You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dggev.c 36 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static integer c__0 = 0;
  486. static integer c_n1 = -1;
  487. static doublereal c_b36 = 0.;
  488. static doublereal c_b37 = 1.;
  489. /* > \brief <b> DGGEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matr
  490. ices</b> */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download DGGEV + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggev.f
  497. "> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggev.f
  500. "> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggev.f
  503. "> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE DGGEV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI, */
  509. /* BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO ) */
  510. /* CHARACTER JOBVL, JOBVR */
  511. /* INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N */
  512. /* DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ), */
  513. /* $ B( LDB, * ), BETA( * ), VL( LDVL, * ), */
  514. /* $ VR( LDVR, * ), WORK( * ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > DGGEV computes for a pair of N-by-N real nonsymmetric matrices (A,B) */
  521. /* > the generalized eigenvalues, and optionally, the left and/or right */
  522. /* > generalized eigenvectors. */
  523. /* > */
  524. /* > A generalized eigenvalue for a pair of matrices (A,B) is a scalar */
  525. /* > lambda or a ratio alpha/beta = lambda, such that A - lambda*B is */
  526. /* > singular. It is usually represented as the pair (alpha,beta), as */
  527. /* > there is a reasonable interpretation for beta=0, and even for both */
  528. /* > being zero. */
  529. /* > */
  530. /* > The right eigenvector v(j) corresponding to the eigenvalue lambda(j) */
  531. /* > of (A,B) satisfies */
  532. /* > */
  533. /* > A * v(j) = lambda(j) * B * v(j). */
  534. /* > */
  535. /* > The left eigenvector u(j) corresponding to the eigenvalue lambda(j) */
  536. /* > of (A,B) satisfies */
  537. /* > */
  538. /* > u(j)**H * A = lambda(j) * u(j)**H * B . */
  539. /* > */
  540. /* > where u(j)**H is the conjugate-transpose of u(j). */
  541. /* > */
  542. /* > \endverbatim */
  543. /* Arguments: */
  544. /* ========== */
  545. /* > \param[in] JOBVL */
  546. /* > \verbatim */
  547. /* > JOBVL is CHARACTER*1 */
  548. /* > = 'N': do not compute the left generalized eigenvectors; */
  549. /* > = 'V': compute the left generalized eigenvectors. */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in] JOBVR */
  553. /* > \verbatim */
  554. /* > JOBVR is CHARACTER*1 */
  555. /* > = 'N': do not compute the right generalized eigenvectors; */
  556. /* > = 'V': compute the right generalized eigenvectors. */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in] N */
  560. /* > \verbatim */
  561. /* > N is INTEGER */
  562. /* > The order of the matrices A, B, VL, and VR. N >= 0. */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[in,out] A */
  566. /* > \verbatim */
  567. /* > A is DOUBLE PRECISION array, dimension (LDA, N) */
  568. /* > On entry, the matrix A in the pair (A,B). */
  569. /* > On exit, A has been overwritten. */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in] LDA */
  573. /* > \verbatim */
  574. /* > LDA is INTEGER */
  575. /* > The leading dimension of A. LDA >= f2cmax(1,N). */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[in,out] B */
  579. /* > \verbatim */
  580. /* > B is DOUBLE PRECISION array, dimension (LDB, N) */
  581. /* > On entry, the matrix B in the pair (A,B). */
  582. /* > On exit, B has been overwritten. */
  583. /* > \endverbatim */
  584. /* > */
  585. /* > \param[in] LDB */
  586. /* > \verbatim */
  587. /* > LDB is INTEGER */
  588. /* > The leading dimension of B. LDB >= f2cmax(1,N). */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[out] ALPHAR */
  592. /* > \verbatim */
  593. /* > ALPHAR is DOUBLE PRECISION array, dimension (N) */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[out] ALPHAI */
  597. /* > \verbatim */
  598. /* > ALPHAI is DOUBLE PRECISION array, dimension (N) */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[out] BETA */
  602. /* > \verbatim */
  603. /* > BETA is DOUBLE PRECISION array, dimension (N) */
  604. /* > On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
  605. /* > be the generalized eigenvalues. If ALPHAI(j) is zero, then */
  606. /* > the j-th eigenvalue is real; if positive, then the j-th and */
  607. /* > (j+1)-st eigenvalues are a complex conjugate pair, with */
  608. /* > ALPHAI(j+1) negative. */
  609. /* > */
  610. /* > Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */
  611. /* > may easily over- or underflow, and BETA(j) may even be zero. */
  612. /* > Thus, the user should avoid naively computing the ratio */
  613. /* > alpha/beta. However, ALPHAR and ALPHAI will be always less */
  614. /* > than and usually comparable with norm(A) in magnitude, and */
  615. /* > BETA always less than and usually comparable with norm(B). */
  616. /* > \endverbatim */
  617. /* > */
  618. /* > \param[out] VL */
  619. /* > \verbatim */
  620. /* > VL is DOUBLE PRECISION array, dimension (LDVL,N) */
  621. /* > If JOBVL = 'V', the left eigenvectors u(j) are stored one */
  622. /* > after another in the columns of VL, in the same order as */
  623. /* > their eigenvalues. If the j-th eigenvalue is real, then */
  624. /* > u(j) = VL(:,j), the j-th column of VL. If the j-th and */
  625. /* > (j+1)-th eigenvalues form a complex conjugate pair, then */
  626. /* > u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1). */
  627. /* > Each eigenvector is scaled so the largest component has */
  628. /* > abs(real part)+abs(imag. part)=1. */
  629. /* > Not referenced if JOBVL = 'N'. */
  630. /* > \endverbatim */
  631. /* > */
  632. /* > \param[in] LDVL */
  633. /* > \verbatim */
  634. /* > LDVL is INTEGER */
  635. /* > The leading dimension of the matrix VL. LDVL >= 1, and */
  636. /* > if JOBVL = 'V', LDVL >= N. */
  637. /* > \endverbatim */
  638. /* > */
  639. /* > \param[out] VR */
  640. /* > \verbatim */
  641. /* > VR is DOUBLE PRECISION array, dimension (LDVR,N) */
  642. /* > If JOBVR = 'V', the right eigenvectors v(j) are stored one */
  643. /* > after another in the columns of VR, in the same order as */
  644. /* > their eigenvalues. If the j-th eigenvalue is real, then */
  645. /* > v(j) = VR(:,j), the j-th column of VR. If the j-th and */
  646. /* > (j+1)-th eigenvalues form a complex conjugate pair, then */
  647. /* > v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1). */
  648. /* > Each eigenvector is scaled so the largest component has */
  649. /* > abs(real part)+abs(imag. part)=1. */
  650. /* > Not referenced if JOBVR = 'N'. */
  651. /* > \endverbatim */
  652. /* > */
  653. /* > \param[in] LDVR */
  654. /* > \verbatim */
  655. /* > LDVR is INTEGER */
  656. /* > The leading dimension of the matrix VR. LDVR >= 1, and */
  657. /* > if JOBVR = 'V', LDVR >= N. */
  658. /* > \endverbatim */
  659. /* > */
  660. /* > \param[out] WORK */
  661. /* > \verbatim */
  662. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  663. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  664. /* > \endverbatim */
  665. /* > */
  666. /* > \param[in] LWORK */
  667. /* > \verbatim */
  668. /* > LWORK is INTEGER */
  669. /* > The dimension of the array WORK. LWORK >= f2cmax(1,8*N). */
  670. /* > For good performance, LWORK must generally be larger. */
  671. /* > */
  672. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  673. /* > only calculates the optimal size of the WORK array, returns */
  674. /* > this value as the first entry of the WORK array, and no error */
  675. /* > message related to LWORK is issued by XERBLA. */
  676. /* > \endverbatim */
  677. /* > */
  678. /* > \param[out] INFO */
  679. /* > \verbatim */
  680. /* > INFO is INTEGER */
  681. /* > = 0: successful exit */
  682. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  683. /* > = 1,...,N: */
  684. /* > The QZ iteration failed. No eigenvectors have been */
  685. /* > calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) */
  686. /* > should be correct for j=INFO+1,...,N. */
  687. /* > > N: =N+1: other than QZ iteration failed in DHGEQZ. */
  688. /* > =N+2: error return from DTGEVC. */
  689. /* > \endverbatim */
  690. /* Authors: */
  691. /* ======== */
  692. /* > \author Univ. of Tennessee */
  693. /* > \author Univ. of California Berkeley */
  694. /* > \author Univ. of Colorado Denver */
  695. /* > \author NAG Ltd. */
  696. /* > \date April 2012 */
  697. /* > \ingroup doubleGEeigen */
  698. /* ===================================================================== */
  699. /* Subroutine */ void dggev_(char *jobvl, char *jobvr, integer *n, doublereal *
  700. a, integer *lda, doublereal *b, integer *ldb, doublereal *alphar,
  701. doublereal *alphai, doublereal *beta, doublereal *vl, integer *ldvl,
  702. doublereal *vr, integer *ldvr, doublereal *work, integer *lwork,
  703. integer *info)
  704. {
  705. /* System generated locals */
  706. integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1,
  707. vr_offset, i__1, i__2;
  708. doublereal d__1, d__2, d__3, d__4;
  709. /* Local variables */
  710. doublereal anrm, bnrm;
  711. integer ierr, itau;
  712. doublereal temp;
  713. logical ilvl, ilvr;
  714. integer iwrk;
  715. extern logical lsame_(char *, char *);
  716. integer ileft, icols, irows;
  717. extern /* Subroutine */ void dlabad_(doublereal *, doublereal *);
  718. integer jc;
  719. extern /* Subroutine */ void dggbak_(char *, char *, integer *, integer *,
  720. integer *, doublereal *, doublereal *, integer *, doublereal *,
  721. integer *, integer *), dggbal_(char *, integer *,
  722. doublereal *, integer *, doublereal *, integer *, integer *,
  723. integer *, doublereal *, doublereal *, doublereal *, integer *);
  724. integer in;
  725. extern doublereal dlamch_(char *), dlange_(char *, integer *,
  726. integer *, doublereal *, integer *, doublereal *);
  727. integer jr;
  728. extern /* Subroutine */ void dgghrd_(char *, char *, integer *, integer *,
  729. integer *, doublereal *, integer *, doublereal *, integer *,
  730. doublereal *, integer *, doublereal *, integer *, integer *), dlascl_(char *, integer *, integer *, doublereal
  731. *, doublereal *, integer *, integer *, doublereal *, integer *,
  732. integer *);
  733. logical ilascl, ilbscl;
  734. extern /* Subroutine */ void dgeqrf_(integer *, integer *, doublereal *,
  735. integer *, doublereal *, doublereal *, integer *, integer *),
  736. dlacpy_(char *, integer *, integer *, doublereal *, integer *,
  737. doublereal *, integer *), dlaset_(char *, integer *,
  738. integer *, doublereal *, doublereal *, doublereal *, integer *), dtgevc_(char *, char *, logical *, integer *, doublereal
  739. *, integer *, doublereal *, integer *, doublereal *, integer *,
  740. doublereal *, integer *, integer *, integer *, doublereal *,
  741. integer *);
  742. logical ldumma[1];
  743. char chtemp[1];
  744. doublereal bignum;
  745. extern /* Subroutine */ void dhgeqz_(char *, char *, char *, integer *,
  746. integer *, integer *, doublereal *, integer *, doublereal *,
  747. integer *, doublereal *, doublereal *, doublereal *, doublereal *,
  748. integer *, doublereal *, integer *, doublereal *, integer *,
  749. integer *);
  750. extern int xerbla_(char *, integer *, ftnlen);
  751. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  752. integer *, integer *, ftnlen, ftnlen);
  753. integer ijobvl, iright, ijobvr;
  754. extern /* Subroutine */ void dorgqr_(integer *, integer *, integer *,
  755. doublereal *, integer *, doublereal *, doublereal *, integer *,
  756. integer *);
  757. doublereal anrmto, bnrmto;
  758. extern /* Subroutine */ void dormqr_(char *, char *, integer *, integer *,
  759. integer *, doublereal *, integer *, doublereal *, doublereal *,
  760. integer *, doublereal *, integer *, integer *);
  761. integer minwrk, maxwrk;
  762. doublereal smlnum;
  763. logical lquery;
  764. integer ihi, ilo;
  765. doublereal eps;
  766. logical ilv;
  767. /* -- LAPACK driver routine (version 3.7.0) -- */
  768. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  769. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  770. /* April 2012 */
  771. /* ===================================================================== */
  772. /* Decode the input arguments */
  773. /* Parameter adjustments */
  774. a_dim1 = *lda;
  775. a_offset = 1 + a_dim1 * 1;
  776. a -= a_offset;
  777. b_dim1 = *ldb;
  778. b_offset = 1 + b_dim1 * 1;
  779. b -= b_offset;
  780. --alphar;
  781. --alphai;
  782. --beta;
  783. vl_dim1 = *ldvl;
  784. vl_offset = 1 + vl_dim1 * 1;
  785. vl -= vl_offset;
  786. vr_dim1 = *ldvr;
  787. vr_offset = 1 + vr_dim1 * 1;
  788. vr -= vr_offset;
  789. --work;
  790. /* Function Body */
  791. if (lsame_(jobvl, "N")) {
  792. ijobvl = 1;
  793. ilvl = FALSE_;
  794. } else if (lsame_(jobvl, "V")) {
  795. ijobvl = 2;
  796. ilvl = TRUE_;
  797. } else {
  798. ijobvl = -1;
  799. ilvl = FALSE_;
  800. }
  801. if (lsame_(jobvr, "N")) {
  802. ijobvr = 1;
  803. ilvr = FALSE_;
  804. } else if (lsame_(jobvr, "V")) {
  805. ijobvr = 2;
  806. ilvr = TRUE_;
  807. } else {
  808. ijobvr = -1;
  809. ilvr = FALSE_;
  810. }
  811. ilv = ilvl || ilvr;
  812. /* Test the input arguments */
  813. *info = 0;
  814. lquery = *lwork == -1;
  815. if (ijobvl <= 0) {
  816. *info = -1;
  817. } else if (ijobvr <= 0) {
  818. *info = -2;
  819. } else if (*n < 0) {
  820. *info = -3;
  821. } else if (*lda < f2cmax(1,*n)) {
  822. *info = -5;
  823. } else if (*ldb < f2cmax(1,*n)) {
  824. *info = -7;
  825. } else if (*ldvl < 1 || ilvl && *ldvl < *n) {
  826. *info = -12;
  827. } else if (*ldvr < 1 || ilvr && *ldvr < *n) {
  828. *info = -14;
  829. }
  830. /* Compute workspace */
  831. /* (Note: Comments in the code beginning "Workspace:" describe the */
  832. /* minimal amount of workspace needed at that point in the code, */
  833. /* as well as the preferred amount for good performance. */
  834. /* NB refers to the optimal block size for the immediately */
  835. /* following subroutine, as returned by ILAENV. The workspace is */
  836. /* computed assuming ILO = 1 and IHI = N, the worst case.) */
  837. if (*info == 0) {
  838. /* Computing MAX */
  839. i__1 = 1, i__2 = *n << 3;
  840. minwrk = f2cmax(i__1,i__2);
  841. /* Computing MAX */
  842. i__1 = 1, i__2 = *n * (ilaenv_(&c__1, "DGEQRF", " ", n, &c__1, n, &
  843. c__0, (ftnlen)6, (ftnlen)1) + 7);
  844. maxwrk = f2cmax(i__1,i__2);
  845. /* Computing MAX */
  846. i__1 = maxwrk, i__2 = *n * (ilaenv_(&c__1, "DORMQR", " ", n, &c__1, n,
  847. &c__0, (ftnlen)6, (ftnlen)1) + 7);
  848. maxwrk = f2cmax(i__1,i__2);
  849. if (ilvl) {
  850. /* Computing MAX */
  851. i__1 = maxwrk, i__2 = *n * (ilaenv_(&c__1, "DORGQR", " ", n, &
  852. c__1, n, &c_n1, (ftnlen)6, (ftnlen)1) + 7);
  853. maxwrk = f2cmax(i__1,i__2);
  854. }
  855. work[1] = (doublereal) maxwrk;
  856. if (*lwork < minwrk && ! lquery) {
  857. *info = -16;
  858. }
  859. }
  860. if (*info != 0) {
  861. i__1 = -(*info);
  862. xerbla_("DGGEV ", &i__1, (ftnlen)6);
  863. return;
  864. } else if (lquery) {
  865. return;
  866. }
  867. /* Quick return if possible */
  868. if (*n == 0) {
  869. return;
  870. }
  871. /* Get machine constants */
  872. eps = dlamch_("P");
  873. smlnum = dlamch_("S");
  874. bignum = 1. / smlnum;
  875. dlabad_(&smlnum, &bignum);
  876. smlnum = sqrt(smlnum) / eps;
  877. bignum = 1. / smlnum;
  878. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  879. anrm = dlange_("M", n, n, &a[a_offset], lda, &work[1]);
  880. ilascl = FALSE_;
  881. if (anrm > 0. && anrm < smlnum) {
  882. anrmto = smlnum;
  883. ilascl = TRUE_;
  884. } else if (anrm > bignum) {
  885. anrmto = bignum;
  886. ilascl = TRUE_;
  887. }
  888. if (ilascl) {
  889. dlascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
  890. ierr);
  891. }
  892. /* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
  893. bnrm = dlange_("M", n, n, &b[b_offset], ldb, &work[1]);
  894. ilbscl = FALSE_;
  895. if (bnrm > 0. && bnrm < smlnum) {
  896. bnrmto = smlnum;
  897. ilbscl = TRUE_;
  898. } else if (bnrm > bignum) {
  899. bnrmto = bignum;
  900. ilbscl = TRUE_;
  901. }
  902. if (ilbscl) {
  903. dlascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
  904. ierr);
  905. }
  906. /* Permute the matrices A, B to isolate eigenvalues if possible */
  907. /* (Workspace: need 6*N) */
  908. ileft = 1;
  909. iright = *n + 1;
  910. iwrk = iright + *n;
  911. dggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
  912. ileft], &work[iright], &work[iwrk], &ierr);
  913. /* Reduce B to triangular form (QR decomposition of B) */
  914. /* (Workspace: need N, prefer N*NB) */
  915. irows = ihi + 1 - ilo;
  916. if (ilv) {
  917. icols = *n + 1 - ilo;
  918. } else {
  919. icols = irows;
  920. }
  921. itau = iwrk;
  922. iwrk = itau + irows;
  923. i__1 = *lwork + 1 - iwrk;
  924. dgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
  925. iwrk], &i__1, &ierr);
  926. /* Apply the orthogonal transformation to matrix A */
  927. /* (Workspace: need N, prefer N*NB) */
  928. i__1 = *lwork + 1 - iwrk;
  929. dormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
  930. work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, &
  931. ierr);
  932. /* Initialize VL */
  933. /* (Workspace: need N, prefer N*NB) */
  934. if (ilvl) {
  935. dlaset_("Full", n, n, &c_b36, &c_b37, &vl[vl_offset], ldvl)
  936. ;
  937. if (irows > 1) {
  938. i__1 = irows - 1;
  939. i__2 = irows - 1;
  940. dlacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vl[
  941. ilo + 1 + ilo * vl_dim1], ldvl);
  942. }
  943. i__1 = *lwork + 1 - iwrk;
  944. dorgqr_(&irows, &irows, &irows, &vl[ilo + ilo * vl_dim1], ldvl, &work[
  945. itau], &work[iwrk], &i__1, &ierr);
  946. }
  947. /* Initialize VR */
  948. if (ilvr) {
  949. dlaset_("Full", n, n, &c_b36, &c_b37, &vr[vr_offset], ldvr)
  950. ;
  951. }
  952. /* Reduce to generalized Hessenberg form */
  953. /* (Workspace: none needed) */
  954. if (ilv) {
  955. /* Eigenvectors requested -- work on whole matrix. */
  956. dgghrd_(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
  957. ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &ierr);
  958. } else {
  959. dgghrd_("N", "N", &irows, &c__1, &irows, &a[ilo + ilo * a_dim1], lda,
  960. &b[ilo + ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[
  961. vr_offset], ldvr, &ierr);
  962. }
  963. /* Perform QZ algorithm (Compute eigenvalues, and optionally, the */
  964. /* Schur forms and Schur vectors) */
  965. /* (Workspace: need N) */
  966. iwrk = itau;
  967. if (ilv) {
  968. *(unsigned char *)chtemp = 'S';
  969. } else {
  970. *(unsigned char *)chtemp = 'E';
  971. }
  972. i__1 = *lwork + 1 - iwrk;
  973. dhgeqz_(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[
  974. b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset],
  975. ldvl, &vr[vr_offset], ldvr, &work[iwrk], &i__1, &ierr);
  976. if (ierr != 0) {
  977. if (ierr > 0 && ierr <= *n) {
  978. *info = ierr;
  979. } else if (ierr > *n && ierr <= *n << 1) {
  980. *info = ierr - *n;
  981. } else {
  982. *info = *n + 1;
  983. }
  984. goto L110;
  985. }
  986. /* Compute Eigenvectors */
  987. /* (Workspace: need 6*N) */
  988. if (ilv) {
  989. if (ilvl) {
  990. if (ilvr) {
  991. *(unsigned char *)chtemp = 'B';
  992. } else {
  993. *(unsigned char *)chtemp = 'L';
  994. }
  995. } else {
  996. *(unsigned char *)chtemp = 'R';
  997. }
  998. dtgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb,
  999. &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[
  1000. iwrk], &ierr);
  1001. if (ierr != 0) {
  1002. *info = *n + 2;
  1003. goto L110;
  1004. }
  1005. /* Undo balancing on VL and VR and normalization */
  1006. /* (Workspace: none needed) */
  1007. if (ilvl) {
  1008. dggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
  1009. vl[vl_offset], ldvl, &ierr);
  1010. i__1 = *n;
  1011. for (jc = 1; jc <= i__1; ++jc) {
  1012. if (alphai[jc] < 0.) {
  1013. goto L50;
  1014. }
  1015. temp = 0.;
  1016. if (alphai[jc] == 0.) {
  1017. i__2 = *n;
  1018. for (jr = 1; jr <= i__2; ++jr) {
  1019. /* Computing MAX */
  1020. d__2 = temp, d__3 = (d__1 = vl[jr + jc * vl_dim1],
  1021. abs(d__1));
  1022. temp = f2cmax(d__2,d__3);
  1023. /* L10: */
  1024. }
  1025. } else {
  1026. i__2 = *n;
  1027. for (jr = 1; jr <= i__2; ++jr) {
  1028. /* Computing MAX */
  1029. d__3 = temp, d__4 = (d__1 = vl[jr + jc * vl_dim1],
  1030. abs(d__1)) + (d__2 = vl[jr + (jc + 1) *
  1031. vl_dim1], abs(d__2));
  1032. temp = f2cmax(d__3,d__4);
  1033. /* L20: */
  1034. }
  1035. }
  1036. if (temp < smlnum) {
  1037. goto L50;
  1038. }
  1039. temp = 1. / temp;
  1040. if (alphai[jc] == 0.) {
  1041. i__2 = *n;
  1042. for (jr = 1; jr <= i__2; ++jr) {
  1043. vl[jr + jc * vl_dim1] *= temp;
  1044. /* L30: */
  1045. }
  1046. } else {
  1047. i__2 = *n;
  1048. for (jr = 1; jr <= i__2; ++jr) {
  1049. vl[jr + jc * vl_dim1] *= temp;
  1050. vl[jr + (jc + 1) * vl_dim1] *= temp;
  1051. /* L40: */
  1052. }
  1053. }
  1054. L50:
  1055. ;
  1056. }
  1057. }
  1058. if (ilvr) {
  1059. dggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
  1060. vr[vr_offset], ldvr, &ierr);
  1061. i__1 = *n;
  1062. for (jc = 1; jc <= i__1; ++jc) {
  1063. if (alphai[jc] < 0.) {
  1064. goto L100;
  1065. }
  1066. temp = 0.;
  1067. if (alphai[jc] == 0.) {
  1068. i__2 = *n;
  1069. for (jr = 1; jr <= i__2; ++jr) {
  1070. /* Computing MAX */
  1071. d__2 = temp, d__3 = (d__1 = vr[jr + jc * vr_dim1],
  1072. abs(d__1));
  1073. temp = f2cmax(d__2,d__3);
  1074. /* L60: */
  1075. }
  1076. } else {
  1077. i__2 = *n;
  1078. for (jr = 1; jr <= i__2; ++jr) {
  1079. /* Computing MAX */
  1080. d__3 = temp, d__4 = (d__1 = vr[jr + jc * vr_dim1],
  1081. abs(d__1)) + (d__2 = vr[jr + (jc + 1) *
  1082. vr_dim1], abs(d__2));
  1083. temp = f2cmax(d__3,d__4);
  1084. /* L70: */
  1085. }
  1086. }
  1087. if (temp < smlnum) {
  1088. goto L100;
  1089. }
  1090. temp = 1. / temp;
  1091. if (alphai[jc] == 0.) {
  1092. i__2 = *n;
  1093. for (jr = 1; jr <= i__2; ++jr) {
  1094. vr[jr + jc * vr_dim1] *= temp;
  1095. /* L80: */
  1096. }
  1097. } else {
  1098. i__2 = *n;
  1099. for (jr = 1; jr <= i__2; ++jr) {
  1100. vr[jr + jc * vr_dim1] *= temp;
  1101. vr[jr + (jc + 1) * vr_dim1] *= temp;
  1102. /* L90: */
  1103. }
  1104. }
  1105. L100:
  1106. ;
  1107. }
  1108. }
  1109. /* End of eigenvector calculation */
  1110. }
  1111. /* Undo scaling if necessary */
  1112. L110:
  1113. if (ilascl) {
  1114. dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
  1115. ierr);
  1116. dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
  1117. ierr);
  1118. }
  1119. if (ilbscl) {
  1120. dlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
  1121. ierr);
  1122. }
  1123. work[1] = (doublereal) maxwrk;
  1124. return;
  1125. /* End of DGGEV */
  1126. } /* dggev_ */