You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clar1v.c 31 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* > \brief \b CLAR1V computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn
  484. of the tridiagonal matrix LDLT - λI. */
  485. /* =========== DOCUMENTATION =========== */
  486. /* Online html documentation available at */
  487. /* http://www.netlib.org/lapack/explore-html/ */
  488. /* > \htmlonly */
  489. /* > Download CLAR1V + dependencies */
  490. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clar1v.
  491. f"> */
  492. /* > [TGZ]</a> */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clar1v.
  494. f"> */
  495. /* > [ZIP]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clar1v.
  497. f"> */
  498. /* > [TXT]</a> */
  499. /* > \endhtmlonly */
  500. /* Definition: */
  501. /* =========== */
  502. /* SUBROUTINE CLAR1V( N, B1, BN, LAMBDA, D, L, LD, LLD, */
  503. /* PIVMIN, GAPTOL, Z, WANTNC, NEGCNT, ZTZ, MINGMA, */
  504. /* R, ISUPPZ, NRMINV, RESID, RQCORR, WORK ) */
  505. /* LOGICAL WANTNC */
  506. /* INTEGER B1, BN, N, NEGCNT, R */
  507. /* REAL GAPTOL, LAMBDA, MINGMA, NRMINV, PIVMIN, RESID, */
  508. /* $ RQCORR, ZTZ */
  509. /* INTEGER ISUPPZ( * ) */
  510. /* REAL D( * ), L( * ), LD( * ), LLD( * ), */
  511. /* $ WORK( * ) */
  512. /* COMPLEX Z( * ) */
  513. /* > \par Purpose: */
  514. /* ============= */
  515. /* > */
  516. /* > \verbatim */
  517. /* > */
  518. /* > CLAR1V computes the (scaled) r-th column of the inverse of */
  519. /* > the sumbmatrix in rows B1 through BN of the tridiagonal matrix */
  520. /* > L D L**T - sigma I. When sigma is close to an eigenvalue, the */
  521. /* > computed vector is an accurate eigenvector. Usually, r corresponds */
  522. /* > to the index where the eigenvector is largest in magnitude. */
  523. /* > The following steps accomplish this computation : */
  524. /* > (a) Stationary qd transform, L D L**T - sigma I = L(+) D(+) L(+)**T, */
  525. /* > (b) Progressive qd transform, L D L**T - sigma I = U(-) D(-) U(-)**T, */
  526. /* > (c) Computation of the diagonal elements of the inverse of */
  527. /* > L D L**T - sigma I by combining the above transforms, and choosing */
  528. /* > r as the index where the diagonal of the inverse is (one of the) */
  529. /* > largest in magnitude. */
  530. /* > (d) Computation of the (scaled) r-th column of the inverse using the */
  531. /* > twisted factorization obtained by combining the top part of the */
  532. /* > the stationary and the bottom part of the progressive transform. */
  533. /* > \endverbatim */
  534. /* Arguments: */
  535. /* ========== */
  536. /* > \param[in] N */
  537. /* > \verbatim */
  538. /* > N is INTEGER */
  539. /* > The order of the matrix L D L**T. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] B1 */
  543. /* > \verbatim */
  544. /* > B1 is INTEGER */
  545. /* > First index of the submatrix of L D L**T. */
  546. /* > \endverbatim */
  547. /* > */
  548. /* > \param[in] BN */
  549. /* > \verbatim */
  550. /* > BN is INTEGER */
  551. /* > Last index of the submatrix of L D L**T. */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] LAMBDA */
  555. /* > \verbatim */
  556. /* > LAMBDA is REAL */
  557. /* > The shift. In order to compute an accurate eigenvector, */
  558. /* > LAMBDA should be a good approximation to an eigenvalue */
  559. /* > of L D L**T. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in] L */
  563. /* > \verbatim */
  564. /* > L is REAL array, dimension (N-1) */
  565. /* > The (n-1) subdiagonal elements of the unit bidiagonal matrix */
  566. /* > L, in elements 1 to N-1. */
  567. /* > \endverbatim */
  568. /* > */
  569. /* > \param[in] D */
  570. /* > \verbatim */
  571. /* > D is REAL array, dimension (N) */
  572. /* > The n diagonal elements of the diagonal matrix D. */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[in] LD */
  576. /* > \verbatim */
  577. /* > LD is REAL array, dimension (N-1) */
  578. /* > The n-1 elements L(i)*D(i). */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[in] LLD */
  582. /* > \verbatim */
  583. /* > LLD is REAL array, dimension (N-1) */
  584. /* > The n-1 elements L(i)*L(i)*D(i). */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[in] PIVMIN */
  588. /* > \verbatim */
  589. /* > PIVMIN is REAL */
  590. /* > The minimum pivot in the Sturm sequence. */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[in] GAPTOL */
  594. /* > \verbatim */
  595. /* > GAPTOL is REAL */
  596. /* > Tolerance that indicates when eigenvector entries are negligible */
  597. /* > w.r.t. their contribution to the residual. */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[in,out] Z */
  601. /* > \verbatim */
  602. /* > Z is COMPLEX array, dimension (N) */
  603. /* > On input, all entries of Z must be set to 0. */
  604. /* > On output, Z contains the (scaled) r-th column of the */
  605. /* > inverse. The scaling is such that Z(R) equals 1. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[in] WANTNC */
  609. /* > \verbatim */
  610. /* > WANTNC is LOGICAL */
  611. /* > Specifies whether NEGCNT has to be computed. */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[out] NEGCNT */
  615. /* > \verbatim */
  616. /* > NEGCNT is INTEGER */
  617. /* > If WANTNC is .TRUE. then NEGCNT = the number of pivots < pivmin */
  618. /* > in the matrix factorization L D L**T, and NEGCNT = -1 otherwise. */
  619. /* > \endverbatim */
  620. /* > */
  621. /* > \param[out] ZTZ */
  622. /* > \verbatim */
  623. /* > ZTZ is REAL */
  624. /* > The square of the 2-norm of Z. */
  625. /* > \endverbatim */
  626. /* > */
  627. /* > \param[out] MINGMA */
  628. /* > \verbatim */
  629. /* > MINGMA is REAL */
  630. /* > The reciprocal of the largest (in magnitude) diagonal */
  631. /* > element of the inverse of L D L**T - sigma I. */
  632. /* > \endverbatim */
  633. /* > */
  634. /* > \param[in,out] R */
  635. /* > \verbatim */
  636. /* > R is INTEGER */
  637. /* > The twist index for the twisted factorization used to */
  638. /* > compute Z. */
  639. /* > On input, 0 <= R <= N. If R is input as 0, R is set to */
  640. /* > the index where (L D L**T - sigma I)^{-1} is largest */
  641. /* > in magnitude. If 1 <= R <= N, R is unchanged. */
  642. /* > On output, R contains the twist index used to compute Z. */
  643. /* > Ideally, R designates the position of the maximum entry in the */
  644. /* > eigenvector. */
  645. /* > \endverbatim */
  646. /* > */
  647. /* > \param[out] ISUPPZ */
  648. /* > \verbatim */
  649. /* > ISUPPZ is INTEGER array, dimension (2) */
  650. /* > The support of the vector in Z, i.e., the vector Z is */
  651. /* > nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 ). */
  652. /* > \endverbatim */
  653. /* > */
  654. /* > \param[out] NRMINV */
  655. /* > \verbatim */
  656. /* > NRMINV is REAL */
  657. /* > NRMINV = 1/SQRT( ZTZ ) */
  658. /* > \endverbatim */
  659. /* > */
  660. /* > \param[out] RESID */
  661. /* > \verbatim */
  662. /* > RESID is REAL */
  663. /* > The residual of the FP vector. */
  664. /* > RESID = ABS( MINGMA )/SQRT( ZTZ ) */
  665. /* > \endverbatim */
  666. /* > */
  667. /* > \param[out] RQCORR */
  668. /* > \verbatim */
  669. /* > RQCORR is REAL */
  670. /* > The Rayleigh Quotient correction to LAMBDA. */
  671. /* > RQCORR = MINGMA*TMP */
  672. /* > \endverbatim */
  673. /* > */
  674. /* > \param[out] WORK */
  675. /* > \verbatim */
  676. /* > WORK is REAL array, dimension (4*N) */
  677. /* > \endverbatim */
  678. /* Authors: */
  679. /* ======== */
  680. /* > \author Univ. of Tennessee */
  681. /* > \author Univ. of California Berkeley */
  682. /* > \author Univ. of Colorado Denver */
  683. /* > \author NAG Ltd. */
  684. /* > \date December 2016 */
  685. /* > \ingroup complexOTHERauxiliary */
  686. /* > \par Contributors: */
  687. /* ================== */
  688. /* > */
  689. /* > Beresford Parlett, University of California, Berkeley, USA \n */
  690. /* > Jim Demmel, University of California, Berkeley, USA \n */
  691. /* > Inderjit Dhillon, University of Texas, Austin, USA \n */
  692. /* > Osni Marques, LBNL/NERSC, USA \n */
  693. /* > Christof Voemel, University of California, Berkeley, USA */
  694. /* ===================================================================== */
  695. /* Subroutine */ void clar1v_(integer *n, integer *b1, integer *bn, real *
  696. lambda, real *d__, real *l, real *ld, real *lld, real *pivmin, real *
  697. gaptol, complex *z__, logical *wantnc, integer *negcnt, real *ztz,
  698. real *mingma, integer *r__, integer *isuppz, real *nrminv, real *
  699. resid, real *rqcorr, real *work)
  700. {
  701. /* System generated locals */
  702. integer i__1, i__2, i__3, i__4;
  703. real r__1;
  704. complex q__1, q__2;
  705. /* Local variables */
  706. integer indp, inds, i__;
  707. real s, dplus;
  708. integer r1, r2;
  709. extern real slamch_(char *);
  710. integer indlpl, indumn;
  711. extern logical sisnan_(real *);
  712. real dminus;
  713. logical sawnan1, sawnan2;
  714. real eps, tmp;
  715. integer neg1, neg2;
  716. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  717. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  718. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  719. /* December 2016 */
  720. /* ===================================================================== */
  721. /* Parameter adjustments */
  722. --work;
  723. --isuppz;
  724. --z__;
  725. --lld;
  726. --ld;
  727. --l;
  728. --d__;
  729. /* Function Body */
  730. eps = slamch_("Precision");
  731. if (*r__ == 0) {
  732. r1 = *b1;
  733. r2 = *bn;
  734. } else {
  735. r1 = *r__;
  736. r2 = *r__;
  737. }
  738. /* Storage for LPLUS */
  739. indlpl = 0;
  740. /* Storage for UMINUS */
  741. indumn = *n;
  742. inds = (*n << 1) + 1;
  743. indp = *n * 3 + 1;
  744. if (*b1 == 1) {
  745. work[inds] = 0.f;
  746. } else {
  747. work[inds + *b1 - 1] = lld[*b1 - 1];
  748. }
  749. /* Compute the stationary transform (using the differential form) */
  750. /* until the index R2. */
  751. sawnan1 = FALSE_;
  752. neg1 = 0;
  753. s = work[inds + *b1 - 1] - *lambda;
  754. i__1 = r1 - 1;
  755. for (i__ = *b1; i__ <= i__1; ++i__) {
  756. dplus = d__[i__] + s;
  757. work[indlpl + i__] = ld[i__] / dplus;
  758. if (dplus < 0.f) {
  759. ++neg1;
  760. }
  761. work[inds + i__] = s * work[indlpl + i__] * l[i__];
  762. s = work[inds + i__] - *lambda;
  763. /* L50: */
  764. }
  765. sawnan1 = sisnan_(&s);
  766. if (sawnan1) {
  767. goto L60;
  768. }
  769. i__1 = r2 - 1;
  770. for (i__ = r1; i__ <= i__1; ++i__) {
  771. dplus = d__[i__] + s;
  772. work[indlpl + i__] = ld[i__] / dplus;
  773. work[inds + i__] = s * work[indlpl + i__] * l[i__];
  774. s = work[inds + i__] - *lambda;
  775. /* L51: */
  776. }
  777. sawnan1 = sisnan_(&s);
  778. L60:
  779. if (sawnan1) {
  780. /* Runs a slower version of the above loop if a NaN is detected */
  781. neg1 = 0;
  782. s = work[inds + *b1 - 1] - *lambda;
  783. i__1 = r1 - 1;
  784. for (i__ = *b1; i__ <= i__1; ++i__) {
  785. dplus = d__[i__] + s;
  786. if (abs(dplus) < *pivmin) {
  787. dplus = -(*pivmin);
  788. }
  789. work[indlpl + i__] = ld[i__] / dplus;
  790. if (dplus < 0.f) {
  791. ++neg1;
  792. }
  793. work[inds + i__] = s * work[indlpl + i__] * l[i__];
  794. if (work[indlpl + i__] == 0.f) {
  795. work[inds + i__] = lld[i__];
  796. }
  797. s = work[inds + i__] - *lambda;
  798. /* L70: */
  799. }
  800. i__1 = r2 - 1;
  801. for (i__ = r1; i__ <= i__1; ++i__) {
  802. dplus = d__[i__] + s;
  803. if (abs(dplus) < *pivmin) {
  804. dplus = -(*pivmin);
  805. }
  806. work[indlpl + i__] = ld[i__] / dplus;
  807. work[inds + i__] = s * work[indlpl + i__] * l[i__];
  808. if (work[indlpl + i__] == 0.f) {
  809. work[inds + i__] = lld[i__];
  810. }
  811. s = work[inds + i__] - *lambda;
  812. /* L71: */
  813. }
  814. }
  815. /* Compute the progressive transform (using the differential form) */
  816. /* until the index R1 */
  817. sawnan2 = FALSE_;
  818. neg2 = 0;
  819. work[indp + *bn - 1] = d__[*bn] - *lambda;
  820. i__1 = r1;
  821. for (i__ = *bn - 1; i__ >= i__1; --i__) {
  822. dminus = lld[i__] + work[indp + i__];
  823. tmp = d__[i__] / dminus;
  824. if (dminus < 0.f) {
  825. ++neg2;
  826. }
  827. work[indumn + i__] = l[i__] * tmp;
  828. work[indp + i__ - 1] = work[indp + i__] * tmp - *lambda;
  829. /* L80: */
  830. }
  831. tmp = work[indp + r1 - 1];
  832. sawnan2 = sisnan_(&tmp);
  833. if (sawnan2) {
  834. /* Runs a slower version of the above loop if a NaN is detected */
  835. neg2 = 0;
  836. i__1 = r1;
  837. for (i__ = *bn - 1; i__ >= i__1; --i__) {
  838. dminus = lld[i__] + work[indp + i__];
  839. if (abs(dminus) < *pivmin) {
  840. dminus = -(*pivmin);
  841. }
  842. tmp = d__[i__] / dminus;
  843. if (dminus < 0.f) {
  844. ++neg2;
  845. }
  846. work[indumn + i__] = l[i__] * tmp;
  847. work[indp + i__ - 1] = work[indp + i__] * tmp - *lambda;
  848. if (tmp == 0.f) {
  849. work[indp + i__ - 1] = d__[i__] - *lambda;
  850. }
  851. /* L100: */
  852. }
  853. }
  854. /* Find the index (from R1 to R2) of the largest (in magnitude) */
  855. /* diagonal element of the inverse */
  856. *mingma = work[inds + r1 - 1] + work[indp + r1 - 1];
  857. if (*mingma < 0.f) {
  858. ++neg1;
  859. }
  860. if (*wantnc) {
  861. *negcnt = neg1 + neg2;
  862. } else {
  863. *negcnt = -1;
  864. }
  865. if (abs(*mingma) == 0.f) {
  866. *mingma = eps * work[inds + r1 - 1];
  867. }
  868. *r__ = r1;
  869. i__1 = r2 - 1;
  870. for (i__ = r1; i__ <= i__1; ++i__) {
  871. tmp = work[inds + i__] + work[indp + i__];
  872. if (tmp == 0.f) {
  873. tmp = eps * work[inds + i__];
  874. }
  875. if (abs(tmp) <= abs(*mingma)) {
  876. *mingma = tmp;
  877. *r__ = i__ + 1;
  878. }
  879. /* L110: */
  880. }
  881. /* Compute the FP vector: solve N^T v = e_r */
  882. isuppz[1] = *b1;
  883. isuppz[2] = *bn;
  884. i__1 = *r__;
  885. z__[i__1].r = 1.f, z__[i__1].i = 0.f;
  886. *ztz = 1.f;
  887. /* Compute the FP vector upwards from R */
  888. if (! sawnan1 && ! sawnan2) {
  889. i__1 = *b1;
  890. for (i__ = *r__ - 1; i__ >= i__1; --i__) {
  891. i__2 = i__;
  892. i__3 = indlpl + i__;
  893. i__4 = i__ + 1;
  894. q__2.r = work[i__3] * z__[i__4].r, q__2.i = work[i__3] * z__[i__4]
  895. .i;
  896. q__1.r = -q__2.r, q__1.i = -q__2.i;
  897. z__[i__2].r = q__1.r, z__[i__2].i = q__1.i;
  898. if ((c_abs(&z__[i__]) + c_abs(&z__[i__ + 1])) * (r__1 = ld[i__],
  899. abs(r__1)) < *gaptol) {
  900. i__2 = i__;
  901. z__[i__2].r = 0.f, z__[i__2].i = 0.f;
  902. isuppz[1] = i__ + 1;
  903. goto L220;
  904. }
  905. i__2 = i__;
  906. i__3 = i__;
  907. q__1.r = z__[i__2].r * z__[i__3].r - z__[i__2].i * z__[i__3].i,
  908. q__1.i = z__[i__2].r * z__[i__3].i + z__[i__2].i * z__[
  909. i__3].r;
  910. *ztz += q__1.r;
  911. /* L210: */
  912. }
  913. L220:
  914. ;
  915. } else {
  916. /* Run slower loop if NaN occurred. */
  917. i__1 = *b1;
  918. for (i__ = *r__ - 1; i__ >= i__1; --i__) {
  919. i__2 = i__ + 1;
  920. if (z__[i__2].r == 0.f && z__[i__2].i == 0.f) {
  921. i__2 = i__;
  922. r__1 = -(ld[i__ + 1] / ld[i__]);
  923. i__3 = i__ + 2;
  924. q__1.r = r__1 * z__[i__3].r, q__1.i = r__1 * z__[i__3].i;
  925. z__[i__2].r = q__1.r, z__[i__2].i = q__1.i;
  926. } else {
  927. i__2 = i__;
  928. i__3 = indlpl + i__;
  929. i__4 = i__ + 1;
  930. q__2.r = work[i__3] * z__[i__4].r, q__2.i = work[i__3] * z__[
  931. i__4].i;
  932. q__1.r = -q__2.r, q__1.i = -q__2.i;
  933. z__[i__2].r = q__1.r, z__[i__2].i = q__1.i;
  934. }
  935. if ((c_abs(&z__[i__]) + c_abs(&z__[i__ + 1])) * (r__1 = ld[i__],
  936. abs(r__1)) < *gaptol) {
  937. i__2 = i__;
  938. z__[i__2].r = 0.f, z__[i__2].i = 0.f;
  939. isuppz[1] = i__ + 1;
  940. goto L240;
  941. }
  942. i__2 = i__;
  943. i__3 = i__;
  944. q__1.r = z__[i__2].r * z__[i__3].r - z__[i__2].i * z__[i__3].i,
  945. q__1.i = z__[i__2].r * z__[i__3].i + z__[i__2].i * z__[
  946. i__3].r;
  947. *ztz += q__1.r;
  948. /* L230: */
  949. }
  950. L240:
  951. ;
  952. }
  953. /* Compute the FP vector downwards from R in blocks of size BLKSIZ */
  954. if (! sawnan1 && ! sawnan2) {
  955. i__1 = *bn - 1;
  956. for (i__ = *r__; i__ <= i__1; ++i__) {
  957. i__2 = i__ + 1;
  958. i__3 = indumn + i__;
  959. i__4 = i__;
  960. q__2.r = work[i__3] * z__[i__4].r, q__2.i = work[i__3] * z__[i__4]
  961. .i;
  962. q__1.r = -q__2.r, q__1.i = -q__2.i;
  963. z__[i__2].r = q__1.r, z__[i__2].i = q__1.i;
  964. if ((c_abs(&z__[i__]) + c_abs(&z__[i__ + 1])) * (r__1 = ld[i__],
  965. abs(r__1)) < *gaptol) {
  966. i__2 = i__ + 1;
  967. z__[i__2].r = 0.f, z__[i__2].i = 0.f;
  968. isuppz[2] = i__;
  969. goto L260;
  970. }
  971. i__2 = i__ + 1;
  972. i__3 = i__ + 1;
  973. q__1.r = z__[i__2].r * z__[i__3].r - z__[i__2].i * z__[i__3].i,
  974. q__1.i = z__[i__2].r * z__[i__3].i + z__[i__2].i * z__[
  975. i__3].r;
  976. *ztz += q__1.r;
  977. /* L250: */
  978. }
  979. L260:
  980. ;
  981. } else {
  982. /* Run slower loop if NaN occurred. */
  983. i__1 = *bn - 1;
  984. for (i__ = *r__; i__ <= i__1; ++i__) {
  985. i__2 = i__;
  986. if (z__[i__2].r == 0.f && z__[i__2].i == 0.f) {
  987. i__2 = i__ + 1;
  988. r__1 = -(ld[i__ - 1] / ld[i__]);
  989. i__3 = i__ - 1;
  990. q__1.r = r__1 * z__[i__3].r, q__1.i = r__1 * z__[i__3].i;
  991. z__[i__2].r = q__1.r, z__[i__2].i = q__1.i;
  992. } else {
  993. i__2 = i__ + 1;
  994. i__3 = indumn + i__;
  995. i__4 = i__;
  996. q__2.r = work[i__3] * z__[i__4].r, q__2.i = work[i__3] * z__[
  997. i__4].i;
  998. q__1.r = -q__2.r, q__1.i = -q__2.i;
  999. z__[i__2].r = q__1.r, z__[i__2].i = q__1.i;
  1000. }
  1001. if ((c_abs(&z__[i__]) + c_abs(&z__[i__ + 1])) * (r__1 = ld[i__],
  1002. abs(r__1)) < *gaptol) {
  1003. i__2 = i__ + 1;
  1004. z__[i__2].r = 0.f, z__[i__2].i = 0.f;
  1005. isuppz[2] = i__;
  1006. goto L280;
  1007. }
  1008. i__2 = i__ + 1;
  1009. i__3 = i__ + 1;
  1010. q__1.r = z__[i__2].r * z__[i__3].r - z__[i__2].i * z__[i__3].i,
  1011. q__1.i = z__[i__2].r * z__[i__3].i + z__[i__2].i * z__[
  1012. i__3].r;
  1013. *ztz += q__1.r;
  1014. /* L270: */
  1015. }
  1016. L280:
  1017. ;
  1018. }
  1019. /* Compute quantities for convergence test */
  1020. tmp = 1.f / *ztz;
  1021. *nrminv = sqrt(tmp);
  1022. *resid = abs(*mingma) * *nrminv;
  1023. *rqcorr = *mingma * tmp;
  1024. return;
  1025. /* End of CLAR1V */
  1026. } /* clar1v_ */