You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clasyf_rook.c 46 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static complex c_b1 = {1.f,0.f};
  487. static integer c__1 = 1;
  488. /* > \brief \b CLASYF_ROOK computes a partial factorization of a complex symmetric matrix using the bounded Bu
  489. nch-Kaufman ("rook") diagonal pivoting method. */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download CLASYF_ROOK + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clasyf_
  496. rook.f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clasyf_
  499. rook.f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clasyf_
  502. rook.f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE CLASYF_ROOK( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO ) */
  508. /* CHARACTER UPLO */
  509. /* INTEGER INFO, KB, LDA, LDW, N, NB */
  510. /* INTEGER IPIV( * ) */
  511. /* COMPLEX A( LDA, * ), W( LDW, * ) */
  512. /* > \par Purpose: */
  513. /* ============= */
  514. /* > */
  515. /* > \verbatim */
  516. /* > */
  517. /* > CLASYF_ROOK computes a partial factorization of a complex symmetric */
  518. /* > matrix A using the bounded Bunch-Kaufman ("rook") diagonal */
  519. /* > pivoting method. The partial factorization has the form: */
  520. /* > */
  521. /* > A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: */
  522. /* > ( 0 U22 ) ( 0 D ) ( U12**T U22**T ) */
  523. /* > */
  524. /* > A = ( L11 0 ) ( D 0 ) ( L11**T L21**T ) if UPLO = 'L' */
  525. /* > ( L21 I ) ( 0 A22 ) ( 0 I ) */
  526. /* > */
  527. /* > where the order of D is at most NB. The actual order is returned in */
  528. /* > the argument KB, and is either NB or NB-1, or N if N <= NB. */
  529. /* > */
  530. /* > CLASYF_ROOK is an auxiliary routine called by CSYTRF_ROOK. It uses */
  531. /* > blocked code (calling Level 3 BLAS) to update the submatrix */
  532. /* > A11 (if UPLO = 'U') or A22 (if UPLO = 'L'). */
  533. /* > \endverbatim */
  534. /* Arguments: */
  535. /* ========== */
  536. /* > \param[in] UPLO */
  537. /* > \verbatim */
  538. /* > UPLO is CHARACTER*1 */
  539. /* > Specifies whether the upper or lower triangular part of the */
  540. /* > symmetric matrix A is stored: */
  541. /* > = 'U': Upper triangular */
  542. /* > = 'L': Lower triangular */
  543. /* > \endverbatim */
  544. /* > */
  545. /* > \param[in] N */
  546. /* > \verbatim */
  547. /* > N is INTEGER */
  548. /* > The order of the matrix A. N >= 0. */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[in] NB */
  552. /* > \verbatim */
  553. /* > NB is INTEGER */
  554. /* > The maximum number of columns of the matrix A that should be */
  555. /* > factored. NB should be at least 2 to allow for 2-by-2 pivot */
  556. /* > blocks. */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[out] KB */
  560. /* > \verbatim */
  561. /* > KB is INTEGER */
  562. /* > The number of columns of A that were actually factored. */
  563. /* > KB is either NB-1 or NB, or N if N <= NB. */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in,out] A */
  567. /* > \verbatim */
  568. /* > A is COMPLEX array, dimension (LDA,N) */
  569. /* > On entry, the symmetric matrix A. If UPLO = 'U', the leading */
  570. /* > n-by-n upper triangular part of A contains the upper */
  571. /* > triangular part of the matrix A, and the strictly lower */
  572. /* > triangular part of A is not referenced. If UPLO = 'L', the */
  573. /* > leading n-by-n lower triangular part of A contains the lower */
  574. /* > triangular part of the matrix A, and the strictly upper */
  575. /* > triangular part of A is not referenced. */
  576. /* > On exit, A contains details of the partial factorization. */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[in] LDA */
  580. /* > \verbatim */
  581. /* > LDA is INTEGER */
  582. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  583. /* > \endverbatim */
  584. /* > */
  585. /* > \param[out] IPIV */
  586. /* > \verbatim */
  587. /* > IPIV is INTEGER array, dimension (N) */
  588. /* > Details of the interchanges and the block structure of D. */
  589. /* > */
  590. /* > If UPLO = 'U': */
  591. /* > Only the last KB elements of IPIV are set. */
  592. /* > */
  593. /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
  594. /* > interchanged and D(k,k) is a 1-by-1 diagonal block. */
  595. /* > */
  596. /* > If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and */
  597. /* > columns k and -IPIV(k) were interchanged and rows and */
  598. /* > columns k-1 and -IPIV(k-1) were inerchaged, */
  599. /* > D(k-1:k,k-1:k) is a 2-by-2 diagonal block. */
  600. /* > */
  601. /* > If UPLO = 'L': */
  602. /* > Only the first KB elements of IPIV are set. */
  603. /* > */
  604. /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) */
  605. /* > were interchanged and D(k,k) is a 1-by-1 diagonal block. */
  606. /* > */
  607. /* > If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and */
  608. /* > columns k and -IPIV(k) were interchanged and rows and */
  609. /* > columns k+1 and -IPIV(k+1) were inerchaged, */
  610. /* > D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
  611. /* > \endverbatim */
  612. /* > */
  613. /* > \param[out] W */
  614. /* > \verbatim */
  615. /* > W is COMPLEX array, dimension (LDW,NB) */
  616. /* > \endverbatim */
  617. /* > */
  618. /* > \param[in] LDW */
  619. /* > \verbatim */
  620. /* > LDW is INTEGER */
  621. /* > The leading dimension of the array W. LDW >= f2cmax(1,N). */
  622. /* > \endverbatim */
  623. /* > */
  624. /* > \param[out] INFO */
  625. /* > \verbatim */
  626. /* > INFO is INTEGER */
  627. /* > = 0: successful exit */
  628. /* > > 0: if INFO = k, D(k,k) is exactly zero. The factorization */
  629. /* > has been completed, but the block diagonal matrix D is */
  630. /* > exactly singular. */
  631. /* > \endverbatim */
  632. /* Authors: */
  633. /* ======== */
  634. /* > \author Univ. of Tennessee */
  635. /* > \author Univ. of California Berkeley */
  636. /* > \author Univ. of Colorado Denver */
  637. /* > \author NAG Ltd. */
  638. /* > \date November 2013 */
  639. /* > \ingroup complexSYcomputational */
  640. /* > \par Contributors: */
  641. /* ================== */
  642. /* > */
  643. /* > \verbatim */
  644. /* > */
  645. /* > November 2013, Igor Kozachenko, */
  646. /* > Computer Science Division, */
  647. /* > University of California, Berkeley */
  648. /* > */
  649. /* > September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
  650. /* > School of Mathematics, */
  651. /* > University of Manchester */
  652. /* > */
  653. /* > \endverbatim */
  654. /* ===================================================================== */
  655. /* Subroutine */ void clasyf_rook_(char *uplo, integer *n, integer *nb,
  656. integer *kb, complex *a, integer *lda, integer *ipiv, complex *w,
  657. integer *ldw, integer *info)
  658. {
  659. /* System generated locals */
  660. integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3, i__4, i__5;
  661. real r__1, r__2;
  662. complex q__1, q__2, q__3, q__4;
  663. /* Local variables */
  664. logical done;
  665. integer imax, jmax, j, k, p;
  666. complex t;
  667. real alpha;
  668. extern /* Subroutine */ void cscal_(integer *, complex *, complex *,
  669. integer *), cgemm_(char *, char *, integer *, integer *, integer *
  670. , complex *, complex *, integer *, complex *, integer *, complex *
  671. , complex *, integer *);
  672. extern logical lsame_(char *, char *);
  673. extern /* Subroutine */ void cgemv_(char *, integer *, integer *, complex *
  674. , complex *, integer *, complex *, integer *, complex *, complex *
  675. , integer *);
  676. real sfmin;
  677. extern /* Subroutine */ void ccopy_(integer *, complex *, integer *,
  678. complex *, integer *);
  679. integer itemp;
  680. extern /* Subroutine */ void cswap_(integer *, complex *, integer *,
  681. complex *, integer *);
  682. integer kstep;
  683. real stemp;
  684. complex r1, d11, d12, d21, d22;
  685. integer jb, ii, jj, kk, kp;
  686. real absakk;
  687. integer kw;
  688. extern integer icamax_(integer *, complex *, integer *);
  689. extern real slamch_(char *);
  690. real colmax;
  691. integer jp1, jp2;
  692. real rowmax;
  693. integer kkw;
  694. /* -- LAPACK computational routine (version 3.5.0) -- */
  695. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  696. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  697. /* November 2013 */
  698. /* ===================================================================== */
  699. /* Parameter adjustments */
  700. a_dim1 = *lda;
  701. a_offset = 1 + a_dim1 * 1;
  702. a -= a_offset;
  703. --ipiv;
  704. w_dim1 = *ldw;
  705. w_offset = 1 + w_dim1 * 1;
  706. w -= w_offset;
  707. /* Function Body */
  708. *info = 0;
  709. /* Initialize ALPHA for use in choosing pivot block size. */
  710. alpha = (sqrt(17.f) + 1.f) / 8.f;
  711. /* Compute machine safe minimum */
  712. sfmin = slamch_("S");
  713. if (lsame_(uplo, "U")) {
  714. /* Factorize the trailing columns of A using the upper triangle */
  715. /* of A and working backwards, and compute the matrix W = U12*D */
  716. /* for use in updating A11 */
  717. /* K is the main loop index, decreasing from N in steps of 1 or 2 */
  718. k = *n;
  719. L10:
  720. /* KW is the column of W which corresponds to column K of A */
  721. kw = *nb + k - *n;
  722. /* Exit from loop */
  723. if (k <= *n - *nb + 1 && *nb < *n || k < 1) {
  724. goto L30;
  725. }
  726. kstep = 1;
  727. p = k;
  728. /* Copy column K of A to column KW of W and update it */
  729. ccopy_(&k, &a[k * a_dim1 + 1], &c__1, &w[kw * w_dim1 + 1], &c__1);
  730. if (k < *n) {
  731. i__1 = *n - k;
  732. q__1.r = -1.f, q__1.i = 0.f;
  733. cgemv_("No transpose", &k, &i__1, &q__1, &a[(k + 1) * a_dim1 + 1],
  734. lda, &w[k + (kw + 1) * w_dim1], ldw, &c_b1, &w[kw *
  735. w_dim1 + 1], &c__1);
  736. }
  737. /* Determine rows and columns to be interchanged and whether */
  738. /* a 1-by-1 or 2-by-2 pivot block will be used */
  739. i__1 = k + kw * w_dim1;
  740. absakk = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[k + kw *
  741. w_dim1]), abs(r__2));
  742. /* IMAX is the row-index of the largest off-diagonal element in */
  743. /* column K, and COLMAX is its absolute value. */
  744. /* Determine both COLMAX and IMAX. */
  745. if (k > 1) {
  746. i__1 = k - 1;
  747. imax = icamax_(&i__1, &w[kw * w_dim1 + 1], &c__1);
  748. i__1 = imax + kw * w_dim1;
  749. colmax = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[imax +
  750. kw * w_dim1]), abs(r__2));
  751. } else {
  752. colmax = 0.f;
  753. }
  754. if (f2cmax(absakk,colmax) == 0.f) {
  755. /* Column K is zero or underflow: set INFO and continue */
  756. if (*info == 0) {
  757. *info = k;
  758. }
  759. kp = k;
  760. ccopy_(&k, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &c__1);
  761. } else {
  762. /* ============================================================ */
  763. /* Test for interchange */
  764. /* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
  765. /* (used to handle NaN and Inf) */
  766. if (! (absakk < alpha * colmax)) {
  767. /* no interchange, use 1-by-1 pivot block */
  768. kp = k;
  769. } else {
  770. done = FALSE_;
  771. /* Loop until pivot found */
  772. L12:
  773. /* Begin pivot search loop body */
  774. /* Copy column IMAX to column KW-1 of W and update it */
  775. ccopy_(&imax, &a[imax * a_dim1 + 1], &c__1, &w[(kw - 1) *
  776. w_dim1 + 1], &c__1);
  777. i__1 = k - imax;
  778. ccopy_(&i__1, &a[imax + (imax + 1) * a_dim1], lda, &w[imax +
  779. 1 + (kw - 1) * w_dim1], &c__1);
  780. if (k < *n) {
  781. i__1 = *n - k;
  782. q__1.r = -1.f, q__1.i = 0.f;
  783. cgemv_("No transpose", &k, &i__1, &q__1, &a[(k + 1) *
  784. a_dim1 + 1], lda, &w[imax + (kw + 1) * w_dim1],
  785. ldw, &c_b1, &w[(kw - 1) * w_dim1 + 1], &c__1);
  786. }
  787. /* JMAX is the column-index of the largest off-diagonal */
  788. /* element in row IMAX, and ROWMAX is its absolute value. */
  789. /* Determine both ROWMAX and JMAX. */
  790. if (imax != k) {
  791. i__1 = k - imax;
  792. jmax = imax + icamax_(&i__1, &w[imax + 1 + (kw - 1) *
  793. w_dim1], &c__1);
  794. i__1 = jmax + (kw - 1) * w_dim1;
  795. rowmax = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&
  796. w[jmax + (kw - 1) * w_dim1]), abs(r__2));
  797. } else {
  798. rowmax = 0.f;
  799. }
  800. if (imax > 1) {
  801. i__1 = imax - 1;
  802. itemp = icamax_(&i__1, &w[(kw - 1) * w_dim1 + 1], &c__1);
  803. i__1 = itemp + (kw - 1) * w_dim1;
  804. stemp = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[
  805. itemp + (kw - 1) * w_dim1]), abs(r__2));
  806. if (stemp > rowmax) {
  807. rowmax = stemp;
  808. jmax = itemp;
  809. }
  810. }
  811. /* Equivalent to testing for */
  812. /* CABS1( W( IMAX, KW-1 ) ).GE.ALPHA*ROWMAX */
  813. /* (used to handle NaN and Inf) */
  814. i__1 = imax + (kw - 1) * w_dim1;
  815. if (! ((r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[imax
  816. + (kw - 1) * w_dim1]), abs(r__2)) < alpha * rowmax)) {
  817. /* interchange rows and columns K and IMAX, */
  818. /* use 1-by-1 pivot block */
  819. kp = imax;
  820. /* copy column KW-1 of W to column KW of W */
  821. ccopy_(&k, &w[(kw - 1) * w_dim1 + 1], &c__1, &w[kw *
  822. w_dim1 + 1], &c__1);
  823. done = TRUE_;
  824. /* Equivalent to testing for ROWMAX.EQ.COLMAX, */
  825. /* (used to handle NaN and Inf) */
  826. } else if (p == jmax || rowmax <= colmax) {
  827. /* interchange rows and columns K-1 and IMAX, */
  828. /* use 2-by-2 pivot block */
  829. kp = imax;
  830. kstep = 2;
  831. done = TRUE_;
  832. } else {
  833. /* Pivot not found: set params and repeat */
  834. p = imax;
  835. colmax = rowmax;
  836. imax = jmax;
  837. /* Copy updated JMAXth (next IMAXth) column to Kth of W */
  838. ccopy_(&k, &w[(kw - 1) * w_dim1 + 1], &c__1, &w[kw *
  839. w_dim1 + 1], &c__1);
  840. }
  841. /* End pivot search loop body */
  842. if (! done) {
  843. goto L12;
  844. }
  845. }
  846. /* ============================================================ */
  847. kk = k - kstep + 1;
  848. /* KKW is the column of W which corresponds to column KK of A */
  849. kkw = *nb + kk - *n;
  850. if (kstep == 2 && p != k) {
  851. /* Copy non-updated column K to column P */
  852. i__1 = k - p;
  853. ccopy_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + (p + 1) *
  854. a_dim1], lda);
  855. ccopy_(&p, &a[k * a_dim1 + 1], &c__1, &a[p * a_dim1 + 1], &
  856. c__1);
  857. /* Interchange rows K and P in last N-K+1 columns of A */
  858. /* and last N-K+2 columns of W */
  859. i__1 = *n - k + 1;
  860. cswap_(&i__1, &a[k + k * a_dim1], lda, &a[p + k * a_dim1],
  861. lda);
  862. i__1 = *n - kk + 1;
  863. cswap_(&i__1, &w[k + kkw * w_dim1], ldw, &w[p + kkw * w_dim1],
  864. ldw);
  865. }
  866. /* Updated column KP is already stored in column KKW of W */
  867. if (kp != kk) {
  868. /* Copy non-updated column KK to column KP */
  869. i__1 = kp + k * a_dim1;
  870. i__2 = kk + k * a_dim1;
  871. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  872. i__1 = k - 1 - kp;
  873. ccopy_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (kp +
  874. 1) * a_dim1], lda);
  875. ccopy_(&kp, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1 + 1], &
  876. c__1);
  877. /* Interchange rows KK and KP in last N-KK+1 columns */
  878. /* of A and W */
  879. i__1 = *n - kk + 1;
  880. cswap_(&i__1, &a[kk + kk * a_dim1], lda, &a[kp + kk * a_dim1],
  881. lda);
  882. i__1 = *n - kk + 1;
  883. cswap_(&i__1, &w[kk + kkw * w_dim1], ldw, &w[kp + kkw *
  884. w_dim1], ldw);
  885. }
  886. if (kstep == 1) {
  887. /* 1-by-1 pivot block D(k): column KW of W now holds */
  888. /* W(k) = U(k)*D(k) */
  889. /* where U(k) is the k-th column of U */
  890. /* Store U(k) in column k of A */
  891. ccopy_(&k, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &
  892. c__1);
  893. if (k > 1) {
  894. i__1 = k + k * a_dim1;
  895. if ((r__1 = a[i__1].r, abs(r__1)) + (r__2 = r_imag(&a[k +
  896. k * a_dim1]), abs(r__2)) >= sfmin) {
  897. c_div(&q__1, &c_b1, &a[k + k * a_dim1]);
  898. r1.r = q__1.r, r1.i = q__1.i;
  899. i__1 = k - 1;
  900. cscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1);
  901. } else /* if(complicated condition) */ {
  902. i__1 = k + k * a_dim1;
  903. if (a[i__1].r != 0.f || a[i__1].i != 0.f) {
  904. i__1 = k - 1;
  905. for (ii = 1; ii <= i__1; ++ii) {
  906. i__2 = ii + k * a_dim1;
  907. c_div(&q__1, &a[ii + k * a_dim1], &a[k + k *
  908. a_dim1]);
  909. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  910. /* L14: */
  911. }
  912. }
  913. }
  914. }
  915. } else {
  916. /* 2-by-2 pivot block D(k): columns KW and KW-1 of W now */
  917. /* hold */
  918. /* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
  919. /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
  920. /* of U */
  921. if (k > 2) {
  922. /* Store U(k) and U(k-1) in columns k and k-1 of A */
  923. i__1 = k - 1 + kw * w_dim1;
  924. d12.r = w[i__1].r, d12.i = w[i__1].i;
  925. c_div(&q__1, &w[k + kw * w_dim1], &d12);
  926. d11.r = q__1.r, d11.i = q__1.i;
  927. c_div(&q__1, &w[k - 1 + (kw - 1) * w_dim1], &d12);
  928. d22.r = q__1.r, d22.i = q__1.i;
  929. q__3.r = d11.r * d22.r - d11.i * d22.i, q__3.i = d11.r *
  930. d22.i + d11.i * d22.r;
  931. q__2.r = q__3.r - 1.f, q__2.i = q__3.i + 0.f;
  932. c_div(&q__1, &c_b1, &q__2);
  933. t.r = q__1.r, t.i = q__1.i;
  934. i__1 = k - 2;
  935. for (j = 1; j <= i__1; ++j) {
  936. i__2 = j + (k - 1) * a_dim1;
  937. i__3 = j + (kw - 1) * w_dim1;
  938. q__4.r = d11.r * w[i__3].r - d11.i * w[i__3].i,
  939. q__4.i = d11.r * w[i__3].i + d11.i * w[i__3]
  940. .r;
  941. i__4 = j + kw * w_dim1;
  942. q__3.r = q__4.r - w[i__4].r, q__3.i = q__4.i - w[i__4]
  943. .i;
  944. c_div(&q__2, &q__3, &d12);
  945. q__1.r = t.r * q__2.r - t.i * q__2.i, q__1.i = t.r *
  946. q__2.i + t.i * q__2.r;
  947. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  948. i__2 = j + k * a_dim1;
  949. i__3 = j + kw * w_dim1;
  950. q__4.r = d22.r * w[i__3].r - d22.i * w[i__3].i,
  951. q__4.i = d22.r * w[i__3].i + d22.i * w[i__3]
  952. .r;
  953. i__4 = j + (kw - 1) * w_dim1;
  954. q__3.r = q__4.r - w[i__4].r, q__3.i = q__4.i - w[i__4]
  955. .i;
  956. c_div(&q__2, &q__3, &d12);
  957. q__1.r = t.r * q__2.r - t.i * q__2.i, q__1.i = t.r *
  958. q__2.i + t.i * q__2.r;
  959. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  960. /* L20: */
  961. }
  962. }
  963. /* Copy D(k) to A */
  964. i__1 = k - 1 + (k - 1) * a_dim1;
  965. i__2 = k - 1 + (kw - 1) * w_dim1;
  966. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  967. i__1 = k - 1 + k * a_dim1;
  968. i__2 = k - 1 + kw * w_dim1;
  969. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  970. i__1 = k + k * a_dim1;
  971. i__2 = k + kw * w_dim1;
  972. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  973. }
  974. }
  975. /* Store details of the interchanges in IPIV */
  976. if (kstep == 1) {
  977. ipiv[k] = kp;
  978. } else {
  979. ipiv[k] = -p;
  980. ipiv[k - 1] = -kp;
  981. }
  982. /* Decrease K and return to the start of the main loop */
  983. k -= kstep;
  984. goto L10;
  985. L30:
  986. /* Update the upper triangle of A11 (= A(1:k,1:k)) as */
  987. /* A11 := A11 - U12*D*U12**T = A11 - U12*W**T */
  988. /* computing blocks of NB columns at a time */
  989. i__1 = -(*nb);
  990. for (j = (k - 1) / *nb * *nb + 1; i__1 < 0 ? j >= 1 : j <= 1; j +=
  991. i__1) {
  992. /* Computing MIN */
  993. i__2 = *nb, i__3 = k - j + 1;
  994. jb = f2cmin(i__2,i__3);
  995. /* Update the upper triangle of the diagonal block */
  996. i__2 = j + jb - 1;
  997. for (jj = j; jj <= i__2; ++jj) {
  998. i__3 = jj - j + 1;
  999. i__4 = *n - k;
  1000. q__1.r = -1.f, q__1.i = 0.f;
  1001. cgemv_("No transpose", &i__3, &i__4, &q__1, &a[j + (k + 1) *
  1002. a_dim1], lda, &w[jj + (kw + 1) * w_dim1], ldw, &c_b1,
  1003. &a[j + jj * a_dim1], &c__1);
  1004. /* L40: */
  1005. }
  1006. /* Update the rectangular superdiagonal block */
  1007. if (j >= 2) {
  1008. i__2 = j - 1;
  1009. i__3 = *n - k;
  1010. q__1.r = -1.f, q__1.i = 0.f;
  1011. cgemm_("No transpose", "Transpose", &i__2, &jb, &i__3, &q__1,
  1012. &a[(k + 1) * a_dim1 + 1], lda, &w[j + (kw + 1) *
  1013. w_dim1], ldw, &c_b1, &a[j * a_dim1 + 1], lda);
  1014. }
  1015. /* L50: */
  1016. }
  1017. /* Put U12 in standard form by partially undoing the interchanges */
  1018. /* in columns k+1:n */
  1019. j = k + 1;
  1020. L60:
  1021. kstep = 1;
  1022. jp1 = 1;
  1023. jj = j;
  1024. jp2 = ipiv[j];
  1025. if (jp2 < 0) {
  1026. jp2 = -jp2;
  1027. ++j;
  1028. jp1 = -ipiv[j];
  1029. kstep = 2;
  1030. }
  1031. ++j;
  1032. if (jp2 != jj && j <= *n) {
  1033. i__1 = *n - j + 1;
  1034. cswap_(&i__1, &a[jp2 + j * a_dim1], lda, &a[jj + j * a_dim1], lda)
  1035. ;
  1036. }
  1037. jj = j - 1;
  1038. if (jp1 != jj && kstep == 2) {
  1039. i__1 = *n - j + 1;
  1040. cswap_(&i__1, &a[jp1 + j * a_dim1], lda, &a[jj + j * a_dim1], lda)
  1041. ;
  1042. }
  1043. if (j <= *n) {
  1044. goto L60;
  1045. }
  1046. /* Set KB to the number of columns factorized */
  1047. *kb = *n - k;
  1048. } else {
  1049. /* Factorize the leading columns of A using the lower triangle */
  1050. /* of A and working forwards, and compute the matrix W = L21*D */
  1051. /* for use in updating A22 */
  1052. /* K is the main loop index, increasing from 1 in steps of 1 or 2 */
  1053. k = 1;
  1054. L70:
  1055. /* Exit from loop */
  1056. if (k >= *nb && *nb < *n || k > *n) {
  1057. goto L90;
  1058. }
  1059. kstep = 1;
  1060. p = k;
  1061. /* Copy column K of A to column K of W and update it */
  1062. i__1 = *n - k + 1;
  1063. ccopy_(&i__1, &a[k + k * a_dim1], &c__1, &w[k + k * w_dim1], &c__1);
  1064. if (k > 1) {
  1065. i__1 = *n - k + 1;
  1066. i__2 = k - 1;
  1067. q__1.r = -1.f, q__1.i = 0.f;
  1068. cgemv_("No transpose", &i__1, &i__2, &q__1, &a[k + a_dim1], lda, &
  1069. w[k + w_dim1], ldw, &c_b1, &w[k + k * w_dim1], &c__1);
  1070. }
  1071. /* Determine rows and columns to be interchanged and whether */
  1072. /* a 1-by-1 or 2-by-2 pivot block will be used */
  1073. i__1 = k + k * w_dim1;
  1074. absakk = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[k + k *
  1075. w_dim1]), abs(r__2));
  1076. /* IMAX is the row-index of the largest off-diagonal element in */
  1077. /* column K, and COLMAX is its absolute value. */
  1078. /* Determine both COLMAX and IMAX. */
  1079. if (k < *n) {
  1080. i__1 = *n - k;
  1081. imax = k + icamax_(&i__1, &w[k + 1 + k * w_dim1], &c__1);
  1082. i__1 = imax + k * w_dim1;
  1083. colmax = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[imax +
  1084. k * w_dim1]), abs(r__2));
  1085. } else {
  1086. colmax = 0.f;
  1087. }
  1088. if (f2cmax(absakk,colmax) == 0.f) {
  1089. /* Column K is zero or underflow: set INFO and continue */
  1090. if (*info == 0) {
  1091. *info = k;
  1092. }
  1093. kp = k;
  1094. i__1 = *n - k + 1;
  1095. ccopy_(&i__1, &w[k + k * w_dim1], &c__1, &a[k + k * a_dim1], &
  1096. c__1);
  1097. } else {
  1098. /* ============================================================ */
  1099. /* Test for interchange */
  1100. /* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
  1101. /* (used to handle NaN and Inf) */
  1102. if (! (absakk < alpha * colmax)) {
  1103. /* no interchange, use 1-by-1 pivot block */
  1104. kp = k;
  1105. } else {
  1106. done = FALSE_;
  1107. /* Loop until pivot found */
  1108. L72:
  1109. /* Begin pivot search loop body */
  1110. /* Copy column IMAX to column K+1 of W and update it */
  1111. i__1 = imax - k;
  1112. ccopy_(&i__1, &a[imax + k * a_dim1], lda, &w[k + (k + 1) *
  1113. w_dim1], &c__1);
  1114. i__1 = *n - imax + 1;
  1115. ccopy_(&i__1, &a[imax + imax * a_dim1], &c__1, &w[imax + (k +
  1116. 1) * w_dim1], &c__1);
  1117. if (k > 1) {
  1118. i__1 = *n - k + 1;
  1119. i__2 = k - 1;
  1120. q__1.r = -1.f, q__1.i = 0.f;
  1121. cgemv_("No transpose", &i__1, &i__2, &q__1, &a[k + a_dim1]
  1122. , lda, &w[imax + w_dim1], ldw, &c_b1, &w[k + (k +
  1123. 1) * w_dim1], &c__1);
  1124. }
  1125. /* JMAX is the column-index of the largest off-diagonal */
  1126. /* element in row IMAX, and ROWMAX is its absolute value. */
  1127. /* Determine both ROWMAX and JMAX. */
  1128. if (imax != k) {
  1129. i__1 = imax - k;
  1130. jmax = k - 1 + icamax_(&i__1, &w[k + (k + 1) * w_dim1], &
  1131. c__1);
  1132. i__1 = jmax + (k + 1) * w_dim1;
  1133. rowmax = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&
  1134. w[jmax + (k + 1) * w_dim1]), abs(r__2));
  1135. } else {
  1136. rowmax = 0.f;
  1137. }
  1138. if (imax < *n) {
  1139. i__1 = *n - imax;
  1140. itemp = imax + icamax_(&i__1, &w[imax + 1 + (k + 1) *
  1141. w_dim1], &c__1);
  1142. i__1 = itemp + (k + 1) * w_dim1;
  1143. stemp = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[
  1144. itemp + (k + 1) * w_dim1]), abs(r__2));
  1145. if (stemp > rowmax) {
  1146. rowmax = stemp;
  1147. jmax = itemp;
  1148. }
  1149. }
  1150. /* Equivalent to testing for */
  1151. /* CABS1( W( IMAX, K+1 ) ).GE.ALPHA*ROWMAX */
  1152. /* (used to handle NaN and Inf) */
  1153. i__1 = imax + (k + 1) * w_dim1;
  1154. if (! ((r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[imax
  1155. + (k + 1) * w_dim1]), abs(r__2)) < alpha * rowmax)) {
  1156. /* interchange rows and columns K and IMAX, */
  1157. /* use 1-by-1 pivot block */
  1158. kp = imax;
  1159. /* copy column K+1 of W to column K of W */
  1160. i__1 = *n - k + 1;
  1161. ccopy_(&i__1, &w[k + (k + 1) * w_dim1], &c__1, &w[k + k *
  1162. w_dim1], &c__1);
  1163. done = TRUE_;
  1164. /* Equivalent to testing for ROWMAX.EQ.COLMAX, */
  1165. /* (used to handle NaN and Inf) */
  1166. } else if (p == jmax || rowmax <= colmax) {
  1167. /* interchange rows and columns K+1 and IMAX, */
  1168. /* use 2-by-2 pivot block */
  1169. kp = imax;
  1170. kstep = 2;
  1171. done = TRUE_;
  1172. } else {
  1173. /* Pivot not found: set params and repeat */
  1174. p = imax;
  1175. colmax = rowmax;
  1176. imax = jmax;
  1177. /* Copy updated JMAXth (next IMAXth) column to Kth of W */
  1178. i__1 = *n - k + 1;
  1179. ccopy_(&i__1, &w[k + (k + 1) * w_dim1], &c__1, &w[k + k *
  1180. w_dim1], &c__1);
  1181. }
  1182. /* End pivot search loop body */
  1183. if (! done) {
  1184. goto L72;
  1185. }
  1186. }
  1187. /* ============================================================ */
  1188. kk = k + kstep - 1;
  1189. if (kstep == 2 && p != k) {
  1190. /* Copy non-updated column K to column P */
  1191. i__1 = p - k;
  1192. ccopy_(&i__1, &a[k + k * a_dim1], &c__1, &a[p + k * a_dim1],
  1193. lda);
  1194. i__1 = *n - p + 1;
  1195. ccopy_(&i__1, &a[p + k * a_dim1], &c__1, &a[p + p * a_dim1], &
  1196. c__1);
  1197. /* Interchange rows K and P in first K columns of A */
  1198. /* and first K+1 columns of W */
  1199. cswap_(&k, &a[k + a_dim1], lda, &a[p + a_dim1], lda);
  1200. cswap_(&kk, &w[k + w_dim1], ldw, &w[p + w_dim1], ldw);
  1201. }
  1202. /* Updated column KP is already stored in column KK of W */
  1203. if (kp != kk) {
  1204. /* Copy non-updated column KK to column KP */
  1205. i__1 = kp + k * a_dim1;
  1206. i__2 = kk + k * a_dim1;
  1207. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  1208. i__1 = kp - k - 1;
  1209. ccopy_(&i__1, &a[k + 1 + kk * a_dim1], &c__1, &a[kp + (k + 1)
  1210. * a_dim1], lda);
  1211. i__1 = *n - kp + 1;
  1212. ccopy_(&i__1, &a[kp + kk * a_dim1], &c__1, &a[kp + kp *
  1213. a_dim1], &c__1);
  1214. /* Interchange rows KK and KP in first KK columns of A and W */
  1215. cswap_(&kk, &a[kk + a_dim1], lda, &a[kp + a_dim1], lda);
  1216. cswap_(&kk, &w[kk + w_dim1], ldw, &w[kp + w_dim1], ldw);
  1217. }
  1218. if (kstep == 1) {
  1219. /* 1-by-1 pivot block D(k): column k of W now holds */
  1220. /* W(k) = L(k)*D(k) */
  1221. /* where L(k) is the k-th column of L */
  1222. /* Store L(k) in column k of A */
  1223. i__1 = *n - k + 1;
  1224. ccopy_(&i__1, &w[k + k * w_dim1], &c__1, &a[k + k * a_dim1], &
  1225. c__1);
  1226. if (k < *n) {
  1227. i__1 = k + k * a_dim1;
  1228. if ((r__1 = a[i__1].r, abs(r__1)) + (r__2 = r_imag(&a[k +
  1229. k * a_dim1]), abs(r__2)) >= sfmin) {
  1230. c_div(&q__1, &c_b1, &a[k + k * a_dim1]);
  1231. r1.r = q__1.r, r1.i = q__1.i;
  1232. i__1 = *n - k;
  1233. cscal_(&i__1, &r1, &a[k + 1 + k * a_dim1], &c__1);
  1234. } else /* if(complicated condition) */ {
  1235. i__1 = k + k * a_dim1;
  1236. if (a[i__1].r != 0.f || a[i__1].i != 0.f) {
  1237. i__1 = *n;
  1238. for (ii = k + 1; ii <= i__1; ++ii) {
  1239. i__2 = ii + k * a_dim1;
  1240. c_div(&q__1, &a[ii + k * a_dim1], &a[k + k *
  1241. a_dim1]);
  1242. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1243. /* L74: */
  1244. }
  1245. }
  1246. }
  1247. }
  1248. } else {
  1249. /* 2-by-2 pivot block D(k): columns k and k+1 of W now hold */
  1250. /* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
  1251. /* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
  1252. /* of L */
  1253. if (k < *n - 1) {
  1254. /* Store L(k) and L(k+1) in columns k and k+1 of A */
  1255. i__1 = k + 1 + k * w_dim1;
  1256. d21.r = w[i__1].r, d21.i = w[i__1].i;
  1257. c_div(&q__1, &w[k + 1 + (k + 1) * w_dim1], &d21);
  1258. d11.r = q__1.r, d11.i = q__1.i;
  1259. c_div(&q__1, &w[k + k * w_dim1], &d21);
  1260. d22.r = q__1.r, d22.i = q__1.i;
  1261. q__3.r = d11.r * d22.r - d11.i * d22.i, q__3.i = d11.r *
  1262. d22.i + d11.i * d22.r;
  1263. q__2.r = q__3.r - 1.f, q__2.i = q__3.i + 0.f;
  1264. c_div(&q__1, &c_b1, &q__2);
  1265. t.r = q__1.r, t.i = q__1.i;
  1266. i__1 = *n;
  1267. for (j = k + 2; j <= i__1; ++j) {
  1268. i__2 = j + k * a_dim1;
  1269. i__3 = j + k * w_dim1;
  1270. q__4.r = d11.r * w[i__3].r - d11.i * w[i__3].i,
  1271. q__4.i = d11.r * w[i__3].i + d11.i * w[i__3]
  1272. .r;
  1273. i__4 = j + (k + 1) * w_dim1;
  1274. q__3.r = q__4.r - w[i__4].r, q__3.i = q__4.i - w[i__4]
  1275. .i;
  1276. c_div(&q__2, &q__3, &d21);
  1277. q__1.r = t.r * q__2.r - t.i * q__2.i, q__1.i = t.r *
  1278. q__2.i + t.i * q__2.r;
  1279. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1280. i__2 = j + (k + 1) * a_dim1;
  1281. i__3 = j + (k + 1) * w_dim1;
  1282. q__4.r = d22.r * w[i__3].r - d22.i * w[i__3].i,
  1283. q__4.i = d22.r * w[i__3].i + d22.i * w[i__3]
  1284. .r;
  1285. i__4 = j + k * w_dim1;
  1286. q__3.r = q__4.r - w[i__4].r, q__3.i = q__4.i - w[i__4]
  1287. .i;
  1288. c_div(&q__2, &q__3, &d21);
  1289. q__1.r = t.r * q__2.r - t.i * q__2.i, q__1.i = t.r *
  1290. q__2.i + t.i * q__2.r;
  1291. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1292. /* L80: */
  1293. }
  1294. }
  1295. /* Copy D(k) to A */
  1296. i__1 = k + k * a_dim1;
  1297. i__2 = k + k * w_dim1;
  1298. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1299. i__1 = k + 1 + k * a_dim1;
  1300. i__2 = k + 1 + k * w_dim1;
  1301. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1302. i__1 = k + 1 + (k + 1) * a_dim1;
  1303. i__2 = k + 1 + (k + 1) * w_dim1;
  1304. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1305. }
  1306. }
  1307. /* Store details of the interchanges in IPIV */
  1308. if (kstep == 1) {
  1309. ipiv[k] = kp;
  1310. } else {
  1311. ipiv[k] = -p;
  1312. ipiv[k + 1] = -kp;
  1313. }
  1314. /* Increase K and return to the start of the main loop */
  1315. k += kstep;
  1316. goto L70;
  1317. L90:
  1318. /* Update the lower triangle of A22 (= A(k:n,k:n)) as */
  1319. /* A22 := A22 - L21*D*L21**T = A22 - L21*W**T */
  1320. /* computing blocks of NB columns at a time */
  1321. i__1 = *n;
  1322. i__2 = *nb;
  1323. for (j = k; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  1324. /* Computing MIN */
  1325. i__3 = *nb, i__4 = *n - j + 1;
  1326. jb = f2cmin(i__3,i__4);
  1327. /* Update the lower triangle of the diagonal block */
  1328. i__3 = j + jb - 1;
  1329. for (jj = j; jj <= i__3; ++jj) {
  1330. i__4 = j + jb - jj;
  1331. i__5 = k - 1;
  1332. q__1.r = -1.f, q__1.i = 0.f;
  1333. cgemv_("No transpose", &i__4, &i__5, &q__1, &a[jj + a_dim1],
  1334. lda, &w[jj + w_dim1], ldw, &c_b1, &a[jj + jj * a_dim1]
  1335. , &c__1);
  1336. /* L100: */
  1337. }
  1338. /* Update the rectangular subdiagonal block */
  1339. if (j + jb <= *n) {
  1340. i__3 = *n - j - jb + 1;
  1341. i__4 = k - 1;
  1342. q__1.r = -1.f, q__1.i = 0.f;
  1343. cgemm_("No transpose", "Transpose", &i__3, &jb, &i__4, &q__1,
  1344. &a[j + jb + a_dim1], lda, &w[j + w_dim1], ldw, &c_b1,
  1345. &a[j + jb + j * a_dim1], lda);
  1346. }
  1347. /* L110: */
  1348. }
  1349. /* Put L21 in standard form by partially undoing the interchanges */
  1350. /* in columns 1:k-1 */
  1351. j = k - 1;
  1352. L120:
  1353. kstep = 1;
  1354. jp1 = 1;
  1355. jj = j;
  1356. jp2 = ipiv[j];
  1357. if (jp2 < 0) {
  1358. jp2 = -jp2;
  1359. --j;
  1360. jp1 = -ipiv[j];
  1361. kstep = 2;
  1362. }
  1363. --j;
  1364. if (jp2 != jj && j >= 1) {
  1365. cswap_(&j, &a[jp2 + a_dim1], lda, &a[jj + a_dim1], lda);
  1366. }
  1367. jj = j + 1;
  1368. if (jp1 != jj && kstep == 2) {
  1369. cswap_(&j, &a[jp1 + a_dim1], lda, &a[jj + a_dim1], lda);
  1370. }
  1371. if (j >= 1) {
  1372. goto L120;
  1373. }
  1374. /* Set KB to the number of columns factorized */
  1375. *kb = k - 1;
  1376. }
  1377. return;
  1378. /* End of CLASYF_ROOK */
  1379. } /* clasyf_rook__ */