You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgesvdx.c 45 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__6 = 6;
  487. static integer c__0 = 0;
  488. static integer c__2 = 2;
  489. static integer c__1 = 1;
  490. static integer c_n1 = -1;
  491. static doublereal c_b109 = 0.;
  492. /* > \brief <b> DGESVDX computes the singular value decomposition (SVD) for GE matrices</b> */
  493. /* =========== DOCUMENTATION =========== */
  494. /* Online html documentation available at */
  495. /* http://www.netlib.org/lapack/explore-html/ */
  496. /* > \htmlonly */
  497. /* > Download DGESVDX + dependencies */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgesvdx
  499. .f"> */
  500. /* > [TGZ]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgesvdx
  502. .f"> */
  503. /* > [ZIP]</a> */
  504. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgesvdx
  505. .f"> */
  506. /* > [TXT]</a> */
  507. /* > \endhtmlonly */
  508. /* Definition: */
  509. /* =========== */
  510. /* SUBROUTINE DGESVDX( JOBU, JOBVT, RANGE, M, N, A, LDA, VL, VU, */
  511. /* $ IL, IU, NS, S, U, LDU, VT, LDVT, WORK, */
  512. /* $ LWORK, IWORK, INFO ) */
  513. /* CHARACTER JOBU, JOBVT, RANGE */
  514. /* INTEGER IL, INFO, IU, LDA, LDU, LDVT, LWORK, M, N, NS */
  515. /* DOUBLE PRECISION VL, VU */
  516. /* INTEGER IWORK( * ) */
  517. /* DOUBLE PRECISION A( LDA, * ), S( * ), U( LDU, * ), */
  518. /* $ VT( LDVT, * ), WORK( * ) */
  519. /* > \par Purpose: */
  520. /* ============= */
  521. /* > */
  522. /* > \verbatim */
  523. /* > */
  524. /* > DGESVDX computes the singular value decomposition (SVD) of a real */
  525. /* > M-by-N matrix A, optionally computing the left and/or right singular */
  526. /* > vectors. The SVD is written */
  527. /* > */
  528. /* > A = U * SIGMA * transpose(V) */
  529. /* > */
  530. /* > where SIGMA is an M-by-N matrix which is zero except for its */
  531. /* > f2cmin(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and */
  532. /* > V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA */
  533. /* > are the singular values of A; they are real and non-negative, and */
  534. /* > are returned in descending order. The first f2cmin(m,n) columns of */
  535. /* > U and V are the left and right singular vectors of A. */
  536. /* > */
  537. /* > DGESVDX uses an eigenvalue problem for obtaining the SVD, which */
  538. /* > allows for the computation of a subset of singular values and */
  539. /* > vectors. See DBDSVDX for details. */
  540. /* > */
  541. /* > Note that the routine returns V**T, not V. */
  542. /* > \endverbatim */
  543. /* Arguments: */
  544. /* ========== */
  545. /* > \param[in] JOBU */
  546. /* > \verbatim */
  547. /* > JOBU is CHARACTER*1 */
  548. /* > Specifies options for computing all or part of the matrix U: */
  549. /* > = 'V': the first f2cmin(m,n) columns of U (the left singular */
  550. /* > vectors) or as specified by RANGE are returned in */
  551. /* > the array U; */
  552. /* > = 'N': no columns of U (no left singular vectors) are */
  553. /* > computed. */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in] JOBVT */
  557. /* > \verbatim */
  558. /* > JOBVT is CHARACTER*1 */
  559. /* > Specifies options for computing all or part of the matrix */
  560. /* > V**T: */
  561. /* > = 'V': the first f2cmin(m,n) rows of V**T (the right singular */
  562. /* > vectors) or as specified by RANGE are returned in */
  563. /* > the array VT; */
  564. /* > = 'N': no rows of V**T (no right singular vectors) are */
  565. /* > computed. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] RANGE */
  569. /* > \verbatim */
  570. /* > RANGE is CHARACTER*1 */
  571. /* > = 'A': all singular values will be found. */
  572. /* > = 'V': all singular values in the half-open interval (VL,VU] */
  573. /* > will be found. */
  574. /* > = 'I': the IL-th through IU-th singular values will be found. */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in] M */
  578. /* > \verbatim */
  579. /* > M is INTEGER */
  580. /* > The number of rows of the input matrix A. M >= 0. */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[in] N */
  584. /* > \verbatim */
  585. /* > N is INTEGER */
  586. /* > The number of columns of the input matrix A. N >= 0. */
  587. /* > \endverbatim */
  588. /* > */
  589. /* > \param[in,out] A */
  590. /* > \verbatim */
  591. /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
  592. /* > On entry, the M-by-N matrix A. */
  593. /* > On exit, the contents of A are destroyed. */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[in] LDA */
  597. /* > \verbatim */
  598. /* > LDA is INTEGER */
  599. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in] VL */
  603. /* > \verbatim */
  604. /* > VL is DOUBLE PRECISION */
  605. /* > If RANGE='V', the lower bound of the interval to */
  606. /* > be searched for singular values. VU > VL. */
  607. /* > Not referenced if RANGE = 'A' or 'I'. */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[in] VU */
  611. /* > \verbatim */
  612. /* > VU is DOUBLE PRECISION */
  613. /* > If RANGE='V', the upper bound of the interval to */
  614. /* > be searched for singular values. VU > VL. */
  615. /* > Not referenced if RANGE = 'A' or 'I'. */
  616. /* > \endverbatim */
  617. /* > */
  618. /* > \param[in] IL */
  619. /* > \verbatim */
  620. /* > IL is INTEGER */
  621. /* > If RANGE='I', the index of the */
  622. /* > smallest singular value to be returned. */
  623. /* > 1 <= IL <= IU <= f2cmin(M,N), if f2cmin(M,N) > 0. */
  624. /* > Not referenced if RANGE = 'A' or 'V'. */
  625. /* > \endverbatim */
  626. /* > */
  627. /* > \param[in] IU */
  628. /* > \verbatim */
  629. /* > IU is INTEGER */
  630. /* > If RANGE='I', the index of the */
  631. /* > largest singular value to be returned. */
  632. /* > 1 <= IL <= IU <= f2cmin(M,N), if f2cmin(M,N) > 0. */
  633. /* > Not referenced if RANGE = 'A' or 'V'. */
  634. /* > \endverbatim */
  635. /* > */
  636. /* > \param[out] NS */
  637. /* > \verbatim */
  638. /* > NS is INTEGER */
  639. /* > The total number of singular values found, */
  640. /* > 0 <= NS <= f2cmin(M,N). */
  641. /* > If RANGE = 'A', NS = f2cmin(M,N); if RANGE = 'I', NS = IU-IL+1. */
  642. /* > \endverbatim */
  643. /* > */
  644. /* > \param[out] S */
  645. /* > \verbatim */
  646. /* > S is DOUBLE PRECISION array, dimension (f2cmin(M,N)) */
  647. /* > The singular values of A, sorted so that S(i) >= S(i+1). */
  648. /* > \endverbatim */
  649. /* > */
  650. /* > \param[out] U */
  651. /* > \verbatim */
  652. /* > U is DOUBLE PRECISION array, dimension (LDU,UCOL) */
  653. /* > If JOBU = 'V', U contains columns of U (the left singular */
  654. /* > vectors, stored columnwise) as specified by RANGE; if */
  655. /* > JOBU = 'N', U is not referenced. */
  656. /* > Note: The user must ensure that UCOL >= NS; if RANGE = 'V', */
  657. /* > the exact value of NS is not known in advance and an upper */
  658. /* > bound must be used. */
  659. /* > \endverbatim */
  660. /* > */
  661. /* > \param[in] LDU */
  662. /* > \verbatim */
  663. /* > LDU is INTEGER */
  664. /* > The leading dimension of the array U. LDU >= 1; if */
  665. /* > JOBU = 'V', LDU >= M. */
  666. /* > \endverbatim */
  667. /* > */
  668. /* > \param[out] VT */
  669. /* > \verbatim */
  670. /* > VT is DOUBLE PRECISION array, dimension (LDVT,N) */
  671. /* > If JOBVT = 'V', VT contains the rows of V**T (the right singular */
  672. /* > vectors, stored rowwise) as specified by RANGE; if JOBVT = 'N', */
  673. /* > VT is not referenced. */
  674. /* > Note: The user must ensure that LDVT >= NS; if RANGE = 'V', */
  675. /* > the exact value of NS is not known in advance and an upper */
  676. /* > bound must be used. */
  677. /* > \endverbatim */
  678. /* > */
  679. /* > \param[in] LDVT */
  680. /* > \verbatim */
  681. /* > LDVT is INTEGER */
  682. /* > The leading dimension of the array VT. LDVT >= 1; if */
  683. /* > JOBVT = 'V', LDVT >= NS (see above). */
  684. /* > \endverbatim */
  685. /* > */
  686. /* > \param[out] WORK */
  687. /* > \verbatim */
  688. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  689. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK; */
  690. /* > \endverbatim */
  691. /* > */
  692. /* > \param[in] LWORK */
  693. /* > \verbatim */
  694. /* > LWORK is INTEGER */
  695. /* > The dimension of the array WORK. */
  696. /* > LWORK >= MAX(1,MIN(M,N)*(MIN(M,N)+4)) for the paths (see */
  697. /* > comments inside the code): */
  698. /* > - PATH 1 (M much larger than N) */
  699. /* > - PATH 1t (N much larger than M) */
  700. /* > LWORK >= MAX(1,MIN(M,N)*2+MAX(M,N)) for the other paths. */
  701. /* > For good performance, LWORK should generally be larger. */
  702. /* > */
  703. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  704. /* > only calculates the optimal size of the WORK array, returns */
  705. /* > this value as the first entry of the WORK array, and no error */
  706. /* > message related to LWORK is issued by XERBLA. */
  707. /* > \endverbatim */
  708. /* > */
  709. /* > \param[out] IWORK */
  710. /* > \verbatim */
  711. /* > IWORK is INTEGER array, dimension (12*MIN(M,N)) */
  712. /* > If INFO = 0, the first NS elements of IWORK are zero. If INFO > 0, */
  713. /* > then IWORK contains the indices of the eigenvectors that failed */
  714. /* > to converge in DBDSVDX/DSTEVX. */
  715. /* > \endverbatim */
  716. /* > */
  717. /* > \param[out] INFO */
  718. /* > \verbatim */
  719. /* > INFO is INTEGER */
  720. /* > = 0: successful exit */
  721. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  722. /* > > 0: if INFO = i, then i eigenvectors failed to converge */
  723. /* > in DBDSVDX/DSTEVX. */
  724. /* > if INFO = N*2 + 1, an internal error occurred in */
  725. /* > DBDSVDX */
  726. /* > \endverbatim */
  727. /* Authors: */
  728. /* ======== */
  729. /* > \author Univ. of Tennessee */
  730. /* > \author Univ. of California Berkeley */
  731. /* > \author Univ. of Colorado Denver */
  732. /* > \author NAG Ltd. */
  733. /* > \date June 2016 */
  734. /* > \ingroup doubleGEsing */
  735. /* ===================================================================== */
  736. /* Subroutine */ void dgesvdx_(char *jobu, char *jobvt, char *range, integer *
  737. m, integer *n, doublereal *a, integer *lda, doublereal *vl,
  738. doublereal *vu, integer *il, integer *iu, integer *ns, doublereal *s,
  739. doublereal *u, integer *ldu, doublereal *vt, integer *ldvt,
  740. doublereal *work, integer *lwork, integer *iwork, integer *info)
  741. {
  742. /* System generated locals */
  743. address a__1[2];
  744. integer a_dim1, a_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1[2],
  745. i__2, i__3;
  746. char ch__1[2];
  747. /* Local variables */
  748. integer iscl;
  749. logical alls, inds;
  750. integer ilqf;
  751. doublereal anrm;
  752. integer ierr, iqrf, itau;
  753. char jobz[1];
  754. logical vals;
  755. integer i__, j;
  756. extern logical lsame_(char *, char *);
  757. integer iltgk, itemp, minmn;
  758. extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
  759. doublereal *, integer *);
  760. integer itaup, itauq, iutgk, itgkz, mnthr;
  761. logical wantu;
  762. integer id, ie;
  763. extern /* Subroutine */ void dgebrd_(integer *, integer *, doublereal *,
  764. integer *, doublereal *, doublereal *, doublereal *, doublereal *,
  765. doublereal *, integer *, integer *);
  766. extern doublereal dlamch_(char *), dlange_(char *, integer *,
  767. integer *, doublereal *, integer *, doublereal *);
  768. extern /* Subroutine */ void dgelqf_(integer *, integer *, doublereal *,
  769. integer *, doublereal *, doublereal *, integer *, integer *),
  770. dlascl_(char *, integer *, integer *, doublereal *, doublereal *,
  771. integer *, integer *, doublereal *, integer *, integer *),
  772. dgeqrf_(integer *, integer *, doublereal *, integer *,
  773. doublereal *, doublereal *, integer *, integer *), dlacpy_(char *,
  774. integer *, integer *, doublereal *, integer *, doublereal *,
  775. integer *), dlaset_(char *, integer *, integer *,
  776. doublereal *, doublereal *, doublereal *, integer *);
  777. extern int xerbla_(char *, integer *, ftnlen);
  778. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  779. integer *, integer *, ftnlen, ftnlen);
  780. doublereal bignum, abstol;
  781. extern /* Subroutine */ void dormbr_(char *, char *, char *, integer *,
  782. integer *, integer *, doublereal *, integer *, doublereal *,
  783. doublereal *, integer *, doublereal *, integer *, integer *);
  784. char rngtgk[1];
  785. extern /* Subroutine */ void dormlq_(char *, char *, integer *, integer *,
  786. integer *, doublereal *, integer *, doublereal *, doublereal *,
  787. integer *, doublereal *, integer *, integer *),
  788. dormqr_(char *, char *, integer *, integer *, integer *,
  789. doublereal *, integer *, doublereal *, doublereal *, integer *,
  790. doublereal *, integer *, integer *);
  791. integer minwrk, maxwrk;
  792. doublereal smlnum;
  793. logical lquery, wantvt;
  794. doublereal dum[1], eps;
  795. extern /* Subroutine */ void dbdsvdx_(char *, char *, char *, integer *,
  796. doublereal *, doublereal *, doublereal *, doublereal *, integer *,
  797. integer *, integer *, doublereal *, doublereal *, integer *,
  798. doublereal *, integer *, integer *);
  799. /* -- LAPACK driver routine (version 3.8.0) -- */
  800. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  801. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  802. /* June 2016 */
  803. /* ===================================================================== */
  804. /* Test the input arguments. */
  805. /* Parameter adjustments */
  806. a_dim1 = *lda;
  807. a_offset = 1 + a_dim1 * 1;
  808. a -= a_offset;
  809. --s;
  810. u_dim1 = *ldu;
  811. u_offset = 1 + u_dim1 * 1;
  812. u -= u_offset;
  813. vt_dim1 = *ldvt;
  814. vt_offset = 1 + vt_dim1 * 1;
  815. vt -= vt_offset;
  816. --work;
  817. --iwork;
  818. /* Function Body */
  819. *ns = 0;
  820. *info = 0;
  821. abstol = dlamch_("S") * 2;
  822. lquery = *lwork == -1;
  823. minmn = f2cmin(*m,*n);
  824. wantu = lsame_(jobu, "V");
  825. wantvt = lsame_(jobvt, "V");
  826. if (wantu || wantvt) {
  827. *(unsigned char *)jobz = 'V';
  828. } else {
  829. *(unsigned char *)jobz = 'N';
  830. }
  831. alls = lsame_(range, "A");
  832. vals = lsame_(range, "V");
  833. inds = lsame_(range, "I");
  834. *info = 0;
  835. if (! lsame_(jobu, "V") && ! lsame_(jobu, "N")) {
  836. *info = -1;
  837. } else if (! lsame_(jobvt, "V") && ! lsame_(jobvt,
  838. "N")) {
  839. *info = -2;
  840. } else if (! (alls || vals || inds)) {
  841. *info = -3;
  842. } else if (*m < 0) {
  843. *info = -4;
  844. } else if (*n < 0) {
  845. *info = -5;
  846. } else if (*m > *lda) {
  847. *info = -7;
  848. } else if (minmn > 0) {
  849. if (vals) {
  850. if (*vl < 0.) {
  851. *info = -8;
  852. } else if (*vu <= *vl) {
  853. *info = -9;
  854. }
  855. } else if (inds) {
  856. if (*il < 1 || *il > f2cmax(1,minmn)) {
  857. *info = -10;
  858. } else if (*iu < f2cmin(minmn,*il) || *iu > minmn) {
  859. *info = -11;
  860. }
  861. }
  862. if (*info == 0) {
  863. if (wantu && *ldu < *m) {
  864. *info = -15;
  865. } else if (wantvt) {
  866. if (inds) {
  867. if (*ldvt < *iu - *il + 1) {
  868. *info = -17;
  869. }
  870. } else if (*ldvt < minmn) {
  871. *info = -17;
  872. }
  873. }
  874. }
  875. }
  876. /* Compute workspace */
  877. /* (Note: Comments in the code beginning "Workspace:" describe the */
  878. /* minimal amount of workspace needed at that point in the code, */
  879. /* as well as the preferred amount for good performance. */
  880. /* NB refers to the optimal block size for the immediately */
  881. /* following subroutine, as returned by ILAENV.) */
  882. if (*info == 0) {
  883. minwrk = 1;
  884. maxwrk = 1;
  885. if (minmn > 0) {
  886. if (*m >= *n) {
  887. /* Writing concatenation */
  888. i__1[0] = 1, a__1[0] = jobu;
  889. i__1[1] = 1, a__1[1] = jobvt;
  890. s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
  891. mnthr = ilaenv_(&c__6, "DGESVD", ch__1, m, n, &c__0, &c__0, (
  892. ftnlen)6, (ftnlen)2);
  893. if (*m >= mnthr) {
  894. /* Path 1 (M much larger than N) */
  895. maxwrk = *n + *n * ilaenv_(&c__1, "DGEQRF", " ", m, n, &
  896. c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  897. /* Computing MAX */
  898. i__2 = maxwrk, i__3 = *n * (*n + 5) + (*n << 1) * ilaenv_(
  899. &c__1, "DGEBRD", " ", n, n, &c_n1, &c_n1, (ftnlen)
  900. 6, (ftnlen)1);
  901. maxwrk = f2cmax(i__2,i__3);
  902. if (wantu) {
  903. /* Computing MAX */
  904. i__2 = maxwrk, i__3 = *n * (*n * 3 + 6) + *n *
  905. ilaenv_(&c__1, "DORMQR", " ", n, n, &c_n1, &
  906. c_n1, (ftnlen)6, (ftnlen)1);
  907. maxwrk = f2cmax(i__2,i__3);
  908. }
  909. if (wantvt) {
  910. /* Computing MAX */
  911. i__2 = maxwrk, i__3 = *n * (*n * 3 + 6) + *n *
  912. ilaenv_(&c__1, "DORMLQ", " ", n, n, &c_n1, &
  913. c_n1, (ftnlen)6, (ftnlen)1);
  914. maxwrk = f2cmax(i__2,i__3);
  915. }
  916. minwrk = *n * (*n * 3 + 20);
  917. } else {
  918. /* Path 2 (M at least N, but not much larger) */
  919. maxwrk = (*n << 2) + (*m + *n) * ilaenv_(&c__1, "DGEBRD",
  920. " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  921. if (wantu) {
  922. /* Computing MAX */
  923. i__2 = maxwrk, i__3 = *n * ((*n << 1) + 5) + *n *
  924. ilaenv_(&c__1, "DORMQR", " ", n, n, &c_n1, &
  925. c_n1, (ftnlen)6, (ftnlen)1);
  926. maxwrk = f2cmax(i__2,i__3);
  927. }
  928. if (wantvt) {
  929. /* Computing MAX */
  930. i__2 = maxwrk, i__3 = *n * ((*n << 1) + 5) + *n *
  931. ilaenv_(&c__1, "DORMLQ", " ", n, n, &c_n1, &
  932. c_n1, (ftnlen)6, (ftnlen)1);
  933. maxwrk = f2cmax(i__2,i__3);
  934. }
  935. /* Computing MAX */
  936. i__2 = *n * ((*n << 1) + 19), i__3 = (*n << 2) + *m;
  937. minwrk = f2cmax(i__2,i__3);
  938. }
  939. } else {
  940. /* Writing concatenation */
  941. i__1[0] = 1, a__1[0] = jobu;
  942. i__1[1] = 1, a__1[1] = jobvt;
  943. s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
  944. mnthr = ilaenv_(&c__6, "DGESVD", ch__1, m, n, &c__0, &c__0, (
  945. ftnlen)6, (ftnlen)2);
  946. if (*n >= mnthr) {
  947. /* Path 1t (N much larger than M) */
  948. maxwrk = *m + *m * ilaenv_(&c__1, "DGELQF", " ", m, n, &
  949. c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  950. /* Computing MAX */
  951. i__2 = maxwrk, i__3 = *m * (*m + 5) + (*m << 1) * ilaenv_(
  952. &c__1, "DGEBRD", " ", m, m, &c_n1, &c_n1, (ftnlen)
  953. 6, (ftnlen)1);
  954. maxwrk = f2cmax(i__2,i__3);
  955. if (wantu) {
  956. /* Computing MAX */
  957. i__2 = maxwrk, i__3 = *m * (*m * 3 + 6) + *m *
  958. ilaenv_(&c__1, "DORMQR", " ", m, m, &c_n1, &
  959. c_n1, (ftnlen)6, (ftnlen)1);
  960. maxwrk = f2cmax(i__2,i__3);
  961. }
  962. if (wantvt) {
  963. /* Computing MAX */
  964. i__2 = maxwrk, i__3 = *m * (*m * 3 + 6) + *m *
  965. ilaenv_(&c__1, "DORMLQ", " ", m, m, &c_n1, &
  966. c_n1, (ftnlen)6, (ftnlen)1);
  967. maxwrk = f2cmax(i__2,i__3);
  968. }
  969. minwrk = *m * (*m * 3 + 20);
  970. } else {
  971. /* Path 2t (N at least M, but not much larger) */
  972. maxwrk = (*m << 2) + (*m + *n) * ilaenv_(&c__1, "DGEBRD",
  973. " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  974. if (wantu) {
  975. /* Computing MAX */
  976. i__2 = maxwrk, i__3 = *m * ((*m << 1) + 5) + *m *
  977. ilaenv_(&c__1, "DORMQR", " ", m, m, &c_n1, &
  978. c_n1, (ftnlen)6, (ftnlen)1);
  979. maxwrk = f2cmax(i__2,i__3);
  980. }
  981. if (wantvt) {
  982. /* Computing MAX */
  983. i__2 = maxwrk, i__3 = *m * ((*m << 1) + 5) + *m *
  984. ilaenv_(&c__1, "DORMLQ", " ", m, m, &c_n1, &
  985. c_n1, (ftnlen)6, (ftnlen)1);
  986. maxwrk = f2cmax(i__2,i__3);
  987. }
  988. /* Computing MAX */
  989. i__2 = *m * ((*m << 1) + 19), i__3 = (*m << 2) + *n;
  990. minwrk = f2cmax(i__2,i__3);
  991. }
  992. }
  993. }
  994. maxwrk = f2cmax(maxwrk,minwrk);
  995. work[1] = (doublereal) maxwrk;
  996. if (*lwork < minwrk && ! lquery) {
  997. *info = -19;
  998. }
  999. }
  1000. if (*info != 0) {
  1001. i__2 = -(*info);
  1002. xerbla_("DGESVDX", &i__2, (ftnlen)7);
  1003. return;
  1004. } else if (lquery) {
  1005. return;
  1006. }
  1007. /* Quick return if possible */
  1008. if (*m == 0 || *n == 0) {
  1009. return;
  1010. }
  1011. /* Set singular values indices accord to RANGE. */
  1012. if (alls) {
  1013. *(unsigned char *)rngtgk = 'I';
  1014. iltgk = 1;
  1015. iutgk = f2cmin(*m,*n);
  1016. } else if (inds) {
  1017. *(unsigned char *)rngtgk = 'I';
  1018. iltgk = *il;
  1019. iutgk = *iu;
  1020. } else {
  1021. *(unsigned char *)rngtgk = 'V';
  1022. iltgk = 0;
  1023. iutgk = 0;
  1024. }
  1025. /* Get machine constants */
  1026. eps = dlamch_("P");
  1027. smlnum = sqrt(dlamch_("S")) / eps;
  1028. bignum = 1. / smlnum;
  1029. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  1030. anrm = dlange_("M", m, n, &a[a_offset], lda, dum);
  1031. iscl = 0;
  1032. if (anrm > 0. && anrm < smlnum) {
  1033. iscl = 1;
  1034. dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
  1035. info);
  1036. } else if (anrm > bignum) {
  1037. iscl = 1;
  1038. dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
  1039. info);
  1040. }
  1041. if (*m >= *n) {
  1042. /* A has at least as many rows as columns. If A has sufficiently */
  1043. /* more rows than columns, first reduce A using the QR */
  1044. /* decomposition. */
  1045. if (*m >= mnthr) {
  1046. /* Path 1 (M much larger than N): */
  1047. /* A = Q * R = Q * ( QB * B * PB**T ) */
  1048. /* = Q * ( QB * ( UB * S * VB**T ) * PB**T ) */
  1049. /* U = Q * QB * UB; V**T = VB**T * PB**T */
  1050. /* Compute A=Q*R */
  1051. /* (Workspace: need 2*N, prefer N+N*NB) */
  1052. itau = 1;
  1053. itemp = itau + *n;
  1054. i__2 = *lwork - itemp + 1;
  1055. dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[itemp], &i__2,
  1056. info);
  1057. /* Copy R into WORK and bidiagonalize it: */
  1058. /* (Workspace: need N*N+5*N, prefer N*N+4*N+2*N*NB) */
  1059. iqrf = itemp;
  1060. id = iqrf + *n * *n;
  1061. ie = id + *n;
  1062. itauq = ie + *n;
  1063. itaup = itauq + *n;
  1064. itemp = itaup + *n;
  1065. dlacpy_("U", n, n, &a[a_offset], lda, &work[iqrf], n);
  1066. i__2 = *n - 1;
  1067. i__3 = *n - 1;
  1068. dlaset_("L", &i__2, &i__3, &c_b109, &c_b109, &work[iqrf + 1], n);
  1069. i__2 = *lwork - itemp + 1;
  1070. dgebrd_(n, n, &work[iqrf], n, &work[id], &work[ie], &work[itauq],
  1071. &work[itaup], &work[itemp], &i__2, info);
  1072. /* Solve eigenvalue problem TGK*Z=Z*S. */
  1073. /* (Workspace: need 14*N + 2*N*(N+1)) */
  1074. itgkz = itemp;
  1075. itemp = itgkz + *n * ((*n << 1) + 1);
  1076. i__2 = *n << 1;
  1077. dbdsvdx_("U", jobz, rngtgk, n, &work[id], &work[ie], vl, vu, &
  1078. iltgk, &iutgk, ns, &s[1], &work[itgkz], &i__2, &work[
  1079. itemp], &iwork[1], info);
  1080. /* If needed, compute left singular vectors. */
  1081. if (wantu) {
  1082. j = itgkz;
  1083. i__2 = *ns;
  1084. for (i__ = 1; i__ <= i__2; ++i__) {
  1085. dcopy_(n, &work[j], &c__1, &u[i__ * u_dim1 + 1], &c__1);
  1086. j += *n << 1;
  1087. }
  1088. i__2 = *m - *n;
  1089. dlaset_("A", &i__2, ns, &c_b109, &c_b109, &u[*n + 1 + u_dim1],
  1090. ldu);
  1091. /* Call DORMBR to compute QB*UB. */
  1092. /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
  1093. i__2 = *lwork - itemp + 1;
  1094. dormbr_("Q", "L", "N", n, ns, n, &work[iqrf], n, &work[itauq],
  1095. &u[u_offset], ldu, &work[itemp], &i__2, info);
  1096. /* Call DORMQR to compute Q*(QB*UB). */
  1097. /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
  1098. i__2 = *lwork - itemp + 1;
  1099. dormqr_("L", "N", m, ns, n, &a[a_offset], lda, &work[itau], &
  1100. u[u_offset], ldu, &work[itemp], &i__2, info);
  1101. }
  1102. /* If needed, compute right singular vectors. */
  1103. if (wantvt) {
  1104. j = itgkz + *n;
  1105. i__2 = *ns;
  1106. for (i__ = 1; i__ <= i__2; ++i__) {
  1107. dcopy_(n, &work[j], &c__1, &vt[i__ + vt_dim1], ldvt);
  1108. j += *n << 1;
  1109. }
  1110. /* Call DORMBR to compute VB**T * PB**T */
  1111. /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
  1112. i__2 = *lwork - itemp + 1;
  1113. dormbr_("P", "R", "T", ns, n, n, &work[iqrf], n, &work[itaup],
  1114. &vt[vt_offset], ldvt, &work[itemp], &i__2, info);
  1115. }
  1116. } else {
  1117. /* Path 2 (M at least N, but not much larger) */
  1118. /* Reduce A to bidiagonal form without QR decomposition */
  1119. /* A = QB * B * PB**T = QB * ( UB * S * VB**T ) * PB**T */
  1120. /* U = QB * UB; V**T = VB**T * PB**T */
  1121. /* Bidiagonalize A */
  1122. /* (Workspace: need 4*N+M, prefer 4*N+(M+N)*NB) */
  1123. id = 1;
  1124. ie = id + *n;
  1125. itauq = ie + *n;
  1126. itaup = itauq + *n;
  1127. itemp = itaup + *n;
  1128. i__2 = *lwork - itemp + 1;
  1129. dgebrd_(m, n, &a[a_offset], lda, &work[id], &work[ie], &work[
  1130. itauq], &work[itaup], &work[itemp], &i__2, info);
  1131. /* Solve eigenvalue problem TGK*Z=Z*S. */
  1132. /* (Workspace: need 14*N + 2*N*(N+1)) */
  1133. itgkz = itemp;
  1134. itemp = itgkz + *n * ((*n << 1) + 1);
  1135. i__2 = *n << 1;
  1136. dbdsvdx_("U", jobz, rngtgk, n, &work[id], &work[ie], vl, vu, &
  1137. iltgk, &iutgk, ns, &s[1], &work[itgkz], &i__2, &work[
  1138. itemp], &iwork[1], info);
  1139. /* If needed, compute left singular vectors. */
  1140. if (wantu) {
  1141. j = itgkz;
  1142. i__2 = *ns;
  1143. for (i__ = 1; i__ <= i__2; ++i__) {
  1144. dcopy_(n, &work[j], &c__1, &u[i__ * u_dim1 + 1], &c__1);
  1145. j += *n << 1;
  1146. }
  1147. i__2 = *m - *n;
  1148. dlaset_("A", &i__2, ns, &c_b109, &c_b109, &u[*n + 1 + u_dim1],
  1149. ldu);
  1150. /* Call DORMBR to compute QB*UB. */
  1151. /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
  1152. i__2 = *lwork - itemp + 1;
  1153. dormbr_("Q", "L", "N", m, ns, n, &a[a_offset], lda, &work[
  1154. itauq], &u[u_offset], ldu, &work[itemp], &i__2, &ierr);
  1155. }
  1156. /* If needed, compute right singular vectors. */
  1157. if (wantvt) {
  1158. j = itgkz + *n;
  1159. i__2 = *ns;
  1160. for (i__ = 1; i__ <= i__2; ++i__) {
  1161. dcopy_(n, &work[j], &c__1, &vt[i__ + vt_dim1], ldvt);
  1162. j += *n << 1;
  1163. }
  1164. /* Call DORMBR to compute VB**T * PB**T */
  1165. /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
  1166. i__2 = *lwork - itemp + 1;
  1167. dormbr_("P", "R", "T", ns, n, n, &a[a_offset], lda, &work[
  1168. itaup], &vt[vt_offset], ldvt, &work[itemp], &i__2, &
  1169. ierr);
  1170. }
  1171. }
  1172. } else {
  1173. /* A has more columns than rows. If A has sufficiently more */
  1174. /* columns than rows, first reduce A using the LQ decomposition. */
  1175. if (*n >= mnthr) {
  1176. /* Path 1t (N much larger than M): */
  1177. /* A = L * Q = ( QB * B * PB**T ) * Q */
  1178. /* = ( QB * ( UB * S * VB**T ) * PB**T ) * Q */
  1179. /* U = QB * UB ; V**T = VB**T * PB**T * Q */
  1180. /* Compute A=L*Q */
  1181. /* (Workspace: need 2*M, prefer M+M*NB) */
  1182. itau = 1;
  1183. itemp = itau + *m;
  1184. i__2 = *lwork - itemp + 1;
  1185. dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[itemp], &i__2,
  1186. info);
  1187. /* Copy L into WORK and bidiagonalize it: */
  1188. /* (Workspace in WORK( ITEMP ): need M*M+5*N, prefer M*M+4*M+2*M*NB) */
  1189. ilqf = itemp;
  1190. id = ilqf + *m * *m;
  1191. ie = id + *m;
  1192. itauq = ie + *m;
  1193. itaup = itauq + *m;
  1194. itemp = itaup + *m;
  1195. dlacpy_("L", m, m, &a[a_offset], lda, &work[ilqf], m);
  1196. i__2 = *m - 1;
  1197. i__3 = *m - 1;
  1198. dlaset_("U", &i__2, &i__3, &c_b109, &c_b109, &work[ilqf + *m], m);
  1199. i__2 = *lwork - itemp + 1;
  1200. dgebrd_(m, m, &work[ilqf], m, &work[id], &work[ie], &work[itauq],
  1201. &work[itaup], &work[itemp], &i__2, info);
  1202. /* Solve eigenvalue problem TGK*Z=Z*S. */
  1203. /* (Workspace: need 2*M*M+14*M) */
  1204. itgkz = itemp;
  1205. itemp = itgkz + *m * ((*m << 1) + 1);
  1206. i__2 = *m << 1;
  1207. dbdsvdx_("U", jobz, rngtgk, m, &work[id], &work[ie], vl, vu, &
  1208. iltgk, &iutgk, ns, &s[1], &work[itgkz], &i__2, &work[
  1209. itemp], &iwork[1], info);
  1210. /* If needed, compute left singular vectors. */
  1211. if (wantu) {
  1212. j = itgkz;
  1213. i__2 = *ns;
  1214. for (i__ = 1; i__ <= i__2; ++i__) {
  1215. dcopy_(m, &work[j], &c__1, &u[i__ * u_dim1 + 1], &c__1);
  1216. j += *m << 1;
  1217. }
  1218. /* Call DORMBR to compute QB*UB. */
  1219. /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
  1220. i__2 = *lwork - itemp + 1;
  1221. dormbr_("Q", "L", "N", m, ns, m, &work[ilqf], m, &work[itauq],
  1222. &u[u_offset], ldu, &work[itemp], &i__2, info);
  1223. }
  1224. /* If needed, compute right singular vectors. */
  1225. if (wantvt) {
  1226. j = itgkz + *m;
  1227. i__2 = *ns;
  1228. for (i__ = 1; i__ <= i__2; ++i__) {
  1229. dcopy_(m, &work[j], &c__1, &vt[i__ + vt_dim1], ldvt);
  1230. j += *m << 1;
  1231. }
  1232. i__2 = *n - *m;
  1233. dlaset_("A", ns, &i__2, &c_b109, &c_b109, &vt[(*m + 1) *
  1234. vt_dim1 + 1], ldvt);
  1235. /* Call DORMBR to compute (VB**T)*(PB**T) */
  1236. /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
  1237. i__2 = *lwork - itemp + 1;
  1238. dormbr_("P", "R", "T", ns, m, m, &work[ilqf], m, &work[itaup],
  1239. &vt[vt_offset], ldvt, &work[itemp], &i__2, info);
  1240. /* Call DORMLQ to compute ((VB**T)*(PB**T))*Q. */
  1241. /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
  1242. i__2 = *lwork - itemp + 1;
  1243. dormlq_("R", "N", ns, n, m, &a[a_offset], lda, &work[itau], &
  1244. vt[vt_offset], ldvt, &work[itemp], &i__2, info);
  1245. }
  1246. } else {
  1247. /* Path 2t (N greater than M, but not much larger) */
  1248. /* Reduce to bidiagonal form without LQ decomposition */
  1249. /* A = QB * B * PB**T = QB * ( UB * S * VB**T ) * PB**T */
  1250. /* U = QB * UB; V**T = VB**T * PB**T */
  1251. /* Bidiagonalize A */
  1252. /* (Workspace: need 4*M+N, prefer 4*M+(M+N)*NB) */
  1253. id = 1;
  1254. ie = id + *m;
  1255. itauq = ie + *m;
  1256. itaup = itauq + *m;
  1257. itemp = itaup + *m;
  1258. i__2 = *lwork - itemp + 1;
  1259. dgebrd_(m, n, &a[a_offset], lda, &work[id], &work[ie], &work[
  1260. itauq], &work[itaup], &work[itemp], &i__2, info);
  1261. /* Solve eigenvalue problem TGK*Z=Z*S. */
  1262. /* (Workspace: need 2*M*M+14*M) */
  1263. itgkz = itemp;
  1264. itemp = itgkz + *m * ((*m << 1) + 1);
  1265. i__2 = *m << 1;
  1266. dbdsvdx_("L", jobz, rngtgk, m, &work[id], &work[ie], vl, vu, &
  1267. iltgk, &iutgk, ns, &s[1], &work[itgkz], &i__2, &work[
  1268. itemp], &iwork[1], info);
  1269. /* If needed, compute left singular vectors. */
  1270. if (wantu) {
  1271. j = itgkz;
  1272. i__2 = *ns;
  1273. for (i__ = 1; i__ <= i__2; ++i__) {
  1274. dcopy_(m, &work[j], &c__1, &u[i__ * u_dim1 + 1], &c__1);
  1275. j += *m << 1;
  1276. }
  1277. /* Call DORMBR to compute QB*UB. */
  1278. /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
  1279. i__2 = *lwork - itemp + 1;
  1280. dormbr_("Q", "L", "N", m, ns, n, &a[a_offset], lda, &work[
  1281. itauq], &u[u_offset], ldu, &work[itemp], &i__2, info);
  1282. }
  1283. /* If needed, compute right singular vectors. */
  1284. if (wantvt) {
  1285. j = itgkz + *m;
  1286. i__2 = *ns;
  1287. for (i__ = 1; i__ <= i__2; ++i__) {
  1288. dcopy_(m, &work[j], &c__1, &vt[i__ + vt_dim1], ldvt);
  1289. j += *m << 1;
  1290. }
  1291. i__2 = *n - *m;
  1292. dlaset_("A", ns, &i__2, &c_b109, &c_b109, &vt[(*m + 1) *
  1293. vt_dim1 + 1], ldvt);
  1294. /* Call DORMBR to compute VB**T * PB**T */
  1295. /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
  1296. i__2 = *lwork - itemp + 1;
  1297. dormbr_("P", "R", "T", ns, n, m, &a[a_offset], lda, &work[
  1298. itaup], &vt[vt_offset], ldvt, &work[itemp], &i__2,
  1299. info);
  1300. }
  1301. }
  1302. }
  1303. /* Undo scaling if necessary */
  1304. if (iscl == 1) {
  1305. if (anrm > bignum) {
  1306. dlascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
  1307. minmn, info);
  1308. }
  1309. if (anrm < smlnum) {
  1310. dlascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
  1311. minmn, info);
  1312. }
  1313. }
  1314. /* Return optimal workspace in WORK(1) */
  1315. work[1] = (doublereal) maxwrk;
  1316. return;
  1317. /* End of DGESVDX */
  1318. } /* dgesvdx_ */