmax(1,*n)) {
  752. *info = -9;
  753. } else if (*ldx < f2cmax(1,*n)) {
  754. *info = -11;
  755. }
  756. if (*info != 0) {
  757. i__1 = -(*info);
  758. xerbla_("DPTSVX", &i__1, (ftnlen)6);
  759. return;
  760. }
  761. if (nofact) {
  762. /* Compute the L*D*L**T (or U**T*D*U) factorization of A. */
  763. dcopy_(n, &d__[1], &c__1, &df[1], &c__1);
  764. if (*n > 1) {
  765. i__1 = *n - 1;
  766. dcopy_(&i__1, &e[1], &c__1, &ef[1], &c__1);
  767. }
  768. dpttrf_(n, &df[1], &ef[1], info);
  769. /* Return if INFO is non-zero. */
  770. if (*info > 0) {
  771. *rcond = 0.;
  772. return;
  773. }
  774. }
  775. /* Compute the norm of the matrix A. */
  776. anorm = dlanst_("1", n, &d__[1], &e[1]);
  777. /* Compute the reciprocal of the condition number of A. */
  778. dptcon_(n, &df[1], &ef[1], &anorm, rcond, &work[1], info);
  779. /* Compute the solution vectors X. */
  780. dlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
  781. dpttrs_(n, nrhs, &df[1], &ef[1], &x[x_offset], ldx, info);
  782. /* Use iterative refinement to improve the computed solutions and */
  783. /* compute error bounds and backward error estimates for them. */
  784. dptrfs_(n, nrhs, &d__[1], &e[1], &df[1], &ef[1], &b[b_offset], ldb, &x[
  785. x_offset], ldx, &ferr[1], &berr[1], &work[1], info);
  786. /* Set INFO = N+1 if the matrix is singular to working precision. */
  787. if (*rcond < dlamch_("Epsilon")) {
  788. *info = *n + 1;
  789. }
  790. return;
  791. /* End of DPTSVX */
  792. } /* dptsvx_ */