You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgesdd.c 76 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c_n1 = -1;
  485. static integer c__0 = 0;
  486. static doublereal c_b63 = 0.;
  487. static integer c__1 = 1;
  488. static doublereal c_b84 = 1.;
  489. /* > \brief \b DGESDD */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download DGESDD + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgesdd.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgesdd.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgesdd.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE DGESDD( JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT, */
  508. /* WORK, LWORK, IWORK, INFO ) */
  509. /* CHARACTER JOBZ */
  510. /* INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N */
  511. /* INTEGER IWORK( * ) */
  512. /* DOUBLE PRECISION A( LDA, * ), S( * ), U( LDU, * ), */
  513. /* $ VT( LDVT, * ), WORK( * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > DGESDD computes the singular value decomposition (SVD) of a real */
  520. /* > M-by-N matrix A, optionally computing the left and right singular */
  521. /* > vectors. If singular vectors are desired, it uses a */
  522. /* > divide-and-conquer algorithm. */
  523. /* > */
  524. /* > The SVD is written */
  525. /* > */
  526. /* > A = U * SIGMA * transpose(V) */
  527. /* > */
  528. /* > where SIGMA is an M-by-N matrix which is zero except for its */
  529. /* > f2cmin(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and */
  530. /* > V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA */
  531. /* > are the singular values of A; they are real and non-negative, and */
  532. /* > are returned in descending order. The first f2cmin(m,n) columns of */
  533. /* > U and V are the left and right singular vectors of A. */
  534. /* > */
  535. /* > Note that the routine returns VT = V**T, not V. */
  536. /* > */
  537. /* > The divide and conquer algorithm makes very mild assumptions about */
  538. /* > floating point arithmetic. It will work on machines with a guard */
  539. /* > digit in add/subtract, or on those binary machines without guard */
  540. /* > digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
  541. /* > Cray-2. It could conceivably fail on hexadecimal or decimal machines */
  542. /* > without guard digits, but we know of none. */
  543. /* > \endverbatim */
  544. /* Arguments: */
  545. /* ========== */
  546. /* > \param[in] JOBZ */
  547. /* > \verbatim */
  548. /* > JOBZ is CHARACTER*1 */
  549. /* > Specifies options for computing all or part of the matrix U: */
  550. /* > = 'A': all M columns of U and all N rows of V**T are */
  551. /* > returned in the arrays U and VT; */
  552. /* > = 'S': the first f2cmin(M,N) columns of U and the first */
  553. /* > f2cmin(M,N) rows of V**T are returned in the arrays U */
  554. /* > and VT; */
  555. /* > = 'O': If M >= N, the first N columns of U are overwritten */
  556. /* > on the array A and all rows of V**T are returned in */
  557. /* > the array VT; */
  558. /* > otherwise, all columns of U are returned in the */
  559. /* > array U and the first M rows of V**T are overwritten */
  560. /* > in the array A; */
  561. /* > = 'N': no columns of U or rows of V**T are computed. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] M */
  565. /* > \verbatim */
  566. /* > M is INTEGER */
  567. /* > The number of rows of the input matrix A. M >= 0. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] N */
  571. /* > \verbatim */
  572. /* > N is INTEGER */
  573. /* > The number of columns of the input matrix A. N >= 0. */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[in,out] A */
  577. /* > \verbatim */
  578. /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
  579. /* > On entry, the M-by-N matrix A. */
  580. /* > On exit, */
  581. /* > if JOBZ = 'O', A is overwritten with the first N columns */
  582. /* > of U (the left singular vectors, stored */
  583. /* > columnwise) if M >= N; */
  584. /* > A is overwritten with the first M rows */
  585. /* > of V**T (the right singular vectors, stored */
  586. /* > rowwise) otherwise. */
  587. /* > if JOBZ .ne. 'O', the contents of A are destroyed. */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[in] LDA */
  591. /* > \verbatim */
  592. /* > LDA is INTEGER */
  593. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[out] S */
  597. /* > \verbatim */
  598. /* > S is DOUBLE PRECISION array, dimension (f2cmin(M,N)) */
  599. /* > The singular values of A, sorted so that S(i) >= S(i+1). */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[out] U */
  603. /* > \verbatim */
  604. /* > U is DOUBLE PRECISION array, dimension (LDU,UCOL) */
  605. /* > UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N; */
  606. /* > UCOL = f2cmin(M,N) if JOBZ = 'S'. */
  607. /* > If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M */
  608. /* > orthogonal matrix U; */
  609. /* > if JOBZ = 'S', U contains the first f2cmin(M,N) columns of U */
  610. /* > (the left singular vectors, stored columnwise); */
  611. /* > if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced. */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[in] LDU */
  615. /* > \verbatim */
  616. /* > LDU is INTEGER */
  617. /* > The leading dimension of the array U. LDU >= 1; if */
  618. /* > JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M. */
  619. /* > \endverbatim */
  620. /* > */
  621. /* > \param[out] VT */
  622. /* > \verbatim */
  623. /* > VT is DOUBLE PRECISION array, dimension (LDVT,N) */
  624. /* > If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the */
  625. /* > N-by-N orthogonal matrix V**T; */
  626. /* > if JOBZ = 'S', VT contains the first f2cmin(M,N) rows of */
  627. /* > V**T (the right singular vectors, stored rowwise); */
  628. /* > if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced. */
  629. /* > \endverbatim */
  630. /* > */
  631. /* > \param[in] LDVT */
  632. /* > \verbatim */
  633. /* > LDVT is INTEGER */
  634. /* > The leading dimension of the array VT. LDVT >= 1; */
  635. /* > if JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N; */
  636. /* > if JOBZ = 'S', LDVT >= f2cmin(M,N). */
  637. /* > \endverbatim */
  638. /* > */
  639. /* > \param[out] WORK */
  640. /* > \verbatim */
  641. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  642. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK; */
  643. /* > \endverbatim */
  644. /* > */
  645. /* > \param[in] LWORK */
  646. /* > \verbatim */
  647. /* > LWORK is INTEGER */
  648. /* > The dimension of the array WORK. LWORK >= 1. */
  649. /* > If LWORK = -1, a workspace query is assumed. The optimal */
  650. /* > size for the WORK array is calculated and stored in WORK(1), */
  651. /* > and no other work except argument checking is performed. */
  652. /* > */
  653. /* > Let mx = f2cmax(M,N) and mn = f2cmin(M,N). */
  654. /* > If JOBZ = 'N', LWORK >= 3*mn + f2cmax( mx, 7*mn ). */
  655. /* > If JOBZ = 'O', LWORK >= 3*mn + f2cmax( mx, 5*mn*mn + 4*mn ). */
  656. /* > If JOBZ = 'S', LWORK >= 4*mn*mn + 7*mn. */
  657. /* > If JOBZ = 'A', LWORK >= 4*mn*mn + 6*mn + mx. */
  658. /* > These are not tight minimums in all cases; see comments inside code. */
  659. /* > For good performance, LWORK should generally be larger; */
  660. /* > a query is recommended. */
  661. /* > \endverbatim */
  662. /* > */
  663. /* > \param[out] IWORK */
  664. /* > \verbatim */
  665. /* > IWORK is INTEGER array, dimension (8*f2cmin(M,N)) */
  666. /* > \endverbatim */
  667. /* > */
  668. /* > \param[out] INFO */
  669. /* > \verbatim */
  670. /* > INFO is INTEGER */
  671. /* > = 0: successful exit. */
  672. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  673. /* > > 0: DBDSDC did not converge, updating process failed. */
  674. /* > \endverbatim */
  675. /* Authors: */
  676. /* ======== */
  677. /* > \author Univ. of Tennessee */
  678. /* > \author Univ. of California Berkeley */
  679. /* > \author Univ. of Colorado Denver */
  680. /* > \author NAG Ltd. */
  681. /* > \date June 2016 */
  682. /* > \ingroup doubleGEsing */
  683. /* > \par Contributors: */
  684. /* ================== */
  685. /* > */
  686. /* > Ming Gu and Huan Ren, Computer Science Division, University of */
  687. /* > California at Berkeley, USA */
  688. /* > */
  689. /* ===================================================================== */
  690. /* Subroutine */ void dgesdd_(char *jobz, integer *m, integer *n, doublereal *
  691. a, integer *lda, doublereal *s, doublereal *u, integer *ldu,
  692. doublereal *vt, integer *ldvt, doublereal *work, integer *lwork,
  693. integer *iwork, integer *info)
  694. {
  695. /* System generated locals */
  696. integer a_dim1, a_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1,
  697. i__2, i__3;
  698. /* Local variables */
  699. integer lwork_dorglq_mn__, lwork_dorglq_nn__, lwork_dorgqr_mm__,
  700. lwork_dorgqr_mn__, iscl;
  701. doublereal anrm;
  702. integer idum[1], ierr, itau, lwork_dormbr_qln_mm__, lwork_dormbr_qln_mn__,
  703. lwork_dormbr_qln_nn__, lwork_dormbr_prt_mm__,
  704. lwork_dormbr_prt_mn__, lwork_dormbr_prt_nn__, i__;
  705. extern /* Subroutine */ void dgemm_(char *, char *, integer *, integer *,
  706. integer *, doublereal *, doublereal *, integer *, doublereal *,
  707. integer *, doublereal *, doublereal *, integer *);
  708. extern logical lsame_(char *, char *);
  709. integer chunk, minmn, wrkbl, itaup, itauq, mnthr;
  710. logical wntqa;
  711. integer nwork;
  712. logical wntqn, wntqo, wntqs;
  713. integer ie, lwork_dorgbr_p_mm__;
  714. extern /* Subroutine */ void dbdsdc_(char *, char *, integer *, doublereal
  715. *, doublereal *, doublereal *, integer *, doublereal *, integer *,
  716. doublereal *, integer *, doublereal *, integer *, integer *);
  717. integer il, lwork_dorgbr_q_nn__;
  718. extern /* Subroutine */ void dgebrd_(integer *, integer *, doublereal *,
  719. integer *, doublereal *, doublereal *, doublereal *, doublereal *,
  720. doublereal *, integer *, integer *);
  721. extern doublereal dlamch_(char *);
  722. integer ir, bdspac;
  723. extern doublereal dlange_(char *, integer *, integer *, doublereal *,
  724. integer *, doublereal *);
  725. integer iu;
  726. extern /* Subroutine */ void dgelqf_(integer *, integer *, doublereal *,
  727. integer *, doublereal *, doublereal *, integer *, integer *),
  728. dlascl_(char *, integer *, integer *, doublereal *, doublereal *,
  729. integer *, integer *, doublereal *, integer *, integer *),
  730. dgeqrf_(integer *, integer *, doublereal *, integer *,
  731. doublereal *, doublereal *, integer *, integer *), dlacpy_(char *,
  732. integer *, integer *, doublereal *, integer *, doublereal *,
  733. integer *), dlaset_(char *, integer *, integer *,
  734. doublereal *, doublereal *, doublereal *, integer *);
  735. extern int xerbla_(char *, integer *, ftnlen);
  736. extern void dorgbr_(char *, integer *,
  737. integer *, integer *, doublereal *, integer *, doublereal *,
  738. doublereal *, integer *, integer *);
  739. extern logical disnan_(doublereal *);
  740. doublereal bignum;
  741. extern /* Subroutine */ void dormbr_(char *, char *, char *, integer *,
  742. integer *, integer *, doublereal *, integer *, doublereal *,
  743. doublereal *, integer *, doublereal *, integer *, integer *), dorglq_(integer *, integer *, integer *,
  744. doublereal *, integer *, doublereal *, doublereal *, integer *,
  745. integer *), dorgqr_(integer *, integer *, integer *, doublereal *,
  746. integer *, doublereal *, doublereal *, integer *, integer *);
  747. integer ldwrkl, ldwrkr, minwrk, ldwrku, maxwrk, ldwkvt;
  748. doublereal smlnum;
  749. logical wntqas, lquery;
  750. integer blk;
  751. doublereal dum[1], eps;
  752. integer ivt, lwork_dgebrd_mm__, lwork_dgebrd_mn__, lwork_dgebrd_nn__,
  753. lwork_dgelqf_mn__, lwork_dgeqrf_mn__;
  754. /* -- LAPACK driver routine (version 3.7.0) -- */
  755. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  756. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  757. /* June 2016 */
  758. /* ===================================================================== */
  759. /* Test the input arguments */
  760. /* Parameter adjustments */
  761. a_dim1 = *lda;
  762. a_offset = 1 + a_dim1 * 1;
  763. a -= a_offset;
  764. --s;
  765. u_dim1 = *ldu;
  766. u_offset = 1 + u_dim1 * 1;
  767. u -= u_offset;
  768. vt_dim1 = *ldvt;
  769. vt_offset = 1 + vt_dim1 * 1;
  770. vt -= vt_offset;
  771. --work;
  772. --iwork;
  773. /* Function Body */
  774. *info = 0;
  775. minmn = f2cmin(*m,*n);
  776. wntqa = lsame_(jobz, "A");
  777. wntqs = lsame_(jobz, "S");
  778. wntqas = wntqa || wntqs;
  779. wntqo = lsame_(jobz, "O");
  780. wntqn = lsame_(jobz, "N");
  781. lquery = *lwork == -1;
  782. if (! (wntqa || wntqs || wntqo || wntqn)) {
  783. *info = -1;
  784. } else if (*m < 0) {
  785. *info = -2;
  786. } else if (*n < 0) {
  787. *info = -3;
  788. } else if (*lda < f2cmax(1,*m)) {
  789. *info = -5;
  790. } else if (*ldu < 1 || wntqas && *ldu < *m || wntqo && *m < *n && *ldu < *
  791. m) {
  792. *info = -8;
  793. } else if (*ldvt < 1 || wntqa && *ldvt < *n || wntqs && *ldvt < minmn ||
  794. wntqo && *m >= *n && *ldvt < *n) {
  795. *info = -10;
  796. }
  797. /* Compute workspace */
  798. /* Note: Comments in the code beginning "Workspace:" describe the */
  799. /* minimal amount of workspace allocated at that point in the code, */
  800. /* as well as the preferred amount for good performance. */
  801. /* NB refers to the optimal block size for the immediately */
  802. /* following subroutine, as returned by ILAENV. */
  803. if (*info == 0) {
  804. minwrk = 1;
  805. maxwrk = 1;
  806. bdspac = 0;
  807. mnthr = (integer) (minmn * 11. / 6.);
  808. if (*m >= *n && minmn > 0) {
  809. /* Compute space needed for DBDSDC */
  810. if (wntqn) {
  811. /* dbdsdc needs only 4*N (or 6*N for uplo=L for LAPACK <= 3.6) */
  812. /* keep 7*N for backwards compatibility. */
  813. bdspac = *n * 7;
  814. } else {
  815. bdspac = *n * 3 * *n + (*n << 2);
  816. }
  817. /* Compute space preferred for each routine */
  818. dgebrd_(m, n, dum, m, dum, dum, dum, dum, dum, &c_n1, &ierr);
  819. lwork_dgebrd_mn__ = (integer) dum[0];
  820. dgebrd_(n, n, dum, n, dum, dum, dum, dum, dum, &c_n1, &ierr);
  821. lwork_dgebrd_nn__ = (integer) dum[0];
  822. dgeqrf_(m, n, dum, m, dum, dum, &c_n1, &ierr);
  823. lwork_dgeqrf_mn__ = (integer) dum[0];
  824. dorgbr_("Q", n, n, n, dum, n, dum, dum, &c_n1, &ierr);
  825. lwork_dorgbr_q_nn__ = (integer) dum[0];
  826. dorgqr_(m, m, n, dum, m, dum, dum, &c_n1, &ierr);
  827. lwork_dorgqr_mm__ = (integer) dum[0];
  828. dorgqr_(m, n, n, dum, m, dum, dum, &c_n1, &ierr);
  829. lwork_dorgqr_mn__ = (integer) dum[0];
  830. dormbr_("P", "R", "T", n, n, n, dum, n, dum, dum, n, dum, &c_n1, &
  831. ierr);
  832. lwork_dormbr_prt_nn__ = (integer) dum[0];
  833. dormbr_("Q", "L", "N", n, n, n, dum, n, dum, dum, n, dum, &c_n1, &
  834. ierr);
  835. lwork_dormbr_qln_nn__ = (integer) dum[0];
  836. dormbr_("Q", "L", "N", m, n, n, dum, m, dum, dum, m, dum, &c_n1, &
  837. ierr);
  838. lwork_dormbr_qln_mn__ = (integer) dum[0];
  839. dormbr_("Q", "L", "N", m, m, n, dum, m, dum, dum, m, dum, &c_n1, &
  840. ierr);
  841. lwork_dormbr_qln_mm__ = (integer) dum[0];
  842. if (*m >= mnthr) {
  843. if (wntqn) {
  844. /* Path 1 (M >> N, JOBZ='N') */
  845. wrkbl = *n + lwork_dgeqrf_mn__;
  846. /* Computing MAX */
  847. i__1 = wrkbl, i__2 = *n * 3 + lwork_dgebrd_nn__;
  848. wrkbl = f2cmax(i__1,i__2);
  849. /* Computing MAX */
  850. i__1 = wrkbl, i__2 = bdspac + *n;
  851. maxwrk = f2cmax(i__1,i__2);
  852. minwrk = bdspac + *n;
  853. } else if (wntqo) {
  854. /* Path 2 (M >> N, JOBZ='O') */
  855. wrkbl = *n + lwork_dgeqrf_mn__;
  856. /* Computing MAX */
  857. i__1 = wrkbl, i__2 = *n + lwork_dorgqr_mn__;
  858. wrkbl = f2cmax(i__1,i__2);
  859. /* Computing MAX */
  860. i__1 = wrkbl, i__2 = *n * 3 + lwork_dgebrd_nn__;
  861. wrkbl = f2cmax(i__1,i__2);
  862. /* Computing MAX */
  863. i__1 = wrkbl, i__2 = *n * 3 + lwork_dormbr_qln_nn__;
  864. wrkbl = f2cmax(i__1,i__2);
  865. /* Computing MAX */
  866. i__1 = wrkbl, i__2 = *n * 3 + lwork_dormbr_prt_nn__;
  867. wrkbl = f2cmax(i__1,i__2);
  868. /* Computing MAX */
  869. i__1 = wrkbl, i__2 = *n * 3 + bdspac;
  870. wrkbl = f2cmax(i__1,i__2);
  871. maxwrk = wrkbl + (*n << 1) * *n;
  872. minwrk = bdspac + (*n << 1) * *n + *n * 3;
  873. } else if (wntqs) {
  874. /* Path 3 (M >> N, JOBZ='S') */
  875. wrkbl = *n + lwork_dgeqrf_mn__;
  876. /* Computing MAX */
  877. i__1 = wrkbl, i__2 = *n + lwork_dorgqr_mn__;
  878. wrkbl = f2cmax(i__1,i__2);
  879. /* Computing MAX */
  880. i__1 = wrkbl, i__2 = *n * 3 + lwork_dgebrd_nn__;
  881. wrkbl = f2cmax(i__1,i__2);
  882. /* Computing MAX */
  883. i__1 = wrkbl, i__2 = *n * 3 + lwork_dormbr_qln_nn__;
  884. wrkbl = f2cmax(i__1,i__2);
  885. /* Computing MAX */
  886. i__1 = wrkbl, i__2 = *n * 3 + lwork_dormbr_prt_nn__;
  887. wrkbl = f2cmax(i__1,i__2);
  888. /* Computing MAX */
  889. i__1 = wrkbl, i__2 = *n * 3 + bdspac;
  890. wrkbl = f2cmax(i__1,i__2);
  891. maxwrk = wrkbl + *n * *n;
  892. minwrk = bdspac + *n * *n + *n * 3;
  893. } else if (wntqa) {
  894. /* Path 4 (M >> N, JOBZ='A') */
  895. wrkbl = *n + lwork_dgeqrf_mn__;
  896. /* Computing MAX */
  897. i__1 = wrkbl, i__2 = *n + lwork_dorgqr_mm__;
  898. wrkbl = f2cmax(i__1,i__2);
  899. /* Computing MAX */
  900. i__1 = wrkbl, i__2 = *n * 3 + lwork_dgebrd_nn__;
  901. wrkbl = f2cmax(i__1,i__2);
  902. /* Computing MAX */
  903. i__1 = wrkbl, i__2 = *n * 3 + lwork_dormbr_qln_nn__;
  904. wrkbl = f2cmax(i__1,i__2);
  905. /* Computing MAX */
  906. i__1 = wrkbl, i__2 = *n * 3 + lwork_dormbr_prt_nn__;
  907. wrkbl = f2cmax(i__1,i__2);
  908. /* Computing MAX */
  909. i__1 = wrkbl, i__2 = *n * 3 + bdspac;
  910. wrkbl = f2cmax(i__1,i__2);
  911. maxwrk = wrkbl + *n * *n;
  912. /* Computing MAX */
  913. i__1 = *n * 3 + bdspac, i__2 = *n + *m;
  914. minwrk = *n * *n + f2cmax(i__1,i__2);
  915. }
  916. } else {
  917. /* Path 5 (M >= N, but not much larger) */
  918. wrkbl = *n * 3 + lwork_dgebrd_mn__;
  919. if (wntqn) {
  920. /* Path 5n (M >= N, jobz='N') */
  921. /* Computing MAX */
  922. i__1 = wrkbl, i__2 = *n * 3 + bdspac;
  923. maxwrk = f2cmax(i__1,i__2);
  924. minwrk = *n * 3 + f2cmax(*m,bdspac);
  925. } else if (wntqo) {
  926. /* Path 5o (M >= N, jobz='O') */
  927. /* Computing MAX */
  928. i__1 = wrkbl, i__2 = *n * 3 + lwork_dormbr_prt_nn__;
  929. wrkbl = f2cmax(i__1,i__2);
  930. /* Computing MAX */
  931. i__1 = wrkbl, i__2 = *n * 3 + lwork_dormbr_qln_mn__;
  932. wrkbl = f2cmax(i__1,i__2);
  933. /* Computing MAX */
  934. i__1 = wrkbl, i__2 = *n * 3 + bdspac;
  935. wrkbl = f2cmax(i__1,i__2);
  936. maxwrk = wrkbl + *m * *n;
  937. /* Computing MAX */
  938. i__1 = *m, i__2 = *n * *n + bdspac;
  939. minwrk = *n * 3 + f2cmax(i__1,i__2);
  940. } else if (wntqs) {
  941. /* Path 5s (M >= N, jobz='S') */
  942. /* Computing MAX */
  943. i__1 = wrkbl, i__2 = *n * 3 + lwork_dormbr_qln_mn__;
  944. wrkbl = f2cmax(i__1,i__2);
  945. /* Computing MAX */
  946. i__1 = wrkbl, i__2 = *n * 3 + lwork_dormbr_prt_nn__;
  947. wrkbl = f2cmax(i__1,i__2);
  948. /* Computing MAX */
  949. i__1 = wrkbl, i__2 = *n * 3 + bdspac;
  950. maxwrk = f2cmax(i__1,i__2);
  951. minwrk = *n * 3 + f2cmax(*m,bdspac);
  952. } else if (wntqa) {
  953. /* Path 5a (M >= N, jobz='A') */
  954. /* Computing MAX */
  955. i__1 = wrkbl, i__2 = *n * 3 + lwork_dormbr_qln_mm__;
  956. wrkbl = f2cmax(i__1,i__2);
  957. /* Computing MAX */
  958. i__1 = wrkbl, i__2 = *n * 3 + lwork_dormbr_prt_nn__;
  959. wrkbl = f2cmax(i__1,i__2);
  960. /* Computing MAX */
  961. i__1 = wrkbl, i__2 = *n * 3 + bdspac;
  962. maxwrk = f2cmax(i__1,i__2);
  963. minwrk = *n * 3 + f2cmax(*m,bdspac);
  964. }
  965. }
  966. } else if (minmn > 0) {
  967. /* Compute space needed for DBDSDC */
  968. if (wntqn) {
  969. /* dbdsdc needs only 4*N (or 6*N for uplo=L for LAPACK <= 3.6) */
  970. /* keep 7*N for backwards compatibility. */
  971. bdspac = *m * 7;
  972. } else {
  973. bdspac = *m * 3 * *m + (*m << 2);
  974. }
  975. /* Compute space preferred for each routine */
  976. dgebrd_(m, n, dum, m, dum, dum, dum, dum, dum, &c_n1, &ierr);
  977. lwork_dgebrd_mn__ = (integer) dum[0];
  978. dgebrd_(m, m, &a[a_offset], m, &s[1], dum, dum, dum, dum, &c_n1, &
  979. ierr);
  980. lwork_dgebrd_mm__ = (integer) dum[0];
  981. dgelqf_(m, n, &a[a_offset], m, dum, dum, &c_n1, &ierr);
  982. lwork_dgelqf_mn__ = (integer) dum[0];
  983. dorglq_(n, n, m, dum, n, dum, dum, &c_n1, &ierr);
  984. lwork_dorglq_nn__ = (integer) dum[0];
  985. dorglq_(m, n, m, &a[a_offset], m, dum, dum, &c_n1, &ierr);
  986. lwork_dorglq_mn__ = (integer) dum[0];
  987. dorgbr_("P", m, m, m, &a[a_offset], n, dum, dum, &c_n1, &ierr);
  988. lwork_dorgbr_p_mm__ = (integer) dum[0];
  989. dormbr_("P", "R", "T", m, m, m, dum, m, dum, dum, m, dum, &c_n1, &
  990. ierr);
  991. lwork_dormbr_prt_mm__ = (integer) dum[0];
  992. dormbr_("P", "R", "T", m, n, m, dum, m, dum, dum, m, dum, &c_n1, &
  993. ierr);
  994. lwork_dormbr_prt_mn__ = (integer) dum[0];
  995. dormbr_("P", "R", "T", n, n, m, dum, n, dum, dum, n, dum, &c_n1, &
  996. ierr);
  997. lwork_dormbr_prt_nn__ = (integer) dum[0];
  998. dormbr_("Q", "L", "N", m, m, m, dum, m, dum, dum, m, dum, &c_n1, &
  999. ierr);
  1000. lwork_dormbr_qln_mm__ = (integer) dum[0];
  1001. if (*n >= mnthr) {
  1002. if (wntqn) {
  1003. /* Path 1t (N >> M, JOBZ='N') */
  1004. wrkbl = *m + lwork_dgelqf_mn__;
  1005. /* Computing MAX */
  1006. i__1 = wrkbl, i__2 = *m * 3 + lwork_dgebrd_mm__;
  1007. wrkbl = f2cmax(i__1,i__2);
  1008. /* Computing MAX */
  1009. i__1 = wrkbl, i__2 = bdspac + *m;
  1010. maxwrk = f2cmax(i__1,i__2);
  1011. minwrk = bdspac + *m;
  1012. } else if (wntqo) {
  1013. /* Path 2t (N >> M, JOBZ='O') */
  1014. wrkbl = *m + lwork_dgelqf_mn__;
  1015. /* Computing MAX */
  1016. i__1 = wrkbl, i__2 = *m + lwork_dorglq_mn__;
  1017. wrkbl = f2cmax(i__1,i__2);
  1018. /* Computing MAX */
  1019. i__1 = wrkbl, i__2 = *m * 3 + lwork_dgebrd_mm__;
  1020. wrkbl = f2cmax(i__1,i__2);
  1021. /* Computing MAX */
  1022. i__1 = wrkbl, i__2 = *m * 3 + lwork_dormbr_qln_mm__;
  1023. wrkbl = f2cmax(i__1,i__2);
  1024. /* Computing MAX */
  1025. i__1 = wrkbl, i__2 = *m * 3 + lwork_dormbr_prt_mm__;
  1026. wrkbl = f2cmax(i__1,i__2);
  1027. /* Computing MAX */
  1028. i__1 = wrkbl, i__2 = *m * 3 + bdspac;
  1029. wrkbl = f2cmax(i__1,i__2);
  1030. maxwrk = wrkbl + (*m << 1) * *m;
  1031. minwrk = bdspac + (*m << 1) * *m + *m * 3;
  1032. } else if (wntqs) {
  1033. /* Path 3t (N >> M, JOBZ='S') */
  1034. wrkbl = *m + lwork_dgelqf_mn__;
  1035. /* Computing MAX */
  1036. i__1 = wrkbl, i__2 = *m + lwork_dorglq_mn__;
  1037. wrkbl = f2cmax(i__1,i__2);
  1038. /* Computing MAX */
  1039. i__1 = wrkbl, i__2 = *m * 3 + lwork_dgebrd_mm__;
  1040. wrkbl = f2cmax(i__1,i__2);
  1041. /* Computing MAX */
  1042. i__1 = wrkbl, i__2 = *m * 3 + lwork_dormbr_qln_mm__;
  1043. wrkbl = f2cmax(i__1,i__2);
  1044. /* Computing MAX */
  1045. i__1 = wrkbl, i__2 = *m * 3 + lwork_dormbr_prt_mm__;
  1046. wrkbl = f2cmax(i__1,i__2);
  1047. /* Computing MAX */
  1048. i__1 = wrkbl, i__2 = *m * 3 + bdspac;
  1049. wrkbl = f2cmax(i__1,i__2);
  1050. maxwrk = wrkbl + *m * *m;
  1051. minwrk = bdspac + *m * *m + *m * 3;
  1052. } else if (wntqa) {
  1053. /* Path 4t (N >> M, JOBZ='A') */
  1054. wrkbl = *m + lwork_dgelqf_mn__;
  1055. /* Computing MAX */
  1056. i__1 = wrkbl, i__2 = *m + lwork_dorglq_nn__;
  1057. wrkbl = f2cmax(i__1,i__2);
  1058. /* Computing MAX */
  1059. i__1 = wrkbl, i__2 = *m * 3 + lwork_dgebrd_mm__;
  1060. wrkbl = f2cmax(i__1,i__2);
  1061. /* Computing MAX */
  1062. i__1 = wrkbl, i__2 = *m * 3 + lwork_dormbr_qln_mm__;
  1063. wrkbl = f2cmax(i__1,i__2);
  1064. /* Computing MAX */
  1065. i__1 = wrkbl, i__2 = *m * 3 + lwork_dormbr_prt_mm__;
  1066. wrkbl = f2cmax(i__1,i__2);
  1067. /* Computing MAX */
  1068. i__1 = wrkbl, i__2 = *m * 3 + bdspac;
  1069. wrkbl = f2cmax(i__1,i__2);
  1070. maxwrk = wrkbl + *m * *m;
  1071. /* Computing MAX */
  1072. i__1 = *m * 3 + bdspac, i__2 = *m + *n;
  1073. minwrk = *m * *m + f2cmax(i__1,i__2);
  1074. }
  1075. } else {
  1076. /* Path 5t (N > M, but not much larger) */
  1077. wrkbl = *m * 3 + lwork_dgebrd_mn__;
  1078. if (wntqn) {
  1079. /* Path 5tn (N > M, jobz='N') */
  1080. /* Computing MAX */
  1081. i__1 = wrkbl, i__2 = *m * 3 + bdspac;
  1082. maxwrk = f2cmax(i__1,i__2);
  1083. minwrk = *m * 3 + f2cmax(*n,bdspac);
  1084. } else if (wntqo) {
  1085. /* Path 5to (N > M, jobz='O') */
  1086. /* Computing MAX */
  1087. i__1 = wrkbl, i__2 = *m * 3 + lwork_dormbr_qln_mm__;
  1088. wrkbl = f2cmax(i__1,i__2);
  1089. /* Computing MAX */
  1090. i__1 = wrkbl, i__2 = *m * 3 + lwork_dormbr_prt_mn__;
  1091. wrkbl = f2cmax(i__1,i__2);
  1092. /* Computing MAX */
  1093. i__1 = wrkbl, i__2 = *m * 3 + bdspac;
  1094. wrkbl = f2cmax(i__1,i__2);
  1095. maxwrk = wrkbl + *m * *n;
  1096. /* Computing MAX */
  1097. i__1 = *n, i__2 = *m * *m + bdspac;
  1098. minwrk = *m * 3 + f2cmax(i__1,i__2);
  1099. } else if (wntqs) {
  1100. /* Path 5ts (N > M, jobz='S') */
  1101. /* Computing MAX */
  1102. i__1 = wrkbl, i__2 = *m * 3 + lwork_dormbr_qln_mm__;
  1103. wrkbl = f2cmax(i__1,i__2);
  1104. /* Computing MAX */
  1105. i__1 = wrkbl, i__2 = *m * 3 + lwork_dormbr_prt_mn__;
  1106. wrkbl = f2cmax(i__1,i__2);
  1107. /* Computing MAX */
  1108. i__1 = wrkbl, i__2 = *m * 3 + bdspac;
  1109. maxwrk = f2cmax(i__1,i__2);
  1110. minwrk = *m * 3 + f2cmax(*n,bdspac);
  1111. } else if (wntqa) {
  1112. /* Path 5ta (N > M, jobz='A') */
  1113. /* Computing MAX */
  1114. i__1 = wrkbl, i__2 = *m * 3 + lwork_dormbr_qln_mm__;
  1115. wrkbl = f2cmax(i__1,i__2);
  1116. /* Computing MAX */
  1117. i__1 = wrkbl, i__2 = *m * 3 + lwork_dormbr_prt_nn__;
  1118. wrkbl = f2cmax(i__1,i__2);
  1119. /* Computing MAX */
  1120. i__1 = wrkbl, i__2 = *m * 3 + bdspac;
  1121. maxwrk = f2cmax(i__1,i__2);
  1122. minwrk = *m * 3 + f2cmax(*n,bdspac);
  1123. }
  1124. }
  1125. }
  1126. maxwrk = f2cmax(maxwrk,minwrk);
  1127. work[1] = (doublereal) maxwrk;
  1128. if (*lwork < minwrk && ! lquery) {
  1129. *info = -12;
  1130. }
  1131. }
  1132. if (*info != 0) {
  1133. i__1 = -(*info);
  1134. xerbla_("DGESDD", &i__1, (ftnlen)6);
  1135. return;
  1136. } else if (lquery) {
  1137. return;
  1138. }
  1139. /* Quick return if possible */
  1140. if (*m == 0 || *n == 0) {
  1141. return;
  1142. }
  1143. /* Get machine constants */
  1144. eps = dlamch_("P");
  1145. smlnum = sqrt(dlamch_("S")) / eps;
  1146. bignum = 1. / smlnum;
  1147. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  1148. anrm = dlange_("M", m, n, &a[a_offset], lda, dum);
  1149. if (disnan_(&anrm)) {
  1150. *info = -4;
  1151. return;
  1152. }
  1153. iscl = 0;
  1154. if (anrm > 0. && anrm < smlnum) {
  1155. iscl = 1;
  1156. dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, &
  1157. ierr);
  1158. } else if (anrm > bignum) {
  1159. iscl = 1;
  1160. dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, &
  1161. ierr);
  1162. }
  1163. if (*m >= *n) {
  1164. /* A has at least as many rows as columns. If A has sufficiently */
  1165. /* more rows than columns, first reduce using the QR */
  1166. /* decomposition (if sufficient workspace available) */
  1167. if (*m >= mnthr) {
  1168. if (wntqn) {
  1169. /* Path 1 (M >> N, JOBZ='N') */
  1170. /* No singular vectors to be computed */
  1171. itau = 1;
  1172. nwork = itau + *n;
  1173. /* Compute A=Q*R */
  1174. /* Workspace: need N [tau] + N [work] */
  1175. /* Workspace: prefer N [tau] + N*NB [work] */
  1176. i__1 = *lwork - nwork + 1;
  1177. dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  1178. i__1, &ierr);
  1179. /* Zero out below R */
  1180. i__1 = *n - 1;
  1181. i__2 = *n - 1;
  1182. dlaset_("L", &i__1, &i__2, &c_b63, &c_b63, &a[a_dim1 + 2],
  1183. lda);
  1184. ie = 1;
  1185. itauq = ie + *n;
  1186. itaup = itauq + *n;
  1187. nwork = itaup + *n;
  1188. /* Bidiagonalize R in A */
  1189. /* Workspace: need 3*N [e, tauq, taup] + N [work] */
  1190. /* Workspace: prefer 3*N [e, tauq, taup] + 2*N*NB [work] */
  1191. i__1 = *lwork - nwork + 1;
  1192. dgebrd_(n, n, &a[a_offset], lda, &s[1], &work[ie], &work[
  1193. itauq], &work[itaup], &work[nwork], &i__1, &ierr);
  1194. nwork = ie + *n;
  1195. /* Perform bidiagonal SVD, computing singular values only */
  1196. /* Workspace: need N [e] + BDSPAC */
  1197. dbdsdc_("U", "N", n, &s[1], &work[ie], dum, &c__1, dum, &c__1,
  1198. dum, idum, &work[nwork], &iwork[1], info);
  1199. } else if (wntqo) {
  1200. /* Path 2 (M >> N, JOBZ = 'O') */
  1201. /* N left singular vectors to be overwritten on A and */
  1202. /* N right singular vectors to be computed in VT */
  1203. ir = 1;
  1204. /* WORK(IR) is LDWRKR by N */
  1205. if (*lwork >= *lda * *n + *n * *n + *n * 3 + bdspac) {
  1206. ldwrkr = *lda;
  1207. } else {
  1208. ldwrkr = (*lwork - *n * *n - *n * 3 - bdspac) / *n;
  1209. }
  1210. itau = ir + ldwrkr * *n;
  1211. nwork = itau + *n;
  1212. /* Compute A=Q*R */
  1213. /* Workspace: need N*N [R] + N [tau] + N [work] */
  1214. /* Workspace: prefer N*N [R] + N [tau] + N*NB [work] */
  1215. i__1 = *lwork - nwork + 1;
  1216. dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  1217. i__1, &ierr);
  1218. /* Copy R to WORK(IR), zeroing out below it */
  1219. dlacpy_("U", n, n, &a[a_offset], lda, &work[ir], &ldwrkr);
  1220. i__1 = *n - 1;
  1221. i__2 = *n - 1;
  1222. dlaset_("L", &i__1, &i__2, &c_b63, &c_b63, &work[ir + 1], &
  1223. ldwrkr);
  1224. /* Generate Q in A */
  1225. /* Workspace: need N*N [R] + N [tau] + N [work] */
  1226. /* Workspace: prefer N*N [R] + N [tau] + N*NB [work] */
  1227. i__1 = *lwork - nwork + 1;
  1228. dorgqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[nwork],
  1229. &i__1, &ierr);
  1230. ie = itau;
  1231. itauq = ie + *n;
  1232. itaup = itauq + *n;
  1233. nwork = itaup + *n;
  1234. /* Bidiagonalize R in WORK(IR) */
  1235. /* Workspace: need N*N [R] + 3*N [e, tauq, taup] + N [work] */
  1236. /* Workspace: prefer N*N [R] + 3*N [e, tauq, taup] + 2*N*NB [work] */
  1237. i__1 = *lwork - nwork + 1;
  1238. dgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &work[ie], &work[
  1239. itauq], &work[itaup], &work[nwork], &i__1, &ierr);
  1240. /* WORK(IU) is N by N */
  1241. iu = nwork;
  1242. nwork = iu + *n * *n;
  1243. /* Perform bidiagonal SVD, computing left singular vectors */
  1244. /* of bidiagonal matrix in WORK(IU) and computing right */
  1245. /* singular vectors of bidiagonal matrix in VT */
  1246. /* Workspace: need N*N [R] + 3*N [e, tauq, taup] + N*N [U] + BDSPAC */
  1247. dbdsdc_("U", "I", n, &s[1], &work[ie], &work[iu], n, &vt[
  1248. vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
  1249. info);
  1250. /* Overwrite WORK(IU) by left singular vectors of R */
  1251. /* and VT by right singular vectors of R */
  1252. /* Workspace: need N*N [R] + 3*N [e, tauq, taup] + N*N [U] + N [work] */
  1253. /* Workspace: prefer N*N [R] + 3*N [e, tauq, taup] + N*N [U] + N*NB [work] */
  1254. i__1 = *lwork - nwork + 1;
  1255. dormbr_("Q", "L", "N", n, n, n, &work[ir], &ldwrkr, &work[
  1256. itauq], &work[iu], n, &work[nwork], &i__1, &ierr);
  1257. i__1 = *lwork - nwork + 1;
  1258. dormbr_("P", "R", "T", n, n, n, &work[ir], &ldwrkr, &work[
  1259. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
  1260. ierr);
  1261. /* Multiply Q in A by left singular vectors of R in */
  1262. /* WORK(IU), storing result in WORK(IR) and copying to A */
  1263. /* Workspace: need N*N [R] + 3*N [e, tauq, taup] + N*N [U] */
  1264. /* Workspace: prefer M*N [R] + 3*N [e, tauq, taup] + N*N [U] */
  1265. i__1 = *m;
  1266. i__2 = ldwrkr;
  1267. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
  1268. i__2) {
  1269. /* Computing MIN */
  1270. i__3 = *m - i__ + 1;
  1271. chunk = f2cmin(i__3,ldwrkr);
  1272. dgemm_("N", "N", &chunk, n, n, &c_b84, &a[i__ + a_dim1],
  1273. lda, &work[iu], n, &c_b63, &work[ir], &ldwrkr);
  1274. dlacpy_("F", &chunk, n, &work[ir], &ldwrkr, &a[i__ +
  1275. a_dim1], lda);
  1276. /* L10: */
  1277. }
  1278. } else if (wntqs) {
  1279. /* Path 3 (M >> N, JOBZ='S') */
  1280. /* N left singular vectors to be computed in U and */
  1281. /* N right singular vectors to be computed in VT */
  1282. ir = 1;
  1283. /* WORK(IR) is N by N */
  1284. ldwrkr = *n;
  1285. itau = ir + ldwrkr * *n;
  1286. nwork = itau + *n;
  1287. /* Compute A=Q*R */
  1288. /* Workspace: need N*N [R] + N [tau] + N [work] */
  1289. /* Workspace: prefer N*N [R] + N [tau] + N*NB [work] */
  1290. i__2 = *lwork - nwork + 1;
  1291. dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  1292. i__2, &ierr);
  1293. /* Copy R to WORK(IR), zeroing out below it */
  1294. dlacpy_("U", n, n, &a[a_offset], lda, &work[ir], &ldwrkr);
  1295. i__2 = *n - 1;
  1296. i__1 = *n - 1;
  1297. dlaset_("L", &i__2, &i__1, &c_b63, &c_b63, &work[ir + 1], &
  1298. ldwrkr);
  1299. /* Generate Q in A */
  1300. /* Workspace: need N*N [R] + N [tau] + N [work] */
  1301. /* Workspace: prefer N*N [R] + N [tau] + N*NB [work] */
  1302. i__2 = *lwork - nwork + 1;
  1303. dorgqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[nwork],
  1304. &i__2, &ierr);
  1305. ie = itau;
  1306. itauq = ie + *n;
  1307. itaup = itauq + *n;
  1308. nwork = itaup + *n;
  1309. /* Bidiagonalize R in WORK(IR) */
  1310. /* Workspace: need N*N [R] + 3*N [e, tauq, taup] + N [work] */
  1311. /* Workspace: prefer N*N [R] + 3*N [e, tauq, taup] + 2*N*NB [work] */
  1312. i__2 = *lwork - nwork + 1;
  1313. dgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &work[ie], &work[
  1314. itauq], &work[itaup], &work[nwork], &i__2, &ierr);
  1315. /* Perform bidiagonal SVD, computing left singular vectors */
  1316. /* of bidiagoal matrix in U and computing right singular */
  1317. /* vectors of bidiagonal matrix in VT */
  1318. /* Workspace: need N*N [R] + 3*N [e, tauq, taup] + BDSPAC */
  1319. dbdsdc_("U", "I", n, &s[1], &work[ie], &u[u_offset], ldu, &vt[
  1320. vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
  1321. info);
  1322. /* Overwrite U by left singular vectors of R and VT */
  1323. /* by right singular vectors of R */
  1324. /* Workspace: need N*N [R] + 3*N [e, tauq, taup] + N [work] */
  1325. /* Workspace: prefer N*N [R] + 3*N [e, tauq, taup] + N*NB [work] */
  1326. i__2 = *lwork - nwork + 1;
  1327. dormbr_("Q", "L", "N", n, n, n, &work[ir], &ldwrkr, &work[
  1328. itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
  1329. i__2 = *lwork - nwork + 1;
  1330. dormbr_("P", "R", "T", n, n, n, &work[ir], &ldwrkr, &work[
  1331. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
  1332. ierr);
  1333. /* Multiply Q in A by left singular vectors of R in */
  1334. /* WORK(IR), storing result in U */
  1335. /* Workspace: need N*N [R] */
  1336. dlacpy_("F", n, n, &u[u_offset], ldu, &work[ir], &ldwrkr);
  1337. dgemm_("N", "N", m, n, n, &c_b84, &a[a_offset], lda, &work[ir]
  1338. , &ldwrkr, &c_b63, &u[u_offset], ldu);
  1339. } else if (wntqa) {
  1340. /* Path 4 (M >> N, JOBZ='A') */
  1341. /* M left singular vectors to be computed in U and */
  1342. /* N right singular vectors to be computed in VT */
  1343. iu = 1;
  1344. /* WORK(IU) is N by N */
  1345. ldwrku = *n;
  1346. itau = iu + ldwrku * *n;
  1347. nwork = itau + *n;
  1348. /* Compute A=Q*R, copying result to U */
  1349. /* Workspace: need N*N [U] + N [tau] + N [work] */
  1350. /* Workspace: prefer N*N [U] + N [tau] + N*NB [work] */
  1351. i__2 = *lwork - nwork + 1;
  1352. dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  1353. i__2, &ierr);
  1354. dlacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu);
  1355. /* Generate Q in U */
  1356. /* Workspace: need N*N [U] + N [tau] + M [work] */
  1357. /* Workspace: prefer N*N [U] + N [tau] + M*NB [work] */
  1358. i__2 = *lwork - nwork + 1;
  1359. dorgqr_(m, m, n, &u[u_offset], ldu, &work[itau], &work[nwork],
  1360. &i__2, &ierr);
  1361. /* Produce R in A, zeroing out other entries */
  1362. i__2 = *n - 1;
  1363. i__1 = *n - 1;
  1364. dlaset_("L", &i__2, &i__1, &c_b63, &c_b63, &a[a_dim1 + 2],
  1365. lda);
  1366. ie = itau;
  1367. itauq = ie + *n;
  1368. itaup = itauq + *n;
  1369. nwork = itaup + *n;
  1370. /* Bidiagonalize R in A */
  1371. /* Workspace: need N*N [U] + 3*N [e, tauq, taup] + N [work] */
  1372. /* Workspace: prefer N*N [U] + 3*N [e, tauq, taup] + 2*N*NB [work] */
  1373. i__2 = *lwork - nwork + 1;
  1374. dgebrd_(n, n, &a[a_offset], lda, &s[1], &work[ie], &work[
  1375. itauq], &work[itaup], &work[nwork], &i__2, &ierr);
  1376. /* Perform bidiagonal SVD, computing left singular vectors */
  1377. /* of bidiagonal matrix in WORK(IU) and computing right */
  1378. /* singular vectors of bidiagonal matrix in VT */
  1379. /* Workspace: need N*N [U] + 3*N [e, tauq, taup] + BDSPAC */
  1380. dbdsdc_("U", "I", n, &s[1], &work[ie], &work[iu], n, &vt[
  1381. vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
  1382. info);
  1383. /* Overwrite WORK(IU) by left singular vectors of R and VT */
  1384. /* by right singular vectors of R */
  1385. /* Workspace: need N*N [U] + 3*N [e, tauq, taup] + N [work] */
  1386. /* Workspace: prefer N*N [U] + 3*N [e, tauq, taup] + N*NB [work] */
  1387. i__2 = *lwork - nwork + 1;
  1388. dormbr_("Q", "L", "N", n, n, n, &a[a_offset], lda, &work[
  1389. itauq], &work[iu], &ldwrku, &work[nwork], &i__2, &
  1390. ierr);
  1391. i__2 = *lwork - nwork + 1;
  1392. dormbr_("P", "R", "T", n, n, n, &a[a_offset], lda, &work[
  1393. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
  1394. ierr);
  1395. /* Multiply Q in U by left singular vectors of R in */
  1396. /* WORK(IU), storing result in A */
  1397. /* Workspace: need N*N [U] */
  1398. dgemm_("N", "N", m, n, n, &c_b84, &u[u_offset], ldu, &work[iu]
  1399. , &ldwrku, &c_b63, &a[a_offset], lda);
  1400. /* Copy left singular vectors of A from A to U */
  1401. dlacpy_("F", m, n, &a[a_offset], lda, &u[u_offset], ldu);
  1402. }
  1403. } else {
  1404. /* M .LT. MNTHR */
  1405. /* Path 5 (M >= N, but not much larger) */
  1406. /* Reduce to bidiagonal form without QR decomposition */
  1407. ie = 1;
  1408. itauq = ie + *n;
  1409. itaup = itauq + *n;
  1410. nwork = itaup + *n;
  1411. /* Bidiagonalize A */
  1412. /* Workspace: need 3*N [e, tauq, taup] + M [work] */
  1413. /* Workspace: prefer 3*N [e, tauq, taup] + (M+N)*NB [work] */
  1414. i__2 = *lwork - nwork + 1;
  1415. dgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
  1416. work[itaup], &work[nwork], &i__2, &ierr);
  1417. if (wntqn) {
  1418. /* Path 5n (M >= N, JOBZ='N') */
  1419. /* Perform bidiagonal SVD, only computing singular values */
  1420. /* Workspace: need 3*N [e, tauq, taup] + BDSPAC */
  1421. dbdsdc_("U", "N", n, &s[1], &work[ie], dum, &c__1, dum, &c__1,
  1422. dum, idum, &work[nwork], &iwork[1], info);
  1423. } else if (wntqo) {
  1424. /* Path 5o (M >= N, JOBZ='O') */
  1425. iu = nwork;
  1426. if (*lwork >= *m * *n + *n * 3 + bdspac) {
  1427. /* WORK( IU ) is M by N */
  1428. ldwrku = *m;
  1429. nwork = iu + ldwrku * *n;
  1430. dlaset_("F", m, n, &c_b63, &c_b63, &work[iu], &ldwrku);
  1431. /* IR is unused; silence compile warnings */
  1432. ir = -1;
  1433. } else {
  1434. /* WORK( IU ) is N by N */
  1435. ldwrku = *n;
  1436. nwork = iu + ldwrku * *n;
  1437. /* WORK(IR) is LDWRKR by N */
  1438. ir = nwork;
  1439. ldwrkr = (*lwork - *n * *n - *n * 3) / *n;
  1440. }
  1441. nwork = iu + ldwrku * *n;
  1442. /* Perform bidiagonal SVD, computing left singular vectors */
  1443. /* of bidiagonal matrix in WORK(IU) and computing right */
  1444. /* singular vectors of bidiagonal matrix in VT */
  1445. /* Workspace: need 3*N [e, tauq, taup] + N*N [U] + BDSPAC */
  1446. dbdsdc_("U", "I", n, &s[1], &work[ie], &work[iu], &ldwrku, &
  1447. vt[vt_offset], ldvt, dum, idum, &work[nwork], &iwork[
  1448. 1], info);
  1449. /* Overwrite VT by right singular vectors of A */
  1450. /* Workspace: need 3*N [e, tauq, taup] + N*N [U] + N [work] */
  1451. /* Workspace: prefer 3*N [e, tauq, taup] + N*N [U] + N*NB [work] */
  1452. i__2 = *lwork - nwork + 1;
  1453. dormbr_("P", "R", "T", n, n, n, &a[a_offset], lda, &work[
  1454. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
  1455. ierr);
  1456. if (*lwork >= *m * *n + *n * 3 + bdspac) {
  1457. /* Path 5o-fast */
  1458. /* Overwrite WORK(IU) by left singular vectors of A */
  1459. /* Workspace: need 3*N [e, tauq, taup] + M*N [U] + N [work] */
  1460. /* Workspace: prefer 3*N [e, tauq, taup] + M*N [U] + N*NB [work] */
  1461. i__2 = *lwork - nwork + 1;
  1462. dormbr_("Q", "L", "N", m, n, n, &a[a_offset], lda, &work[
  1463. itauq], &work[iu], &ldwrku, &work[nwork], &i__2, &
  1464. ierr);
  1465. /* Copy left singular vectors of A from WORK(IU) to A */
  1466. dlacpy_("F", m, n, &work[iu], &ldwrku, &a[a_offset], lda);
  1467. } else {
  1468. /* Path 5o-slow */
  1469. /* Generate Q in A */
  1470. /* Workspace: need 3*N [e, tauq, taup] + N*N [U] + N [work] */
  1471. /* Workspace: prefer 3*N [e, tauq, taup] + N*N [U] + N*NB [work] */
  1472. i__2 = *lwork - nwork + 1;
  1473. dorgbr_("Q", m, n, n, &a[a_offset], lda, &work[itauq], &
  1474. work[nwork], &i__2, &ierr);
  1475. /* Multiply Q in A by left singular vectors of */
  1476. /* bidiagonal matrix in WORK(IU), storing result in */
  1477. /* WORK(IR) and copying to A */
  1478. /* Workspace: need 3*N [e, tauq, taup] + N*N [U] + NB*N [R] */
  1479. /* Workspace: prefer 3*N [e, tauq, taup] + N*N [U] + M*N [R] */
  1480. i__2 = *m;
  1481. i__1 = ldwrkr;
  1482. for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
  1483. i__1) {
  1484. /* Computing MIN */
  1485. i__3 = *m - i__ + 1;
  1486. chunk = f2cmin(i__3,ldwrkr);
  1487. dgemm_("N", "N", &chunk, n, n, &c_b84, &a[i__ +
  1488. a_dim1], lda, &work[iu], &ldwrku, &c_b63, &
  1489. work[ir], &ldwrkr);
  1490. dlacpy_("F", &chunk, n, &work[ir], &ldwrkr, &a[i__ +
  1491. a_dim1], lda);
  1492. /* L20: */
  1493. }
  1494. }
  1495. } else if (wntqs) {
  1496. /* Path 5s (M >= N, JOBZ='S') */
  1497. /* Perform bidiagonal SVD, computing left singular vectors */
  1498. /* of bidiagonal matrix in U and computing right singular */
  1499. /* vectors of bidiagonal matrix in VT */
  1500. /* Workspace: need 3*N [e, tauq, taup] + BDSPAC */
  1501. dlaset_("F", m, n, &c_b63, &c_b63, &u[u_offset], ldu);
  1502. dbdsdc_("U", "I", n, &s[1], &work[ie], &u[u_offset], ldu, &vt[
  1503. vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
  1504. info);
  1505. /* Overwrite U by left singular vectors of A and VT */
  1506. /* by right singular vectors of A */
  1507. /* Workspace: need 3*N [e, tauq, taup] + N [work] */
  1508. /* Workspace: prefer 3*N [e, tauq, taup] + N*NB [work] */
  1509. i__1 = *lwork - nwork + 1;
  1510. dormbr_("Q", "L", "N", m, n, n, &a[a_offset], lda, &work[
  1511. itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
  1512. i__1 = *lwork - nwork + 1;
  1513. dormbr_("P", "R", "T", n, n, n, &a[a_offset], lda, &work[
  1514. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
  1515. ierr);
  1516. } else if (wntqa) {
  1517. /* Path 5a (M >= N, JOBZ='A') */
  1518. /* Perform bidiagonal SVD, computing left singular vectors */
  1519. /* of bidiagonal matrix in U and computing right singular */
  1520. /* vectors of bidiagonal matrix in VT */
  1521. /* Workspace: need 3*N [e, tauq, taup] + BDSPAC */
  1522. dlaset_("F", m, m, &c_b63, &c_b63, &u[u_offset], ldu);
  1523. dbdsdc_("U", "I", n, &s[1], &work[ie], &u[u_offset], ldu, &vt[
  1524. vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
  1525. info);
  1526. /* Set the right corner of U to identity matrix */
  1527. if (*m > *n) {
  1528. i__1 = *m - *n;
  1529. i__2 = *m - *n;
  1530. dlaset_("F", &i__1, &i__2, &c_b63, &c_b84, &u[*n + 1 + (*
  1531. n + 1) * u_dim1], ldu);
  1532. }
  1533. /* Overwrite U by left singular vectors of A and VT */
  1534. /* by right singular vectors of A */
  1535. /* Workspace: need 3*N [e, tauq, taup] + M [work] */
  1536. /* Workspace: prefer 3*N [e, tauq, taup] + M*NB [work] */
  1537. i__1 = *lwork - nwork + 1;
  1538. dormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
  1539. itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
  1540. i__1 = *lwork - nwork + 1;
  1541. dormbr_("P", "R", "T", n, n, m, &a[a_offset], lda, &work[
  1542. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
  1543. ierr);
  1544. }
  1545. }
  1546. } else {
  1547. /* A has more columns than rows. If A has sufficiently more */
  1548. /* columns than rows, first reduce using the LQ decomposition (if */
  1549. /* sufficient workspace available) */
  1550. if (*n >= mnthr) {
  1551. if (wntqn) {
  1552. /* Path 1t (N >> M, JOBZ='N') */
  1553. /* No singular vectors to be computed */
  1554. itau = 1;
  1555. nwork = itau + *m;
  1556. /* Compute A=L*Q */
  1557. /* Workspace: need M [tau] + M [work] */
  1558. /* Workspace: prefer M [tau] + M*NB [work] */
  1559. i__1 = *lwork - nwork + 1;
  1560. dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  1561. i__1, &ierr);
  1562. /* Zero out above L */
  1563. i__1 = *m - 1;
  1564. i__2 = *m - 1;
  1565. dlaset_("U", &i__1, &i__2, &c_b63, &c_b63, &a[(a_dim1 << 1) +
  1566. 1], lda);
  1567. ie = 1;
  1568. itauq = ie + *m;
  1569. itaup = itauq + *m;
  1570. nwork = itaup + *m;
  1571. /* Bidiagonalize L in A */
  1572. /* Workspace: need 3*M [e, tauq, taup] + M [work] */
  1573. /* Workspace: prefer 3*M [e, tauq, taup] + 2*M*NB [work] */
  1574. i__1 = *lwork - nwork + 1;
  1575. dgebrd_(m, m, &a[a_offset], lda, &s[1], &work[ie], &work[
  1576. itauq], &work[itaup], &work[nwork], &i__1, &ierr);
  1577. nwork = ie + *m;
  1578. /* Perform bidiagonal SVD, computing singular values only */
  1579. /* Workspace: need M [e] + BDSPAC */
  1580. dbdsdc_("U", "N", m, &s[1], &work[ie], dum, &c__1, dum, &c__1,
  1581. dum, idum, &work[nwork], &iwork[1], info);
  1582. } else if (wntqo) {
  1583. /* Path 2t (N >> M, JOBZ='O') */
  1584. /* M right singular vectors to be overwritten on A and */
  1585. /* M left singular vectors to be computed in U */
  1586. ivt = 1;
  1587. /* WORK(IVT) is M by M */
  1588. /* WORK(IL) is M by M; it is later resized to M by chunk for gemm */
  1589. il = ivt + *m * *m;
  1590. if (*lwork >= *m * *n + *m * *m + *m * 3 + bdspac) {
  1591. ldwrkl = *m;
  1592. chunk = *n;
  1593. } else {
  1594. ldwrkl = *m;
  1595. chunk = (*lwork - *m * *m) / *m;
  1596. }
  1597. itau = il + ldwrkl * *m;
  1598. nwork = itau + *m;
  1599. /* Compute A=L*Q */
  1600. /* Workspace: need M*M [VT] + M*M [L] + M [tau] + M [work] */
  1601. /* Workspace: prefer M*M [VT] + M*M [L] + M [tau] + M*NB [work] */
  1602. i__1 = *lwork - nwork + 1;
  1603. dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  1604. i__1, &ierr);
  1605. /* Copy L to WORK(IL), zeroing about above it */
  1606. dlacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwrkl);
  1607. i__1 = *m - 1;
  1608. i__2 = *m - 1;
  1609. dlaset_("U", &i__1, &i__2, &c_b63, &c_b63, &work[il + ldwrkl],
  1610. &ldwrkl);
  1611. /* Generate Q in A */
  1612. /* Workspace: need M*M [VT] + M*M [L] + M [tau] + M [work] */
  1613. /* Workspace: prefer M*M [VT] + M*M [L] + M [tau] + M*NB [work] */
  1614. i__1 = *lwork - nwork + 1;
  1615. dorglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[nwork],
  1616. &i__1, &ierr);
  1617. ie = itau;
  1618. itauq = ie + *m;
  1619. itaup = itauq + *m;
  1620. nwork = itaup + *m;
  1621. /* Bidiagonalize L in WORK(IL) */
  1622. /* Workspace: need M*M [VT] + M*M [L] + 3*M [e, tauq, taup] + M [work] */
  1623. /* Workspace: prefer M*M [VT] + M*M [L] + 3*M [e, tauq, taup] + 2*M*NB [work] */
  1624. i__1 = *lwork - nwork + 1;
  1625. dgebrd_(m, m, &work[il], &ldwrkl, &s[1], &work[ie], &work[
  1626. itauq], &work[itaup], &work[nwork], &i__1, &ierr);
  1627. /* Perform bidiagonal SVD, computing left singular vectors */
  1628. /* of bidiagonal matrix in U, and computing right singular */
  1629. /* vectors of bidiagonal matrix in WORK(IVT) */
  1630. /* Workspace: need M*M [VT] + M*M [L] + 3*M [e, tauq, taup] + BDSPAC */
  1631. dbdsdc_("U", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &
  1632. work[ivt], m, dum, idum, &work[nwork], &iwork[1],
  1633. info);
  1634. /* Overwrite U by left singular vectors of L and WORK(IVT) */
  1635. /* by right singular vectors of L */
  1636. /* Workspace: need M*M [VT] + M*M [L] + 3*M [e, tauq, taup] + M [work] */
  1637. /* Workspace: prefer M*M [VT] + M*M [L] + 3*M [e, tauq, taup] + M*NB [work] */
  1638. i__1 = *lwork - nwork + 1;
  1639. dormbr_("Q", "L", "N", m, m, m, &work[il], &ldwrkl, &work[
  1640. itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
  1641. i__1 = *lwork - nwork + 1;
  1642. dormbr_("P", "R", "T", m, m, m, &work[il], &ldwrkl, &work[
  1643. itaup], &work[ivt], m, &work[nwork], &i__1, &ierr);
  1644. /* Multiply right singular vectors of L in WORK(IVT) by Q */
  1645. /* in A, storing result in WORK(IL) and copying to A */
  1646. /* Workspace: need M*M [VT] + M*M [L] */
  1647. /* Workspace: prefer M*M [VT] + M*N [L] */
  1648. /* At this point, L is resized as M by chunk. */
  1649. i__1 = *n;
  1650. i__2 = chunk;
  1651. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
  1652. i__2) {
  1653. /* Computing MIN */
  1654. i__3 = *n - i__ + 1;
  1655. blk = f2cmin(i__3,chunk);
  1656. dgemm_("N", "N", m, &blk, m, &c_b84, &work[ivt], m, &a[
  1657. i__ * a_dim1 + 1], lda, &c_b63, &work[il], &
  1658. ldwrkl);
  1659. dlacpy_("F", m, &blk, &work[il], &ldwrkl, &a[i__ * a_dim1
  1660. + 1], lda);
  1661. /* L30: */
  1662. }
  1663. } else if (wntqs) {
  1664. /* Path 3t (N >> M, JOBZ='S') */
  1665. /* M right singular vectors to be computed in VT and */
  1666. /* M left singular vectors to be computed in U */
  1667. il = 1;
  1668. /* WORK(IL) is M by M */
  1669. ldwrkl = *m;
  1670. itau = il + ldwrkl * *m;
  1671. nwork = itau + *m;
  1672. /* Compute A=L*Q */
  1673. /* Workspace: need M*M [L] + M [tau] + M [work] */
  1674. /* Workspace: prefer M*M [L] + M [tau] + M*NB [work] */
  1675. i__2 = *lwork - nwork + 1;
  1676. dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  1677. i__2, &ierr);
  1678. /* Copy L to WORK(IL), zeroing out above it */
  1679. dlacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwrkl);
  1680. i__2 = *m - 1;
  1681. i__1 = *m - 1;
  1682. dlaset_("U", &i__2, &i__1, &c_b63, &c_b63, &work[il + ldwrkl],
  1683. &ldwrkl);
  1684. /* Generate Q in A */
  1685. /* Workspace: need M*M [L] + M [tau] + M [work] */
  1686. /* Workspace: prefer M*M [L] + M [tau] + M*NB [work] */
  1687. i__2 = *lwork - nwork + 1;
  1688. dorglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[nwork],
  1689. &i__2, &ierr);
  1690. ie = itau;
  1691. itauq = ie + *m;
  1692. itaup = itauq + *m;
  1693. nwork = itaup + *m;
  1694. /* Bidiagonalize L in WORK(IU). */
  1695. /* Workspace: need M*M [L] + 3*M [e, tauq, taup] + M [work] */
  1696. /* Workspace: prefer M*M [L] + 3*M [e, tauq, taup] + 2*M*NB [work] */
  1697. i__2 = *lwork - nwork + 1;
  1698. dgebrd_(m, m, &work[il], &ldwrkl, &s[1], &work[ie], &work[
  1699. itauq], &work[itaup], &work[nwork], &i__2, &ierr);
  1700. /* Perform bidiagonal SVD, computing left singular vectors */
  1701. /* of bidiagonal matrix in U and computing right singular */
  1702. /* vectors of bidiagonal matrix in VT */
  1703. /* Workspace: need M*M [L] + 3*M [e, tauq, taup] + BDSPAC */
  1704. dbdsdc_("U", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &vt[
  1705. vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
  1706. info);
  1707. /* Overwrite U by left singular vectors of L and VT */
  1708. /* by right singular vectors of L */
  1709. /* Workspace: need M*M [L] + 3*M [e, tauq, taup] + M [work] */
  1710. /* Workspace: prefer M*M [L] + 3*M [e, tauq, taup] + M*NB [work] */
  1711. i__2 = *lwork - nwork + 1;
  1712. dormbr_("Q", "L", "N", m, m, m, &work[il], &ldwrkl, &work[
  1713. itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
  1714. i__2 = *lwork - nwork + 1;
  1715. dormbr_("P", "R", "T", m, m, m, &work[il], &ldwrkl, &work[
  1716. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
  1717. ierr);
  1718. /* Multiply right singular vectors of L in WORK(IL) by */
  1719. /* Q in A, storing result in VT */
  1720. /* Workspace: need M*M [L] */
  1721. dlacpy_("F", m, m, &vt[vt_offset], ldvt, &work[il], &ldwrkl);
  1722. dgemm_("N", "N", m, n, m, &c_b84, &work[il], &ldwrkl, &a[
  1723. a_offset], lda, &c_b63, &vt[vt_offset], ldvt);
  1724. } else if (wntqa) {
  1725. /* Path 4t (N >> M, JOBZ='A') */
  1726. /* N right singular vectors to be computed in VT and */
  1727. /* M left singular vectors to be computed in U */
  1728. ivt = 1;
  1729. /* WORK(IVT) is M by M */
  1730. ldwkvt = *m;
  1731. itau = ivt + ldwkvt * *m;
  1732. nwork = itau + *m;
  1733. /* Compute A=L*Q, copying result to VT */
  1734. /* Workspace: need M*M [VT] + M [tau] + M [work] */
  1735. /* Workspace: prefer M*M [VT] + M [tau] + M*NB [work] */
  1736. i__2 = *lwork - nwork + 1;
  1737. dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  1738. i__2, &ierr);
  1739. dlacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
  1740. /* Generate Q in VT */
  1741. /* Workspace: need M*M [VT] + M [tau] + N [work] */
  1742. /* Workspace: prefer M*M [VT] + M [tau] + N*NB [work] */
  1743. i__2 = *lwork - nwork + 1;
  1744. dorglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], &work[
  1745. nwork], &i__2, &ierr);
  1746. /* Produce L in A, zeroing out other entries */
  1747. i__2 = *m - 1;
  1748. i__1 = *m - 1;
  1749. dlaset_("U", &i__2, &i__1, &c_b63, &c_b63, &a[(a_dim1 << 1) +
  1750. 1], lda);
  1751. ie = itau;
  1752. itauq = ie + *m;
  1753. itaup = itauq + *m;
  1754. nwork = itaup + *m;
  1755. /* Bidiagonalize L in A */
  1756. /* Workspace: need M*M [VT] + 3*M [e, tauq, taup] + M [work] */
  1757. /* Workspace: prefer M*M [VT] + 3*M [e, tauq, taup] + 2*M*NB [work] */
  1758. i__2 = *lwork - nwork + 1;
  1759. dgebrd_(m, m, &a[a_offset], lda, &s[1], &work[ie], &work[
  1760. itauq], &work[itaup], &work[nwork], &i__2, &ierr);
  1761. /* Perform bidiagonal SVD, computing left singular vectors */
  1762. /* of bidiagonal matrix in U and computing right singular */
  1763. /* vectors of bidiagonal matrix in WORK(IVT) */
  1764. /* Workspace: need M*M [VT] + 3*M [e, tauq, taup] + BDSPAC */
  1765. dbdsdc_("U", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &
  1766. work[ivt], &ldwkvt, dum, idum, &work[nwork], &iwork[1]
  1767. , info);
  1768. /* Overwrite U by left singular vectors of L and WORK(IVT) */
  1769. /* by right singular vectors of L */
  1770. /* Workspace: need M*M [VT] + 3*M [e, tauq, taup]+ M [work] */
  1771. /* Workspace: prefer M*M [VT] + 3*M [e, tauq, taup]+ M*NB [work] */
  1772. i__2 = *lwork - nwork + 1;
  1773. dormbr_("Q", "L", "N", m, m, m, &a[a_offset], lda, &work[
  1774. itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
  1775. i__2 = *lwork - nwork + 1;
  1776. dormbr_("P", "R", "T", m, m, m, &a[a_offset], lda, &work[
  1777. itaup], &work[ivt], &ldwkvt, &work[nwork], &i__2, &
  1778. ierr);
  1779. /* Multiply right singular vectors of L in WORK(IVT) by */
  1780. /* Q in VT, storing result in A */
  1781. /* Workspace: need M*M [VT] */
  1782. dgemm_("N", "N", m, n, m, &c_b84, &work[ivt], &ldwkvt, &vt[
  1783. vt_offset], ldvt, &c_b63, &a[a_offset], lda);
  1784. /* Copy right singular vectors of A from A to VT */
  1785. dlacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
  1786. }
  1787. } else {
  1788. /* N .LT. MNTHR */
  1789. /* Path 5t (N > M, but not much larger) */
  1790. /* Reduce to bidiagonal form without LQ decomposition */
  1791. ie = 1;
  1792. itauq = ie + *m;
  1793. itaup = itauq + *m;
  1794. nwork = itaup + *m;
  1795. /* Bidiagonalize A */
  1796. /* Workspace: need 3*M [e, tauq, taup] + N [work] */
  1797. /* Workspace: prefer 3*M [e, tauq, taup] + (M+N)*NB [work] */
  1798. i__2 = *lwork - nwork + 1;
  1799. dgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
  1800. work[itaup], &work[nwork], &i__2, &ierr);
  1801. if (wntqn) {
  1802. /* Path 5tn (N > M, JOBZ='N') */
  1803. /* Perform bidiagonal SVD, only computing singular values */
  1804. /* Workspace: need 3*M [e, tauq, taup] + BDSPAC */
  1805. dbdsdc_("L", "N", m, &s[1], &work[ie], dum, &c__1, dum, &c__1,
  1806. dum, idum, &work[nwork], &iwork[1], info);
  1807. } else if (wntqo) {
  1808. /* Path 5to (N > M, JOBZ='O') */
  1809. ldwkvt = *m;
  1810. ivt = nwork;
  1811. if (*lwork >= *m * *n + *m * 3 + bdspac) {
  1812. /* WORK( IVT ) is M by N */
  1813. dlaset_("F", m, n, &c_b63, &c_b63, &work[ivt], &ldwkvt);
  1814. nwork = ivt + ldwkvt * *n;
  1815. /* IL is unused; silence compile warnings */
  1816. il = -1;
  1817. } else {
  1818. /* WORK( IVT ) is M by M */
  1819. nwork = ivt + ldwkvt * *m;
  1820. il = nwork;
  1821. /* WORK(IL) is M by CHUNK */
  1822. chunk = (*lwork - *m * *m - *m * 3) / *m;
  1823. }
  1824. /* Perform bidiagonal SVD, computing left singular vectors */
  1825. /* of bidiagonal matrix in U and computing right singular */
  1826. /* vectors of bidiagonal matrix in WORK(IVT) */
  1827. /* Workspace: need 3*M [e, tauq, taup] + M*M [VT] + BDSPAC */
  1828. dbdsdc_("L", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &
  1829. work[ivt], &ldwkvt, dum, idum, &work[nwork], &iwork[1]
  1830. , info);
  1831. /* Overwrite U by left singular vectors of A */
  1832. /* Workspace: need 3*M [e, tauq, taup] + M*M [VT] + M [work] */
  1833. /* Workspace: prefer 3*M [e, tauq, taup] + M*M [VT] + M*NB [work] */
  1834. i__2 = *lwork - nwork + 1;
  1835. dormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
  1836. itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
  1837. if (*lwork >= *m * *n + *m * 3 + bdspac) {
  1838. /* Path 5to-fast */
  1839. /* Overwrite WORK(IVT) by left singular vectors of A */
  1840. /* Workspace: need 3*M [e, tauq, taup] + M*N [VT] + M [work] */
  1841. /* Workspace: prefer 3*M [e, tauq, taup] + M*N [VT] + M*NB [work] */
  1842. i__2 = *lwork - nwork + 1;
  1843. dormbr_("P", "R", "T", m, n, m, &a[a_offset], lda, &work[
  1844. itaup], &work[ivt], &ldwkvt, &work[nwork], &i__2,
  1845. &ierr);
  1846. /* Copy right singular vectors of A from WORK(IVT) to A */
  1847. dlacpy_("F", m, n, &work[ivt], &ldwkvt, &a[a_offset], lda);
  1848. } else {
  1849. /* Path 5to-slow */
  1850. /* Generate P**T in A */
  1851. /* Workspace: need 3*M [e, tauq, taup] + M*M [VT] + M [work] */
  1852. /* Workspace: prefer 3*M [e, tauq, taup] + M*M [VT] + M*NB [work] */
  1853. i__2 = *lwork - nwork + 1;
  1854. dorgbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], &
  1855. work[nwork], &i__2, &ierr);
  1856. /* Multiply Q in A by right singular vectors of */
  1857. /* bidiagonal matrix in WORK(IVT), storing result in */
  1858. /* WORK(IL) and copying to A */
  1859. /* Workspace: need 3*M [e, tauq, taup] + M*M [VT] + M*NB [L] */
  1860. /* Workspace: prefer 3*M [e, tauq, taup] + M*M [VT] + M*N [L] */
  1861. i__2 = *n;
  1862. i__1 = chunk;
  1863. for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
  1864. i__1) {
  1865. /* Computing MIN */
  1866. i__3 = *n - i__ + 1;
  1867. blk = f2cmin(i__3,chunk);
  1868. dgemm_("N", "N", m, &blk, m, &c_b84, &work[ivt], &
  1869. ldwkvt, &a[i__ * a_dim1 + 1], lda, &c_b63, &
  1870. work[il], m);
  1871. dlacpy_("F", m, &blk, &work[il], m, &a[i__ * a_dim1 +
  1872. 1], lda);
  1873. /* L40: */
  1874. }
  1875. }
  1876. } else if (wntqs) {
  1877. /* Path 5ts (N > M, JOBZ='S') */
  1878. /* Perform bidiagonal SVD, computing left singular vectors */
  1879. /* of bidiagonal matrix in U and computing right singular */
  1880. /* vectors of bidiagonal matrix in VT */
  1881. /* Workspace: need 3*M [e, tauq, taup] + BDSPAC */
  1882. dlaset_("F", m, n, &c_b63, &c_b63, &vt[vt_offset], ldvt);
  1883. dbdsdc_("L", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &vt[
  1884. vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
  1885. info);
  1886. /* Overwrite U by left singular vectors of A and VT */
  1887. /* by right singular vectors of A */
  1888. /* Workspace: need 3*M [e, tauq, taup] + M [work] */
  1889. /* Workspace: prefer 3*M [e, tauq, taup] + M*NB [work] */
  1890. i__1 = *lwork - nwork + 1;
  1891. dormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
  1892. itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
  1893. i__1 = *lwork - nwork + 1;
  1894. dormbr_("P", "R", "T", m, n, m, &a[a_offset], lda, &work[
  1895. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
  1896. ierr);
  1897. } else if (wntqa) {
  1898. /* Path 5ta (N > M, JOBZ='A') */
  1899. /* Perform bidiagonal SVD, computing left singular vectors */
  1900. /* of bidiagonal matrix in U and computing right singular */
  1901. /* vectors of bidiagonal matrix in VT */
  1902. /* Workspace: need 3*M [e, tauq, taup] + BDSPAC */
  1903. dlaset_("F", n, n, &c_b63, &c_b63, &vt[vt_offset], ldvt);
  1904. dbdsdc_("L", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &vt[
  1905. vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
  1906. info);
  1907. /* Set the right corner of VT to identity matrix */
  1908. if (*n > *m) {
  1909. i__1 = *n - *m;
  1910. i__2 = *n - *m;
  1911. dlaset_("F", &i__1, &i__2, &c_b63, &c_b84, &vt[*m + 1 + (*
  1912. m + 1) * vt_dim1], ldvt);
  1913. }
  1914. /* Overwrite U by left singular vectors of A and VT */
  1915. /* by right singular vectors of A */
  1916. /* Workspace: need 3*M [e, tauq, taup] + N [work] */
  1917. /* Workspace: prefer 3*M [e, tauq, taup] + N*NB [work] */
  1918. i__1 = *lwork - nwork + 1;
  1919. dormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
  1920. itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
  1921. i__1 = *lwork - nwork + 1;
  1922. dormbr_("P", "R", "T", n, n, m, &a[a_offset], lda, &work[
  1923. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
  1924. ierr);
  1925. }
  1926. }
  1927. }
  1928. /* Undo scaling if necessary */
  1929. if (iscl == 1) {
  1930. if (anrm > bignum) {
  1931. dlascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
  1932. minmn, &ierr);
  1933. }
  1934. if (anrm < smlnum) {
  1935. dlascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
  1936. minmn, &ierr);
  1937. }
  1938. }
  1939. /* Return optimal workspace in WORK(1) */
  1940. work[1] = (doublereal) maxwrk;
  1941. return;
  1942. /* End of DGESDD */
  1943. } /* dgesdd_ */