You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgesvxx.c 47 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* > \brief <b> CGESVXX computes the solution to system of linear equations A * X = B for GE matrices</b> */
  484. /* =========== DOCUMENTATION =========== */
  485. /* Online html documentation available at */
  486. /* http://www.netlib.org/lapack/explore-html/ */
  487. /* > \htmlonly */
  488. /* > Download CGESVXX + dependencies */
  489. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgesvxx
  490. .f"> */
  491. /* > [TGZ]</a> */
  492. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgesvxx
  493. .f"> */
  494. /* > [ZIP]</a> */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgesvxx
  496. .f"> */
  497. /* > [TXT]</a> */
  498. /* > \endhtmlonly */
  499. /* Definition: */
  500. /* =========== */
  501. /* SUBROUTINE CGESVXX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, */
  502. /* EQUED, R, C, B, LDB, X, LDX, RCOND, RPVGRW, */
  503. /* BERR, N_ERR_BNDS, ERR_BNDS_NORM, */
  504. /* ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK, */
  505. /* INFO ) */
  506. /* CHARACTER EQUED, FACT, TRANS */
  507. /* INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS, */
  508. /* $ N_ERR_BNDS */
  509. /* REAL RCOND, RPVGRW */
  510. /* INTEGER IPIV( * ) */
  511. /* COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ), */
  512. /* $ X( LDX , * ),WORK( * ) */
  513. /* REAL R( * ), C( * ), PARAMS( * ), BERR( * ), */
  514. /* $ ERR_BNDS_NORM( NRHS, * ), */
  515. /* $ ERR_BNDS_COMP( NRHS, * ), RWORK( * ) */
  516. /* > \par Purpose: */
  517. /* ============= */
  518. /* > */
  519. /* > \verbatim */
  520. /* > */
  521. /* > CGESVXX uses the LU factorization to compute the solution to a */
  522. /* > complex system of linear equations A * X = B, where A is an */
  523. /* > N-by-N matrix and X and B are N-by-NRHS matrices. */
  524. /* > */
  525. /* > If requested, both normwise and maximum componentwise error bounds */
  526. /* > are returned. CGESVXX will return a solution with a tiny */
  527. /* > guaranteed error (O(eps) where eps is the working machine */
  528. /* > precision) unless the matrix is very ill-conditioned, in which */
  529. /* > case a warning is returned. Relevant condition numbers also are */
  530. /* > calculated and returned. */
  531. /* > */
  532. /* > CGESVXX accepts user-provided factorizations and equilibration */
  533. /* > factors; see the definitions of the FACT and EQUED options. */
  534. /* > Solving with refinement and using a factorization from a previous */
  535. /* > CGESVXX call will also produce a solution with either O(eps) */
  536. /* > errors or warnings, but we cannot make that claim for general */
  537. /* > user-provided factorizations and equilibration factors if they */
  538. /* > differ from what CGESVXX would itself produce. */
  539. /* > \endverbatim */
  540. /* > \par Description: */
  541. /* ================= */
  542. /* > */
  543. /* > \verbatim */
  544. /* > */
  545. /* > The following steps are performed: */
  546. /* > */
  547. /* > 1. If FACT = 'E', real scaling factors are computed to equilibrate */
  548. /* > the system: */
  549. /* > */
  550. /* > TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B */
  551. /* > TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B */
  552. /* > TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B */
  553. /* > */
  554. /* > Whether or not the system will be equilibrated depends on the */
  555. /* > scaling of the matrix A, but if equilibration is used, A is */
  556. /* > overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N') */
  557. /* > or diag(C)*B (if TRANS = 'T' or 'C'). */
  558. /* > */
  559. /* > 2. If FACT = 'N' or 'E', the LU decomposition is used to factor */
  560. /* > the matrix A (after equilibration if FACT = 'E') as */
  561. /* > */
  562. /* > A = P * L * U, */
  563. /* > */
  564. /* > where P is a permutation matrix, L is a unit lower triangular */
  565. /* > matrix, and U is upper triangular. */
  566. /* > */
  567. /* > 3. If some U(i,i)=0, so that U is exactly singular, then the */
  568. /* > routine returns with INFO = i. Otherwise, the factored form of A */
  569. /* > is used to estimate the condition number of the matrix A (see */
  570. /* > argument RCOND). If the reciprocal of the condition number is less */
  571. /* > than machine precision, the routine still goes on to solve for X */
  572. /* > and compute error bounds as described below. */
  573. /* > */
  574. /* > 4. The system of equations is solved for X using the factored form */
  575. /* > of A. */
  576. /* > */
  577. /* > 5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero), */
  578. /* > the routine will use iterative refinement to try to get a small */
  579. /* > error and error bounds. Refinement calculates the residual to at */
  580. /* > least twice the working precision. */
  581. /* > */
  582. /* > 6. If equilibration was used, the matrix X is premultiplied by */
  583. /* > diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so */
  584. /* > that it solves the original system before equilibration. */
  585. /* > \endverbatim */
  586. /* Arguments: */
  587. /* ========== */
  588. /* > \verbatim */
  589. /* > Some optional parameters are bundled in the PARAMS array. These */
  590. /* > settings determine how refinement is performed, but often the */
  591. /* > defaults are acceptable. If the defaults are acceptable, users */
  592. /* > can pass NPARAMS = 0 which prevents the source code from accessing */
  593. /* > the PARAMS argument. */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[in] FACT */
  597. /* > \verbatim */
  598. /* > FACT is CHARACTER*1 */
  599. /* > Specifies whether or not the factored form of the matrix A is */
  600. /* > supplied on entry, and if not, whether the matrix A should be */
  601. /* > equilibrated before it is factored. */
  602. /* > = 'F': On entry, AF and IPIV contain the factored form of A. */
  603. /* > If EQUED is not 'N', the matrix A has been */
  604. /* > equilibrated with scaling factors given by R and C. */
  605. /* > A, AF, and IPIV are not modified. */
  606. /* > = 'N': The matrix A will be copied to AF and factored. */
  607. /* > = 'E': The matrix A will be equilibrated if necessary, then */
  608. /* > copied to AF and factored. */
  609. /* > \endverbatim */
  610. /* > */
  611. /* > \param[in] TRANS */
  612. /* > \verbatim */
  613. /* > TRANS is CHARACTER*1 */
  614. /* > Specifies the form of the system of equations: */
  615. /* > = 'N': A * X = B (No transpose) */
  616. /* > = 'T': A**T * X = B (Transpose) */
  617. /* > = 'C': A**H * X = B (Conjugate Transpose) */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[in] N */
  621. /* > \verbatim */
  622. /* > N is INTEGER */
  623. /* > The number of linear equations, i.e., the order of the */
  624. /* > matrix A. N >= 0. */
  625. /* > \endverbatim */
  626. /* > */
  627. /* > \param[in] NRHS */
  628. /* > \verbatim */
  629. /* > NRHS is INTEGER */
  630. /* > The number of right hand sides, i.e., the number of columns */
  631. /* > of the matrices B and X. NRHS >= 0. */
  632. /* > \endverbatim */
  633. /* > */
  634. /* > \param[in,out] A */
  635. /* > \verbatim */
  636. /* > A is COMPLEX array, dimension (LDA,N) */
  637. /* > On entry, the N-by-N matrix A. If FACT = 'F' and EQUED is */
  638. /* > not 'N', then A must have been equilibrated by the scaling */
  639. /* > factors in R and/or C. A is not modified if FACT = 'F' or */
  640. /* > 'N', or if FACT = 'E' and EQUED = 'N' on exit. */
  641. /* > */
  642. /* > On exit, if EQUED .ne. 'N', A is scaled as follows: */
  643. /* > EQUED = 'R': A := diag(R) * A */
  644. /* > EQUED = 'C': A := A * diag(C) */
  645. /* > EQUED = 'B': A := diag(R) * A * diag(C). */
  646. /* > \endverbatim */
  647. /* > */
  648. /* > \param[in] LDA */
  649. /* > \verbatim */
  650. /* > LDA is INTEGER */
  651. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  652. /* > \endverbatim */
  653. /* > */
  654. /* > \param[in,out] AF */
  655. /* > \verbatim */
  656. /* > AF is COMPLEX array, dimension (LDAF,N) */
  657. /* > If FACT = 'F', then AF is an input argument and on entry */
  658. /* > contains the factors L and U from the factorization */
  659. /* > A = P*L*U as computed by CGETRF. If EQUED .ne. 'N', then */
  660. /* > AF is the factored form of the equilibrated matrix A. */
  661. /* > */
  662. /* > If FACT = 'N', then AF is an output argument and on exit */
  663. /* > returns the factors L and U from the factorization A = P*L*U */
  664. /* > of the original matrix A. */
  665. /* > */
  666. /* > If FACT = 'E', then AF is an output argument and on exit */
  667. /* > returns the factors L and U from the factorization A = P*L*U */
  668. /* > of the equilibrated matrix A (see the description of A for */
  669. /* > the form of the equilibrated matrix). */
  670. /* > \endverbatim */
  671. /* > */
  672. /* > \param[in] LDAF */
  673. /* > \verbatim */
  674. /* > LDAF is INTEGER */
  675. /* > The leading dimension of the array AF. LDAF >= f2cmax(1,N). */
  676. /* > \endverbatim */
  677. /* > */
  678. /* > \param[in,out] IPIV */
  679. /* > \verbatim */
  680. /* > IPIV is INTEGER array, dimension (N) */
  681. /* > If FACT = 'F', then IPIV is an input argument and on entry */
  682. /* > contains the pivot indices from the factorization A = P*L*U */
  683. /* > as computed by CGETRF; row i of the matrix was interchanged */
  684. /* > with row IPIV(i). */
  685. /* > */
  686. /* > If FACT = 'N', then IPIV is an output argument and on exit */
  687. /* > contains the pivot indices from the factorization A = P*L*U */
  688. /* > of the original matrix A. */
  689. /* > */
  690. /* > If FACT = 'E', then IPIV is an output argument and on exit */
  691. /* > contains the pivot indices from the factorization A = P*L*U */
  692. /* > of the equilibrated matrix A. */
  693. /* > \endverbatim */
  694. /* > */
  695. /* > \param[in,out] EQUED */
  696. /* > \verbatim */
  697. /* > EQUED is CHARACTER*1 */
  698. /* > Specifies the form of equilibration that was done. */
  699. /* > = 'N': No equilibration (always true if FACT = 'N'). */
  700. /* > = 'R': Row equilibration, i.e., A has been premultiplied by */
  701. /* > diag(R). */
  702. /* > = 'C': Column equilibration, i.e., A has been postmultiplied */
  703. /* > by diag(C). */
  704. /* > = 'B': Both row and column equilibration, i.e., A has been */
  705. /* > replaced by diag(R) * A * diag(C). */
  706. /* > EQUED is an input argument if FACT = 'F'; otherwise, it is an */
  707. /* > output argument. */
  708. /* > \endverbatim */
  709. /* > */
  710. /* > \param[in,out] R */
  711. /* > \verbatim */
  712. /* > R is REAL array, dimension (N) */
  713. /* > The row scale factors for A. If EQUED = 'R' or 'B', A is */
  714. /* > multiplied on the left by diag(R); if EQUED = 'N' or 'C', R */
  715. /* > is not accessed. R is an input argument if FACT = 'F'; */
  716. /* > otherwise, R is an output argument. If FACT = 'F' and */
  717. /* > EQUED = 'R' or 'B', each element of R must be positive. */
  718. /* > If R is output, each element of R is a power of the radix. */
  719. /* > If R is input, each element of R should be a power of the radix */
  720. /* > to ensure a reliable solution and error estimates. Scaling by */
  721. /* > powers of the radix does not cause rounding errors unless the */
  722. /* > result underflows or overflows. Rounding errors during scaling */
  723. /* > lead to refining with a matrix that is not equivalent to the */
  724. /* > input matrix, producing error estimates that may not be */
  725. /* > reliable. */
  726. /* > \endverbatim */
  727. /* > */
  728. /* > \param[in,out] C */
  729. /* > \verbatim */
  730. /* > C is REAL array, dimension (N) */
  731. /* > The column scale factors for A. If EQUED = 'C' or 'B', A is */
  732. /* > multiplied on the right by diag(C); if EQUED = 'N' or 'R', C */
  733. /* > is not accessed. C is an input argument if FACT = 'F'; */
  734. /* > otherwise, C is an output argument. If FACT = 'F' and */
  735. /* > EQUED = 'C' or 'B', each element of C must be positive. */
  736. /* > If C is output, each element of C is a power of the radix. */
  737. /* > If C is input, each element of C should be a power of the radix */
  738. /* > to ensure a reliable solution and error estimates. Scaling by */
  739. /* > powers of the radix does not cause rounding errors unless the */
  740. /* > result underflows or overflows. Rounding errors during scaling */
  741. /* > lead to refining with a matrix that is not equivalent to the */
  742. /* > input matrix, producing error estimates that may not be */
  743. /* > reliable. */
  744. /* > \endverbatim */
  745. /* > */
  746. /* > \param[in,out] B */
  747. /* > \verbatim */
  748. /* > B is COMPLEX array, dimension (LDB,NRHS) */
  749. /* > On entry, the N-by-NRHS right hand side matrix B. */
  750. /* > On exit, */
  751. /* > if EQUED = 'N', B is not modified; */
  752. /* > if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by */
  753. /* > diag(R)*B; */
  754. /* > if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is */
  755. /* > overwritten by diag(C)*B. */
  756. /* > \endverbatim */
  757. /* > */
  758. /* > \param[in] LDB */
  759. /* > \verbatim */
  760. /* > LDB is INTEGER */
  761. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  762. /* > \endverbatim */
  763. /* > */
  764. /* > \param[out] X */
  765. /* > \verbatim */
  766. /* > X is COMPLEX array, dimension (LDX,NRHS) */
  767. /* > If INFO = 0, the N-by-NRHS solution matrix X to the original */
  768. /* > system of equations. Note that A and B are modified on exit */
  769. /* > if EQUED .ne. 'N', and the solution to the equilibrated system is */
  770. /* > inv(diag(C))*X if TRANS = 'N' and EQUED = 'C' or 'B', or */
  771. /* > inv(diag(R))*X if TRANS = 'T' or 'C' and EQUED = 'R' or 'B'. */
  772. /* > \endverbatim */
  773. /* > */
  774. /* > \param[in] LDX */
  775. /* > \verbatim */
  776. /* > LDX is INTEGER */
  777. /* > The leading dimension of the array X. LDX >= f2cmax(1,N). */
  778. /* > \endverbatim */
  779. /* > */
  780. /* > \param[out] RCOND */
  781. /* > \verbatim */
  782. /* > RCOND is REAL */
  783. /* > Reciprocal scaled condition number. This is an estimate of the */
  784. /* > reciprocal Skeel condition number of the matrix A after */
  785. /* > equilibration (if done). If this is less than the machine */
  786. /* > precision (in particular, if it is zero), the matrix is singular */
  787. /* > to working precision. Note that the error may still be small even */
  788. /* > if this number is very small and the matrix appears ill- */
  789. /* > conditioned. */
  790. /* > \endverbatim */
  791. /* > */
  792. /* > \param[out] RPVGRW */
  793. /* > \verbatim */
  794. /* > RPVGRW is REAL */
  795. /* > Reciprocal pivot growth. On exit, this contains the reciprocal */
  796. /* > pivot growth factor norm(A)/norm(U). The "f2cmax absolute element" */
  797. /* > norm is used. If this is much less than 1, then the stability of */
  798. /* > the LU factorization of the (equilibrated) matrix A could be poor. */
  799. /* > This also means that the solution X, estimated condition numbers, */
  800. /* > and error bounds could be unreliable. If factorization fails with */
  801. /* > 0<INFO<=N, then this contains the reciprocal pivot growth factor */
  802. /* > for the leading INFO columns of A. In CGESVX, this quantity is */
  803. /* > returned in WORK(1). */
  804. /* > \endverbatim */
  805. /* > */
  806. /* > \param[out] BERR */
  807. /* > \verbatim */
  808. /* > BERR is REAL array, dimension (NRHS) */
  809. /* > Componentwise relative backward error. This is the */
  810. /* > componentwise relative backward error of each solution vector X(j) */
  811. /* > (i.e., the smallest relative change in any element of A or B that */
  812. /* > makes X(j) an exact solution). */
  813. /* > \endverbatim */
  814. /* > */
  815. /* > \param[in] N_ERR_BNDS */
  816. /* > \verbatim */
  817. /* > N_ERR_BNDS is INTEGER */
  818. /* > Number of error bounds to return for each right hand side */
  819. /* > and each type (normwise or componentwise). See ERR_BNDS_NORM and */
  820. /* > ERR_BNDS_COMP below. */
  821. /* > \endverbatim */
  822. /* > */
  823. /* > \param[out] ERR_BNDS_NORM */
  824. /* > \verbatim */
  825. /* > ERR_BNDS_NORM is REAL array, dimension (NRHS, N_ERR_BNDS) */
  826. /* > For each right-hand side, this array contains information about */
  827. /* > various error bounds and condition numbers corresponding to the */
  828. /* > normwise relative error, which is defined as follows: */
  829. /* > */
  830. /* > Normwise relative error in the ith solution vector: */
  831. /* > max_j (abs(XTRUE(j,i) - X(j,i))) */
  832. /* > ------------------------------ */
  833. /* > max_j abs(X(j,i)) */
  834. /* > */
  835. /* > The array is indexed by the type of error information as described */
  836. /* > below. There currently are up to three pieces of information */
  837. /* > returned. */
  838. /* > */
  839. /* > The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */
  840. /* > right-hand side. */
  841. /* > */
  842. /* > The second index in ERR_BNDS_NORM(:,err) contains the following */
  843. /* > three fields: */
  844. /* > err = 1 "Trust/don't trust" boolean. Trust the answer if the */
  845. /* > reciprocal condition number is less than the threshold */
  846. /* > sqrt(n) * slamch('Epsilon'). */
  847. /* > */
  848. /* > err = 2 "Guaranteed" error bound: The estimated forward error, */
  849. /* > almost certainly within a factor of 10 of the true error */
  850. /* > so long as the next entry is greater than the threshold */
  851. /* > sqrt(n) * slamch('Epsilon'). This error bound should only */
  852. /* > be trusted if the previous boolean is true. */
  853. /* > */
  854. /* > err = 3 Reciprocal condition number: Estimated normwise */
  855. /* > reciprocal condition number. Compared with the threshold */
  856. /* > sqrt(n) * slamch('Epsilon') to determine if the error */
  857. /* > estimate is "guaranteed". These reciprocal condition */
  858. /* > numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
  859. /* > appropriately scaled matrix Z. */
  860. /* > Let Z = S*A, where S scales each row by a power of the */
  861. /* > radix so all absolute row sums of Z are approximately 1. */
  862. /* > */
  863. /* > See Lapack Working Note 165 for further details and extra */
  864. /* > cautions. */
  865. /* > \endverbatim */
  866. /* > */
  867. /* > \param[out] ERR_BNDS_COMP */
  868. /* > \verbatim */
  869. /* > ERR_BNDS_COMP is REAL array, dimension (NRHS, N_ERR_BNDS) */
  870. /* > For each right-hand side, this array contains information about */
  871. /* > various error bounds and condition numbers corresponding to the */
  872. /* > componentwise relative error, which is defined as follows: */
  873. /* > */
  874. /* > Componentwise relative error in the ith solution vector: */
  875. /* > abs(XTRUE(j,i) - X(j,i)) */
  876. /* > max_j ---------------------- */
  877. /* > abs(X(j,i)) */
  878. /* > */
  879. /* > The array is indexed by the right-hand side i (on which the */
  880. /* > componentwise relative error depends), and the type of error */
  881. /* > information as described below. There currently are up to three */
  882. /* > pieces of information returned for each right-hand side. If */
  883. /* > componentwise accuracy is not requested (PARAMS(3) = 0.0), then */
  884. /* > ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most */
  885. /* > the first (:,N_ERR_BNDS) entries are returned. */
  886. /* > */
  887. /* > The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */
  888. /* > right-hand side. */
  889. /* > */
  890. /* > The second index in ERR_BNDS_COMP(:,err) contains the following */
  891. /* > three fields: */
  892. /* > err = 1 "Trust/don't trust" boolean. Trust the answer if the */
  893. /* > reciprocal condition number is less than the threshold */
  894. /* > sqrt(n) * slamch('Epsilon'). */
  895. /* > */
  896. /* > err = 2 "Guaranteed" error bound: The estimated forward error, */
  897. /* > almost certainly within a factor of 10 of the true error */
  898. /* > so long as the next entry is greater than the threshold */
  899. /* > sqrt(n) * slamch('Epsilon'). This error bound should only */
  900. /* > be trusted if the previous boolean is true. */
  901. /* > */
  902. /* > err = 3 Reciprocal condition number: Estimated componentwise */
  903. /* > reciprocal condition number. Compared with the threshold */
  904. /* > sqrt(n) * slamch('Epsilon') to determine if the error */
  905. /* > estimate is "guaranteed". These reciprocal condition */
  906. /* > numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
  907. /* > appropriately scaled matrix Z. */
  908. /* > Let Z = S*(A*diag(x)), where x is the solution for the */
  909. /* > current right-hand side and S scales each row of */
  910. /* > A*diag(x) by a power of the radix so all absolute row */
  911. /* > sums of Z are approximately 1. */
  912. /* > */
  913. /* > See Lapack Working Note 165 for further details and extra */
  914. /* > cautions. */
  915. /* > \endverbatim */
  916. /* > */
  917. /* > \param[in] NPARAMS */
  918. /* > \verbatim */
  919. /* > NPARAMS is INTEGER */
  920. /* > Specifies the number of parameters set in PARAMS. If <= 0, the */
  921. /* > PARAMS array is never referenced and default values are used. */
  922. /* > \endverbatim */
  923. /* > */
  924. /* > \param[in,out] PARAMS */
  925. /* > \verbatim */
  926. /* > PARAMS is REAL array, dimension NPARAMS */
  927. /* > Specifies algorithm parameters. If an entry is < 0.0, then */
  928. /* > that entry will be filled with default value used for that */
  929. /* > parameter. Only positions up to NPARAMS are accessed; defaults */
  930. /* > are used for higher-numbered parameters. */
  931. /* > */
  932. /* > PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative */
  933. /* > refinement or not. */
  934. /* > Default: 1.0 */
  935. /* > = 0.0: No refinement is performed, and no error bounds are */
  936. /* > computed. */
  937. /* > = 1.0: Use the double-precision refinement algorithm, */
  938. /* > possibly with doubled-single computations if the */
  939. /* > compilation environment does not support DOUBLE */
  940. /* > PRECISION. */
  941. /* > (other values are reserved for future use) */
  942. /* > */
  943. /* > PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual */
  944. /* > computations allowed for refinement. */
  945. /* > Default: 10 */
  946. /* > Aggressive: Set to 100 to permit convergence using approximate */
  947. /* > factorizations or factorizations other than LU. If */
  948. /* > the factorization uses a technique other than */
  949. /* > Gaussian elimination, the guarantees in */
  950. /* > err_bnds_norm and err_bnds_comp may no longer be */
  951. /* > trustworthy. */
  952. /* > */
  953. /* > PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code */
  954. /* > will attempt to find a solution with small componentwise */
  955. /* > relative error in the double-precision algorithm. Positive */
  956. /* > is true, 0.0 is false. */
  957. /* > Default: 1.0 (attempt componentwise convergence) */
  958. /* > \endverbatim */
  959. /* > */
  960. /* > \param[out] WORK */
  961. /* > \verbatim */
  962. /* > WORK is COMPLEX array, dimension (2*N) */
  963. /* > \endverbatim */
  964. /* > */
  965. /* > \param[out] RWORK */
  966. /* > \verbatim */
  967. /* > RWORK is REAL array, dimension (2*N) */
  968. /* > \endverbatim */
  969. /* > */
  970. /* > \param[out] INFO */
  971. /* > \verbatim */
  972. /* > INFO is INTEGER */
  973. /* > = 0: Successful exit. The solution to every right-hand side is */
  974. /* > guaranteed. */
  975. /* > < 0: If INFO = -i, the i-th argument had an illegal value */
  976. /* > > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization */
  977. /* > has been completed, but the factor U is exactly singular, so */
  978. /* > the solution and error bounds could not be computed. RCOND = 0 */
  979. /* > is returned. */
  980. /* > = N+J: The solution corresponding to the Jth right-hand side is */
  981. /* > not guaranteed. The solutions corresponding to other right- */
  982. /* > hand sides K with K > J may not be guaranteed as well, but */
  983. /* > only the first such right-hand side is reported. If a small */
  984. /* > componentwise error is not requested (PARAMS(3) = 0.0) then */
  985. /* > the Jth right-hand side is the first with a normwise error */
  986. /* > bound that is not guaranteed (the smallest J such */
  987. /* > that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) */
  988. /* > the Jth right-hand side is the first with either a normwise or */
  989. /* > componentwise error bound that is not guaranteed (the smallest */
  990. /* > J such that either ERR_BNDS_NORM(J,1) = 0.0 or */
  991. /* > ERR_BNDS_COMP(J,1) = 0.0). See the definition of */
  992. /* > ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information */
  993. /* > about all of the right-hand sides check ERR_BNDS_NORM or */
  994. /* > ERR_BNDS_COMP. */
  995. /* > \endverbatim */
  996. /* Authors: */
  997. /* ======== */
  998. /* > \author Univ. of Tennessee */
  999. /* > \author Univ. of California Berkeley */
  1000. /* > \author Univ. of Colorado Denver */
  1001. /* > \author NAG Ltd. */
  1002. /* > \date April 2012 */
  1003. /* > \ingroup complexGEsolve */
  1004. /* ===================================================================== */
  1005. /* Subroutine */ void cgesvxx_(char *fact, char *trans, integer *n, integer *
  1006. nrhs, complex *a, integer *lda, complex *af, integer *ldaf, integer *
  1007. ipiv, char *equed, real *r__, real *c__, complex *b, integer *ldb,
  1008. complex *x, integer *ldx, real *rcond, real *rpvgrw, real *berr,
  1009. integer *n_err_bnds__, real *err_bnds_norm__, real *err_bnds_comp__,
  1010. integer *nparams, real *params, complex *work, real *rwork, integer *
  1011. info)
  1012. {
  1013. /* System generated locals */
  1014. integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1,
  1015. x_offset, err_bnds_norm_dim1, err_bnds_norm_offset,
  1016. err_bnds_comp_dim1, err_bnds_comp_offset, i__1;
  1017. real r__1, r__2;
  1018. /* Local variables */
  1019. real amax;
  1020. extern real cla_gerpvgrw_(integer *, integer *, complex *, integer *,
  1021. complex *, integer *);
  1022. integer j;
  1023. extern logical lsame_(char *, char *);
  1024. real rcmin, rcmax;
  1025. logical equil;
  1026. extern /* Subroutine */ void claqge_(integer *, integer *, complex *,
  1027. integer *, real *, real *, real *, real *, real *, char *)
  1028. ;
  1029. real colcnd;
  1030. extern real slamch_(char *);
  1031. logical nofact;
  1032. extern /* Subroutine */ void cgetrf_(integer *, integer *, complex *,
  1033. integer *, integer *, integer *), clacpy_(char *, integer *,
  1034. integer *, complex *, integer *, complex *, integer *);
  1035. extern int xerbla_(char *, integer *, ftnlen);
  1036. real bignum;
  1037. integer infequ;
  1038. logical colequ;
  1039. extern /* Subroutine */ void cgetrs_(char *, integer *, integer *, complex
  1040. *, integer *, integer *, complex *, integer *, integer *);
  1041. real rowcnd;
  1042. logical notran;
  1043. real smlnum;
  1044. logical rowequ;
  1045. extern /* Subroutine */ void clascl2_(integer *, integer *, real *,
  1046. complex *, integer *), cgeequb_(integer *, integer *, complex *,
  1047. integer *, real *, real *, real *, real *, real *, integer *),
  1048. cgerfsx_(char *, char *, integer *, integer *, complex *, integer
  1049. *, complex *, integer *, integer *, real *, real *, complex *,
  1050. integer *, complex *, integer *, real *, real *, integer *, real *
  1051. , real *, integer *, real *, complex *, real *, integer *);
  1052. /* -- LAPACK driver routine (version 3.7.0) -- */
  1053. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  1054. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  1055. /* April 2012 */
  1056. /* ================================================================== */
  1057. /* Parameter adjustments */
  1058. err_bnds_comp_dim1 = *nrhs;
  1059. err_bnds_comp_offset = 1 + err_bnds_comp_dim1 * 1;
  1060. err_bnds_comp__ -= err_bnds_comp_offset;
  1061. err_bnds_norm_dim1 = *nrhs;
  1062. err_bnds_norm_offset = 1 + err_bnds_norm_dim1 * 1;
  1063. err_bnds_norm__ -= err_bnds_norm_offset;
  1064. a_dim1 = *lda;
  1065. a_offset = 1 + a_dim1 * 1;
  1066. a -= a_offset;
  1067. af_dim1 = *ldaf;
  1068. af_offset = 1 + af_dim1 * 1;
  1069. af -= af_offset;
  1070. --ipiv;
  1071. --r__;
  1072. --c__;
  1073. b_dim1 = *ldb;
  1074. b_offset = 1 + b_dim1 * 1;
  1075. b -= b_offset;
  1076. x_dim1 = *ldx;
  1077. x_offset = 1 + x_dim1 * 1;
  1078. x -= x_offset;
  1079. --berr;
  1080. --params;
  1081. --work;
  1082. --rwork;
  1083. /* Function Body */
  1084. *info = 0;
  1085. nofact = lsame_(fact, "N");
  1086. equil = lsame_(fact, "E");
  1087. notran = lsame_(trans, "N");
  1088. smlnum = slamch_("Safe minimum");
  1089. bignum = 1.f / smlnum;
  1090. if (nofact || equil) {
  1091. *(unsigned char *)equed = 'N';
  1092. rowequ = FALSE_;
  1093. colequ = FALSE_;
  1094. } else {
  1095. rowequ = lsame_(equed, "R") || lsame_(equed,
  1096. "B");
  1097. colequ = lsame_(equed, "C") || lsame_(equed,
  1098. "B");
  1099. }
  1100. /* Default is failure. If an input parameter is wrong or */
  1101. /* factorization fails, make everything look horrible. Only the */
  1102. /* pivot growth is set here, the rest is initialized in CGERFSX. */
  1103. *rpvgrw = 0.f;
  1104. /* Test the input parameters. PARAMS is not tested until CGERFSX. */
  1105. if (! nofact && ! equil && ! lsame_(fact, "F")) {
  1106. *info = -1;
  1107. } else if (! notran && ! lsame_(trans, "T") && !
  1108. lsame_(trans, "C")) {
  1109. *info = -2;
  1110. } else if (*n < 0) {
  1111. *info = -3;
  1112. } else if (*nrhs < 0) {
  1113. *info = -4;
  1114. } else if (*lda < f2cmax(1,*n)) {
  1115. *info = -6;
  1116. } else if (*ldaf < f2cmax(1,*n)) {
  1117. *info = -8;
  1118. } else if (lsame_(fact, "F") && ! (rowequ || colequ
  1119. || lsame_(equed, "N"))) {
  1120. *info = -10;
  1121. } else {
  1122. if (rowequ) {
  1123. rcmin = bignum;
  1124. rcmax = 0.f;
  1125. i__1 = *n;
  1126. for (j = 1; j <= i__1; ++j) {
  1127. /* Computing MIN */
  1128. r__1 = rcmin, r__2 = r__[j];
  1129. rcmin = f2cmin(r__1,r__2);
  1130. /* Computing MAX */
  1131. r__1 = rcmax, r__2 = r__[j];
  1132. rcmax = f2cmax(r__1,r__2);
  1133. /* L10: */
  1134. }
  1135. if (rcmin <= 0.f) {
  1136. *info = -11;
  1137. } else if (*n > 0) {
  1138. rowcnd = f2cmax(rcmin,smlnum) / f2cmin(rcmax,bignum);
  1139. } else {
  1140. rowcnd = 1.f;
  1141. }
  1142. }
  1143. if (colequ && *info == 0) {
  1144. rcmin = bignum;
  1145. rcmax = 0.f;
  1146. i__1 = *n;
  1147. for (j = 1; j <= i__1; ++j) {
  1148. /* Computing MIN */
  1149. r__1 = rcmin, r__2 = c__[j];
  1150. rcmin = f2cmin(r__1,r__2);
  1151. /* Computing MAX */
  1152. r__1 = rcmax, r__2 = c__[j];
  1153. rcmax = f2cmax(r__1,r__2);
  1154. /* L20: */
  1155. }
  1156. if (rcmin <= 0.f) {
  1157. *info = -12;
  1158. } else if (*n > 0) {
  1159. colcnd = f2cmax(rcmin,smlnum) / f2cmin(rcmax,bignum);
  1160. } else {
  1161. colcnd = 1.f;
  1162. }
  1163. }
  1164. if (*info == 0) {
  1165. if (*ldb < f2cmax(1,*n)) {
  1166. *info = -14;
  1167. } else if (*ldx < f2cmax(1,*n)) {
  1168. *info = -16;
  1169. }
  1170. }
  1171. }
  1172. if (*info != 0) {
  1173. i__1 = -(*info);
  1174. xerbla_("CGESVXX", &i__1, (ftnlen)7);
  1175. return;
  1176. }
  1177. if (equil) {
  1178. /* Compute row and column scalings to equilibrate the matrix A. */
  1179. cgeequb_(n, n, &a[a_offset], lda, &r__[1], &c__[1], &rowcnd, &colcnd,
  1180. &amax, &infequ);
  1181. if (infequ == 0) {
  1182. /* Equilibrate the matrix. */
  1183. claqge_(n, n, &a[a_offset], lda, &r__[1], &c__[1], &rowcnd, &
  1184. colcnd, &amax, equed);
  1185. rowequ = lsame_(equed, "R") || lsame_(equed,
  1186. "B");
  1187. colequ = lsame_(equed, "C") || lsame_(equed,
  1188. "B");
  1189. }
  1190. /* If the scaling factors are not applied, set them to 1.0. */
  1191. if (! rowequ) {
  1192. i__1 = *n;
  1193. for (j = 1; j <= i__1; ++j) {
  1194. r__[j] = 1.f;
  1195. }
  1196. }
  1197. if (! colequ) {
  1198. i__1 = *n;
  1199. for (j = 1; j <= i__1; ++j) {
  1200. c__[j] = 1.f;
  1201. }
  1202. }
  1203. }
  1204. /* Scale the right-hand side. */
  1205. if (notran) {
  1206. if (rowequ) {
  1207. clascl2_(n, nrhs, &r__[1], &b[b_offset], ldb);
  1208. }
  1209. } else {
  1210. if (colequ) {
  1211. clascl2_(n, nrhs, &c__[1], &b[b_offset], ldb);
  1212. }
  1213. }
  1214. if (nofact || equil) {
  1215. /* Compute the LU factorization of A. */
  1216. clacpy_("Full", n, n, &a[a_offset], lda, &af[af_offset], ldaf);
  1217. cgetrf_(n, n, &af[af_offset], ldaf, &ipiv[1], info);
  1218. /* Return if INFO is non-zero. */
  1219. if (*info > 0) {
  1220. /* Pivot in column INFO is exactly 0 */
  1221. /* Compute the reciprocal pivot growth factor of the */
  1222. /* leading rank-deficient INFO columns of A. */
  1223. *rpvgrw = cla_gerpvgrw_(n, info, &a[a_offset], lda, &af[
  1224. af_offset], ldaf);
  1225. return;
  1226. }
  1227. }
  1228. /* Compute the reciprocal pivot growth factor RPVGRW. */
  1229. *rpvgrw = cla_gerpvgrw_(n, n, &a[a_offset], lda, &af[af_offset], ldaf);
  1230. /* Compute the solution matrix X. */
  1231. clacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
  1232. cgetrs_(trans, n, nrhs, &af[af_offset], ldaf, &ipiv[1], &x[x_offset], ldx,
  1233. info);
  1234. /* Use iterative refinement to improve the computed solution and */
  1235. /* compute error bounds and backward error estimates for it. */
  1236. cgerfsx_(trans, equed, n, nrhs, &a[a_offset], lda, &af[af_offset], ldaf, &
  1237. ipiv[1], &r__[1], &c__[1], &b[b_offset], ldb, &x[x_offset], ldx,
  1238. rcond, &berr[1], n_err_bnds__, &err_bnds_norm__[
  1239. err_bnds_norm_offset], &err_bnds_comp__[err_bnds_comp_offset],
  1240. nparams, &params[1], &work[1], &rwork[1], info);
  1241. /* Scale solutions. */
  1242. if (colequ && notran) {
  1243. clascl2_(n, nrhs, &c__[1], &x[x_offset], ldx);
  1244. } else if (rowequ && ! notran) {
  1245. clascl2_(n, nrhs, &r__[1], &x[x_offset], ldx);
  1246. }
  1247. return;
  1248. /* End of CGESVXX */
  1249. } /* cgesvxx_ */