You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

stbrfs.c 30 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static real c_b19 = -1.f;
  488. /* > \brief \b STBRFS */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download STBRFS + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stbrfs.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stbrfs.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stbrfs.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE STBRFS( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B, */
  507. /* LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO ) */
  508. /* CHARACTER DIAG, TRANS, UPLO */
  509. /* INTEGER INFO, KD, LDAB, LDB, LDX, N, NRHS */
  510. /* INTEGER IWORK( * ) */
  511. /* REAL AB( LDAB, * ), B( LDB, * ), BERR( * ), */
  512. /* $ FERR( * ), WORK( * ), X( LDX, * ) */
  513. /* > \par Purpose: */
  514. /* ============= */
  515. /* > */
  516. /* > \verbatim */
  517. /* > */
  518. /* > STBRFS provides error bounds and backward error estimates for the */
  519. /* > solution to a system of linear equations with a triangular band */
  520. /* > coefficient matrix. */
  521. /* > */
  522. /* > The solution matrix X must be computed by STBTRS or some other */
  523. /* > means before entering this routine. STBRFS does not do iterative */
  524. /* > refinement because doing so cannot improve the backward error. */
  525. /* > \endverbatim */
  526. /* Arguments: */
  527. /* ========== */
  528. /* > \param[in] UPLO */
  529. /* > \verbatim */
  530. /* > UPLO is CHARACTER*1 */
  531. /* > = 'U': A is upper triangular; */
  532. /* > = 'L': A is lower triangular. */
  533. /* > \endverbatim */
  534. /* > */
  535. /* > \param[in] TRANS */
  536. /* > \verbatim */
  537. /* > TRANS is CHARACTER*1 */
  538. /* > Specifies the form of the system of equations: */
  539. /* > = 'N': A * X = B (No transpose) */
  540. /* > = 'T': A**T * X = B (Transpose) */
  541. /* > = 'C': A**H * X = B (Conjugate transpose = Transpose) */
  542. /* > \endverbatim */
  543. /* > */
  544. /* > \param[in] DIAG */
  545. /* > \verbatim */
  546. /* > DIAG is CHARACTER*1 */
  547. /* > = 'N': A is non-unit triangular; */
  548. /* > = 'U': A is unit triangular. */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[in] N */
  552. /* > \verbatim */
  553. /* > N is INTEGER */
  554. /* > The order of the matrix A. N >= 0. */
  555. /* > \endverbatim */
  556. /* > */
  557. /* > \param[in] KD */
  558. /* > \verbatim */
  559. /* > KD is INTEGER */
  560. /* > The number of superdiagonals or subdiagonals of the */
  561. /* > triangular band matrix A. KD >= 0. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] NRHS */
  565. /* > \verbatim */
  566. /* > NRHS is INTEGER */
  567. /* > The number of right hand sides, i.e., the number of columns */
  568. /* > of the matrices B and X. NRHS >= 0. */
  569. /* > \endverbatim */
  570. /* > */
  571. /* > \param[in] AB */
  572. /* > \verbatim */
  573. /* > AB is REAL array, dimension (LDAB,N) */
  574. /* > The upper or lower triangular band matrix A, stored in the */
  575. /* > first kd+1 rows of the array. The j-th column of A is stored */
  576. /* > in the j-th column of the array AB as follows: */
  577. /* > if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for f2cmax(1,j-kd)<=i<=j; */
  578. /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+kd). */
  579. /* > If DIAG = 'U', the diagonal elements of A are not referenced */
  580. /* > and are assumed to be 1. */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[in] LDAB */
  584. /* > \verbatim */
  585. /* > LDAB is INTEGER */
  586. /* > The leading dimension of the array AB. LDAB >= KD+1. */
  587. /* > \endverbatim */
  588. /* > */
  589. /* > \param[in] B */
  590. /* > \verbatim */
  591. /* > B is REAL array, dimension (LDB,NRHS) */
  592. /* > The right hand side matrix B. */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[in] LDB */
  596. /* > \verbatim */
  597. /* > LDB is INTEGER */
  598. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[in] X */
  602. /* > \verbatim */
  603. /* > X is REAL array, dimension (LDX,NRHS) */
  604. /* > The solution matrix X. */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[in] LDX */
  608. /* > \verbatim */
  609. /* > LDX is INTEGER */
  610. /* > The leading dimension of the array X. LDX >= f2cmax(1,N). */
  611. /* > \endverbatim */
  612. /* > */
  613. /* > \param[out] FERR */
  614. /* > \verbatim */
  615. /* > FERR is REAL array, dimension (NRHS) */
  616. /* > The estimated forward error bound for each solution vector */
  617. /* > X(j) (the j-th column of the solution matrix X). */
  618. /* > If XTRUE is the true solution corresponding to X(j), FERR(j) */
  619. /* > is an estimated upper bound for the magnitude of the largest */
  620. /* > element in (X(j) - XTRUE) divided by the magnitude of the */
  621. /* > largest element in X(j). The estimate is as reliable as */
  622. /* > the estimate for RCOND, and is almost always a slight */
  623. /* > overestimate of the true error. */
  624. /* > \endverbatim */
  625. /* > */
  626. /* > \param[out] BERR */
  627. /* > \verbatim */
  628. /* > BERR is REAL array, dimension (NRHS) */
  629. /* > The componentwise relative backward error of each solution */
  630. /* > vector X(j) (i.e., the smallest relative change in */
  631. /* > any element of A or B that makes X(j) an exact solution). */
  632. /* > \endverbatim */
  633. /* > */
  634. /* > \param[out] WORK */
  635. /* > \verbatim */
  636. /* > WORK is REAL array, dimension (3*N) */
  637. /* > \endverbatim */
  638. /* > */
  639. /* > \param[out] IWORK */
  640. /* > \verbatim */
  641. /* > IWORK is INTEGER array, dimension (N) */
  642. /* > \endverbatim */
  643. /* > */
  644. /* > \param[out] INFO */
  645. /* > \verbatim */
  646. /* > INFO is INTEGER */
  647. /* > = 0: successful exit */
  648. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  649. /* > \endverbatim */
  650. /* Authors: */
  651. /* ======== */
  652. /* > \author Univ. of Tennessee */
  653. /* > \author Univ. of California Berkeley */
  654. /* > \author Univ. of Colorado Denver */
  655. /* > \author NAG Ltd. */
  656. /* > \date December 2016 */
  657. /* > \ingroup realOTHERcomputational */
  658. /* ===================================================================== */
  659. /* Subroutine */ void stbrfs_(char *uplo, char *trans, char *diag, integer *n,
  660. integer *kd, integer *nrhs, real *ab, integer *ldab, real *b, integer
  661. *ldb, real *x, integer *ldx, real *ferr, real *berr, real *work,
  662. integer *iwork, integer *info)
  663. {
  664. /* System generated locals */
  665. integer ab_dim1, ab_offset, b_dim1, b_offset, x_dim1, x_offset, i__1,
  666. i__2, i__3, i__4, i__5;
  667. real r__1, r__2, r__3;
  668. /* Local variables */
  669. integer kase;
  670. real safe1, safe2;
  671. integer i__, j, k;
  672. real s;
  673. extern logical lsame_(char *, char *);
  674. integer isave[3];
  675. logical upper;
  676. extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
  677. integer *), stbmv_(char *, char *, char *, integer *, integer *,
  678. real *, integer *, real *, integer *),
  679. stbsv_(char *, char *, char *, integer *, integer *, real *,
  680. integer *, real *, integer *), saxpy_(
  681. integer *, real *, real *, integer *, real *, integer *), slacn2_(
  682. integer *, real *, real *, integer *, real *, integer *, integer *
  683. );
  684. real xk;
  685. extern real slamch_(char *);
  686. integer nz;
  687. real safmin;
  688. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  689. logical notran;
  690. char transt[1];
  691. logical nounit;
  692. real lstres, eps;
  693. /* -- LAPACK computational routine (version 3.7.0) -- */
  694. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  695. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  696. /* December 2016 */
  697. /* ===================================================================== */
  698. /* Test the input parameters. */
  699. /* Parameter adjustments */
  700. ab_dim1 = *ldab;
  701. ab_offset = 1 + ab_dim1 * 1;
  702. ab -= ab_offset;
  703. b_dim1 = *ldb;
  704. b_offset = 1 + b_dim1 * 1;
  705. b -= b_offset;
  706. x_dim1 = *ldx;
  707. x_offset = 1 + x_dim1 * 1;
  708. x -= x_offset;
  709. --ferr;
  710. --berr;
  711. --work;
  712. --iwork;
  713. /* Function Body */
  714. *info = 0;
  715. upper = lsame_(uplo, "U");
  716. notran = lsame_(trans, "N");
  717. nounit = lsame_(diag, "N");
  718. if (! upper && ! lsame_(uplo, "L")) {
  719. *info = -1;
  720. } else if (! notran && ! lsame_(trans, "T") && !
  721. lsame_(trans, "C")) {
  722. *info = -2;
  723. } else if (! nounit && ! lsame_(diag, "U")) {
  724. *info = -3;
  725. } else if (*n < 0) {
  726. *info = -4;
  727. } else if (*kd < 0) {
  728. *info = -5;
  729. } else if (*nrhs < 0) {
  730. *info = -6;
  731. } else if (*ldab < *kd + 1) {
  732. *info = -8;
  733. } else if (*ldb < f2cmax(1,*n)) {
  734. *info = -10;
  735. } else if (*ldx < f2cmax(1,*n)) {
  736. *info = -12;
  737. }
  738. if (*info != 0) {
  739. i__1 = -(*info);
  740. xerbla_("STBRFS", &i__1, (ftnlen)6);
  741. return;
  742. }
  743. /* Quick return if possible */
  744. if (*n == 0 || *nrhs == 0) {
  745. i__1 = *nrhs;
  746. for (j = 1; j <= i__1; ++j) {
  747. ferr[j] = 0.f;
  748. berr[j] = 0.f;
  749. /* L10: */
  750. }
  751. return;
  752. }
  753. if (notran) {
  754. *(unsigned char *)transt = 'T';
  755. } else {
  756. *(unsigned char *)transt = 'N';
  757. }
  758. /* NZ = maximum number of nonzero elements in each row of A, plus 1 */
  759. nz = *kd + 2;
  760. eps = slamch_("Epsilon");
  761. safmin = slamch_("Safe minimum");
  762. safe1 = nz * safmin;
  763. safe2 = safe1 / eps;
  764. /* Do for each right hand side */
  765. i__1 = *nrhs;
  766. for (j = 1; j <= i__1; ++j) {
  767. /* Compute residual R = B - op(A) * X, */
  768. /* where op(A) = A or A**T, depending on TRANS. */
  769. scopy_(n, &x[j * x_dim1 + 1], &c__1, &work[*n + 1], &c__1);
  770. stbmv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &work[*n + 1],
  771. &c__1);
  772. saxpy_(n, &c_b19, &b[j * b_dim1 + 1], &c__1, &work[*n + 1], &c__1);
  773. /* Compute componentwise relative backward error from formula */
  774. /* f2cmax(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) ) */
  775. /* where abs(Z) is the componentwise absolute value of the matrix */
  776. /* or vector Z. If the i-th component of the denominator is less */
  777. /* than SAFE2, then SAFE1 is added to the i-th components of the */
  778. /* numerator and denominator before dividing. */
  779. i__2 = *n;
  780. for (i__ = 1; i__ <= i__2; ++i__) {
  781. work[i__] = (r__1 = b[i__ + j * b_dim1], abs(r__1));
  782. /* L20: */
  783. }
  784. if (notran) {
  785. /* Compute abs(A)*abs(X) + abs(B). */
  786. if (upper) {
  787. if (nounit) {
  788. i__2 = *n;
  789. for (k = 1; k <= i__2; ++k) {
  790. xk = (r__1 = x[k + j * x_dim1], abs(r__1));
  791. /* Computing MAX */
  792. i__3 = 1, i__4 = k - *kd;
  793. i__5 = k;
  794. for (i__ = f2cmax(i__3,i__4); i__ <= i__5; ++i__) {
  795. work[i__] += (r__1 = ab[*kd + 1 + i__ - k + k *
  796. ab_dim1], abs(r__1)) * xk;
  797. /* L30: */
  798. }
  799. /* L40: */
  800. }
  801. } else {
  802. i__2 = *n;
  803. for (k = 1; k <= i__2; ++k) {
  804. xk = (r__1 = x[k + j * x_dim1], abs(r__1));
  805. /* Computing MAX */
  806. i__5 = 1, i__3 = k - *kd;
  807. i__4 = k - 1;
  808. for (i__ = f2cmax(i__5,i__3); i__ <= i__4; ++i__) {
  809. work[i__] += (r__1 = ab[*kd + 1 + i__ - k + k *
  810. ab_dim1], abs(r__1)) * xk;
  811. /* L50: */
  812. }
  813. work[k] += xk;
  814. /* L60: */
  815. }
  816. }
  817. } else {
  818. if (nounit) {
  819. i__2 = *n;
  820. for (k = 1; k <= i__2; ++k) {
  821. xk = (r__1 = x[k + j * x_dim1], abs(r__1));
  822. /* Computing MIN */
  823. i__5 = *n, i__3 = k + *kd;
  824. i__4 = f2cmin(i__5,i__3);
  825. for (i__ = k; i__ <= i__4; ++i__) {
  826. work[i__] += (r__1 = ab[i__ + 1 - k + k * ab_dim1]
  827. , abs(r__1)) * xk;
  828. /* L70: */
  829. }
  830. /* L80: */
  831. }
  832. } else {
  833. i__2 = *n;
  834. for (k = 1; k <= i__2; ++k) {
  835. xk = (r__1 = x[k + j * x_dim1], abs(r__1));
  836. /* Computing MIN */
  837. i__5 = *n, i__3 = k + *kd;
  838. i__4 = f2cmin(i__5,i__3);
  839. for (i__ = k + 1; i__ <= i__4; ++i__) {
  840. work[i__] += (r__1 = ab[i__ + 1 - k + k * ab_dim1]
  841. , abs(r__1)) * xk;
  842. /* L90: */
  843. }
  844. work[k] += xk;
  845. /* L100: */
  846. }
  847. }
  848. }
  849. } else {
  850. /* Compute abs(A**T)*abs(X) + abs(B). */
  851. if (upper) {
  852. if (nounit) {
  853. i__2 = *n;
  854. for (k = 1; k <= i__2; ++k) {
  855. s = 0.f;
  856. /* Computing MAX */
  857. i__4 = 1, i__5 = k - *kd;
  858. i__3 = k;
  859. for (i__ = f2cmax(i__4,i__5); i__ <= i__3; ++i__) {
  860. s += (r__1 = ab[*kd + 1 + i__ - k + k * ab_dim1],
  861. abs(r__1)) * (r__2 = x[i__ + j * x_dim1],
  862. abs(r__2));
  863. /* L110: */
  864. }
  865. work[k] += s;
  866. /* L120: */
  867. }
  868. } else {
  869. i__2 = *n;
  870. for (k = 1; k <= i__2; ++k) {
  871. s = (r__1 = x[k + j * x_dim1], abs(r__1));
  872. /* Computing MAX */
  873. i__3 = 1, i__4 = k - *kd;
  874. i__5 = k - 1;
  875. for (i__ = f2cmax(i__3,i__4); i__ <= i__5; ++i__) {
  876. s += (r__1 = ab[*kd + 1 + i__ - k + k * ab_dim1],
  877. abs(r__1)) * (r__2 = x[i__ + j * x_dim1],
  878. abs(r__2));
  879. /* L130: */
  880. }
  881. work[k] += s;
  882. /* L140: */
  883. }
  884. }
  885. } else {
  886. if (nounit) {
  887. i__2 = *n;
  888. for (k = 1; k <= i__2; ++k) {
  889. s = 0.f;
  890. /* Computing MIN */
  891. i__3 = *n, i__4 = k + *kd;
  892. i__5 = f2cmin(i__3,i__4);
  893. for (i__ = k; i__ <= i__5; ++i__) {
  894. s += (r__1 = ab[i__ + 1 - k + k * ab_dim1], abs(
  895. r__1)) * (r__2 = x[i__ + j * x_dim1], abs(
  896. r__2));
  897. /* L150: */
  898. }
  899. work[k] += s;
  900. /* L160: */
  901. }
  902. } else {
  903. i__2 = *n;
  904. for (k = 1; k <= i__2; ++k) {
  905. s = (r__1 = x[k + j * x_dim1], abs(r__1));
  906. /* Computing MIN */
  907. i__3 = *n, i__4 = k + *kd;
  908. i__5 = f2cmin(i__3,i__4);
  909. for (i__ = k + 1; i__ <= i__5; ++i__) {
  910. s += (r__1 = ab[i__ + 1 - k + k * ab_dim1], abs(
  911. r__1)) * (r__2 = x[i__ + j * x_dim1], abs(
  912. r__2));
  913. /* L170: */
  914. }
  915. work[k] += s;
  916. /* L180: */
  917. }
  918. }
  919. }
  920. }
  921. s = 0.f;
  922. i__2 = *n;
  923. for (i__ = 1; i__ <= i__2; ++i__) {
  924. if (work[i__] > safe2) {
  925. /* Computing MAX */
  926. r__2 = s, r__3 = (r__1 = work[*n + i__], abs(r__1)) / work[
  927. i__];
  928. s = f2cmax(r__2,r__3);
  929. } else {
  930. /* Computing MAX */
  931. r__2 = s, r__3 = ((r__1 = work[*n + i__], abs(r__1)) + safe1)
  932. / (work[i__] + safe1);
  933. s = f2cmax(r__2,r__3);
  934. }
  935. /* L190: */
  936. }
  937. berr[j] = s;
  938. /* Bound error from formula */
  939. /* norm(X - XTRUE) / norm(X) .le. FERR = */
  940. /* norm( abs(inv(op(A)))* */
  941. /* ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X) */
  942. /* where */
  943. /* norm(Z) is the magnitude of the largest component of Z */
  944. /* inv(op(A)) is the inverse of op(A) */
  945. /* abs(Z) is the componentwise absolute value of the matrix or */
  946. /* vector Z */
  947. /* NZ is the maximum number of nonzeros in any row of A, plus 1 */
  948. /* EPS is machine epsilon */
  949. /* The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B)) */
  950. /* is incremented by SAFE1 if the i-th component of */
  951. /* abs(op(A))*abs(X) + abs(B) is less than SAFE2. */
  952. /* Use SLACN2 to estimate the infinity-norm of the matrix */
  953. /* inv(op(A)) * diag(W), */
  954. /* where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) */
  955. i__2 = *n;
  956. for (i__ = 1; i__ <= i__2; ++i__) {
  957. if (work[i__] > safe2) {
  958. work[i__] = (r__1 = work[*n + i__], abs(r__1)) + nz * eps *
  959. work[i__];
  960. } else {
  961. work[i__] = (r__1 = work[*n + i__], abs(r__1)) + nz * eps *
  962. work[i__] + safe1;
  963. }
  964. /* L200: */
  965. }
  966. kase = 0;
  967. L210:
  968. slacn2_(n, &work[(*n << 1) + 1], &work[*n + 1], &iwork[1], &ferr[j], &
  969. kase, isave);
  970. if (kase != 0) {
  971. if (kase == 1) {
  972. /* Multiply by diag(W)*inv(op(A)**T). */
  973. stbsv_(uplo, transt, diag, n, kd, &ab[ab_offset], ldab, &work[
  974. *n + 1], &c__1);
  975. i__2 = *n;
  976. for (i__ = 1; i__ <= i__2; ++i__) {
  977. work[*n + i__] = work[i__] * work[*n + i__];
  978. /* L220: */
  979. }
  980. } else {
  981. /* Multiply by inv(op(A))*diag(W). */
  982. i__2 = *n;
  983. for (i__ = 1; i__ <= i__2; ++i__) {
  984. work[*n + i__] = work[i__] * work[*n + i__];
  985. /* L230: */
  986. }
  987. stbsv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &work[*
  988. n + 1], &c__1);
  989. }
  990. goto L210;
  991. }
  992. /* Normalize error. */
  993. lstres = 0.f;
  994. i__2 = *n;
  995. for (i__ = 1; i__ <= i__2; ++i__) {
  996. /* Computing MAX */
  997. r__2 = lstres, r__3 = (r__1 = x[i__ + j * x_dim1], abs(r__1));
  998. lstres = f2cmax(r__2,r__3);
  999. /* L240: */
  1000. }
  1001. if (lstres != 0.f) {
  1002. ferr[j] /= lstres;
  1003. }
  1004. /* L250: */
  1005. }
  1006. return;
  1007. /* End of STBRFS */
  1008. } /* stbrfs_ */