You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cggbal.c 32 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static real c_b36 = 10.f;
  488. static real c_b72 = .5f;
  489. /* > \brief \b CGGBAL */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download CGGBAL + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cggbal.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cggbal.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cggbal.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE CGGBAL( JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE, */
  508. /* RSCALE, WORK, INFO ) */
  509. /* CHARACTER JOB */
  510. /* INTEGER IHI, ILO, INFO, LDA, LDB, N */
  511. /* REAL LSCALE( * ), RSCALE( * ), WORK( * ) */
  512. /* COMPLEX A( LDA, * ), B( LDB, * ) */
  513. /* > \par Purpose: */
  514. /* ============= */
  515. /* > */
  516. /* > \verbatim */
  517. /* > */
  518. /* > CGGBAL balances a pair of general complex matrices (A,B). This */
  519. /* > involves, first, permuting A and B by similarity transformations to */
  520. /* > isolate eigenvalues in the first 1 to ILO$-$1 and last IHI+1 to N */
  521. /* > elements on the diagonal; and second, applying a diagonal similarity */
  522. /* > transformation to rows and columns ILO to IHI to make the rows */
  523. /* > and columns as close in norm as possible. Both steps are optional. */
  524. /* > */
  525. /* > Balancing may reduce the 1-norm of the matrices, and improve the */
  526. /* > accuracy of the computed eigenvalues and/or eigenvectors in the */
  527. /* > generalized eigenvalue problem A*x = lambda*B*x. */
  528. /* > \endverbatim */
  529. /* Arguments: */
  530. /* ========== */
  531. /* > \param[in] JOB */
  532. /* > \verbatim */
  533. /* > JOB is CHARACTER*1 */
  534. /* > Specifies the operations to be performed on A and B: */
  535. /* > = 'N': none: simply set ILO = 1, IHI = N, LSCALE(I) = 1.0 */
  536. /* > and RSCALE(I) = 1.0 for i=1,...,N; */
  537. /* > = 'P': permute only; */
  538. /* > = 'S': scale only; */
  539. /* > = 'B': both permute and scale. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] N */
  543. /* > \verbatim */
  544. /* > N is INTEGER */
  545. /* > The order of the matrices A and B. N >= 0. */
  546. /* > \endverbatim */
  547. /* > */
  548. /* > \param[in,out] A */
  549. /* > \verbatim */
  550. /* > A is COMPLEX array, dimension (LDA,N) */
  551. /* > On entry, the input matrix A. */
  552. /* > On exit, A is overwritten by the balanced matrix. */
  553. /* > If JOB = 'N', A is not referenced. */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in] LDA */
  557. /* > \verbatim */
  558. /* > LDA is INTEGER */
  559. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in,out] B */
  563. /* > \verbatim */
  564. /* > B is COMPLEX array, dimension (LDB,N) */
  565. /* > On entry, the input matrix B. */
  566. /* > On exit, B is overwritten by the balanced matrix. */
  567. /* > If JOB = 'N', B is not referenced. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] LDB */
  571. /* > \verbatim */
  572. /* > LDB is INTEGER */
  573. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[out] ILO */
  577. /* > \verbatim */
  578. /* > ILO is INTEGER */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[out] IHI */
  582. /* > \verbatim */
  583. /* > IHI is INTEGER */
  584. /* > ILO and IHI are set to integers such that on exit */
  585. /* > A(i,j) = 0 and B(i,j) = 0 if i > j and */
  586. /* > j = 1,...,ILO-1 or i = IHI+1,...,N. */
  587. /* > If JOB = 'N' or 'S', ILO = 1 and IHI = N. */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[out] LSCALE */
  591. /* > \verbatim */
  592. /* > LSCALE is REAL array, dimension (N) */
  593. /* > Details of the permutations and scaling factors applied */
  594. /* > to the left side of A and B. If P(j) is the index of the */
  595. /* > row interchanged with row j, and D(j) is the scaling factor */
  596. /* > applied to row j, then */
  597. /* > LSCALE(j) = P(j) for J = 1,...,ILO-1 */
  598. /* > = D(j) for J = ILO,...,IHI */
  599. /* > = P(j) for J = IHI+1,...,N. */
  600. /* > The order in which the interchanges are made is N to IHI+1, */
  601. /* > then 1 to ILO-1. */
  602. /* > \endverbatim */
  603. /* > */
  604. /* > \param[out] RSCALE */
  605. /* > \verbatim */
  606. /* > RSCALE is REAL array, dimension (N) */
  607. /* > Details of the permutations and scaling factors applied */
  608. /* > to the right side of A and B. If P(j) is the index of the */
  609. /* > column interchanged with column j, and D(j) is the scaling */
  610. /* > factor applied to column j, then */
  611. /* > RSCALE(j) = P(j) for J = 1,...,ILO-1 */
  612. /* > = D(j) for J = ILO,...,IHI */
  613. /* > = P(j) for J = IHI+1,...,N. */
  614. /* > The order in which the interchanges are made is N to IHI+1, */
  615. /* > then 1 to ILO-1. */
  616. /* > \endverbatim */
  617. /* > */
  618. /* > \param[out] WORK */
  619. /* > \verbatim */
  620. /* > WORK is REAL array, dimension (lwork) */
  621. /* > lwork must be at least f2cmax(1,6*N) when JOB = 'S' or 'B', and */
  622. /* > at least 1 when JOB = 'N' or 'P'. */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[out] INFO */
  626. /* > \verbatim */
  627. /* > INFO is INTEGER */
  628. /* > = 0: successful exit */
  629. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  630. /* > \endverbatim */
  631. /* Authors: */
  632. /* ======== */
  633. /* > \author Univ. of Tennessee */
  634. /* > \author Univ. of California Berkeley */
  635. /* > \author Univ. of Colorado Denver */
  636. /* > \author NAG Ltd. */
  637. /* > \date December 2016 */
  638. /* > \ingroup complexGBcomputational */
  639. /* > \par Further Details: */
  640. /* ===================== */
  641. /* > */
  642. /* > \verbatim */
  643. /* > */
  644. /* > See R.C. WARD, Balancing the generalized eigenvalue problem, */
  645. /* > SIAM J. Sci. Stat. Comp. 2 (1981), 141-152. */
  646. /* > \endverbatim */
  647. /* > */
  648. /* ===================================================================== */
  649. /* Subroutine */ void cggbal_(char *job, integer *n, complex *a, integer *lda,
  650. complex *b, integer *ldb, integer *ilo, integer *ihi, real *lscale,
  651. real *rscale, real *work, integer *info)
  652. {
  653. /* System generated locals */
  654. integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
  655. real r__1, r__2, r__3;
  656. /* Local variables */
  657. integer lcab;
  658. real beta, coef;
  659. integer irab, lrab;
  660. real basl, cmax;
  661. extern real sdot_(integer *, real *, integer *, real *, integer *);
  662. real coef2, coef5;
  663. integer i__, j, k, l, m;
  664. real gamma, t, alpha;
  665. extern logical lsame_(char *, char *);
  666. extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
  667. real sfmin;
  668. extern /* Subroutine */ void cswap_(integer *, complex *, integer *,
  669. complex *, integer *);
  670. real sfmax;
  671. integer iflow, kount;
  672. extern /* Subroutine */ void saxpy_(integer *, real *, real *, integer *,
  673. real *, integer *);
  674. integer jc;
  675. real ta, tb, tc;
  676. integer ir, it;
  677. real ew;
  678. integer nr;
  679. real pgamma;
  680. extern integer icamax_(integer *, complex *, integer *);
  681. extern real slamch_(char *);
  682. extern /* Subroutine */ void csscal_(integer *, real *, complex *, integer
  683. *);
  684. extern int xerbla_(char *, integer *, ftnlen);
  685. integer lsfmin, lsfmax, ip1, jp1, lm1;
  686. real cab, rab, ewc, cor, sum;
  687. integer nrp2, icab;
  688. /* -- LAPACK computational routine (version 3.7.0) -- */
  689. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  690. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  691. /* December 2016 */
  692. /* ===================================================================== */
  693. /* Test the input parameters */
  694. /* Parameter adjustments */
  695. a_dim1 = *lda;
  696. a_offset = 1 + a_dim1 * 1;
  697. a -= a_offset;
  698. b_dim1 = *ldb;
  699. b_offset = 1 + b_dim1 * 1;
  700. b -= b_offset;
  701. --lscale;
  702. --rscale;
  703. --work;
  704. /* Function Body */
  705. *info = 0;
  706. if (! lsame_(job, "N") && ! lsame_(job, "P") && ! lsame_(job, "S")
  707. && ! lsame_(job, "B")) {
  708. *info = -1;
  709. } else if (*n < 0) {
  710. *info = -2;
  711. } else if (*lda < f2cmax(1,*n)) {
  712. *info = -4;
  713. } else if (*ldb < f2cmax(1,*n)) {
  714. *info = -6;
  715. }
  716. if (*info != 0) {
  717. i__1 = -(*info);
  718. xerbla_("CGGBAL", &i__1, (ftnlen)6);
  719. return;
  720. }
  721. /* Quick return if possible */
  722. if (*n == 0) {
  723. *ilo = 1;
  724. *ihi = *n;
  725. return;
  726. }
  727. if (*n == 1) {
  728. *ilo = 1;
  729. *ihi = *n;
  730. lscale[1] = 1.f;
  731. rscale[1] = 1.f;
  732. return;
  733. }
  734. if (lsame_(job, "N")) {
  735. *ilo = 1;
  736. *ihi = *n;
  737. i__1 = *n;
  738. for (i__ = 1; i__ <= i__1; ++i__) {
  739. lscale[i__] = 1.f;
  740. rscale[i__] = 1.f;
  741. /* L10: */
  742. }
  743. return;
  744. }
  745. k = 1;
  746. l = *n;
  747. if (lsame_(job, "S")) {
  748. goto L190;
  749. }
  750. goto L30;
  751. /* Permute the matrices A and B to isolate the eigenvalues. */
  752. /* Find row with one nonzero in columns 1 through L */
  753. L20:
  754. l = lm1;
  755. if (l != 1) {
  756. goto L30;
  757. }
  758. rscale[1] = 1.f;
  759. lscale[1] = 1.f;
  760. goto L190;
  761. L30:
  762. lm1 = l - 1;
  763. for (i__ = l; i__ >= 1; --i__) {
  764. i__1 = lm1;
  765. for (j = 1; j <= i__1; ++j) {
  766. jp1 = j + 1;
  767. i__2 = i__ + j * a_dim1;
  768. i__3 = i__ + j * b_dim1;
  769. if (a[i__2].r != 0.f || a[i__2].i != 0.f || (b[i__3].r != 0.f ||
  770. b[i__3].i != 0.f)) {
  771. goto L50;
  772. }
  773. /* L40: */
  774. }
  775. j = l;
  776. goto L70;
  777. L50:
  778. i__1 = l;
  779. for (j = jp1; j <= i__1; ++j) {
  780. i__2 = i__ + j * a_dim1;
  781. i__3 = i__ + j * b_dim1;
  782. if (a[i__2].r != 0.f || a[i__2].i != 0.f || (b[i__3].r != 0.f ||
  783. b[i__3].i != 0.f)) {
  784. goto L80;
  785. }
  786. /* L60: */
  787. }
  788. j = jp1 - 1;
  789. L70:
  790. m = l;
  791. iflow = 1;
  792. goto L160;
  793. L80:
  794. ;
  795. }
  796. goto L100;
  797. /* Find column with one nonzero in rows K through N */
  798. L90:
  799. ++k;
  800. L100:
  801. i__1 = l;
  802. for (j = k; j <= i__1; ++j) {
  803. i__2 = lm1;
  804. for (i__ = k; i__ <= i__2; ++i__) {
  805. ip1 = i__ + 1;
  806. i__3 = i__ + j * a_dim1;
  807. i__4 = i__ + j * b_dim1;
  808. if (a[i__3].r != 0.f || a[i__3].i != 0.f || (b[i__4].r != 0.f ||
  809. b[i__4].i != 0.f)) {
  810. goto L120;
  811. }
  812. /* L110: */
  813. }
  814. i__ = l;
  815. goto L140;
  816. L120:
  817. i__2 = l;
  818. for (i__ = ip1; i__ <= i__2; ++i__) {
  819. i__3 = i__ + j * a_dim1;
  820. i__4 = i__ + j * b_dim1;
  821. if (a[i__3].r != 0.f || a[i__3].i != 0.f || (b[i__4].r != 0.f ||
  822. b[i__4].i != 0.f)) {
  823. goto L150;
  824. }
  825. /* L130: */
  826. }
  827. i__ = ip1 - 1;
  828. L140:
  829. m = k;
  830. iflow = 2;
  831. goto L160;
  832. L150:
  833. ;
  834. }
  835. goto L190;
  836. /* Permute rows M and I */
  837. L160:
  838. lscale[m] = (real) i__;
  839. if (i__ == m) {
  840. goto L170;
  841. }
  842. i__1 = *n - k + 1;
  843. cswap_(&i__1, &a[i__ + k * a_dim1], lda, &a[m + k * a_dim1], lda);
  844. i__1 = *n - k + 1;
  845. cswap_(&i__1, &b[i__ + k * b_dim1], ldb, &b[m + k * b_dim1], ldb);
  846. /* Permute columns M and J */
  847. L170:
  848. rscale[m] = (real) j;
  849. if (j == m) {
  850. goto L180;
  851. }
  852. cswap_(&l, &a[j * a_dim1 + 1], &c__1, &a[m * a_dim1 + 1], &c__1);
  853. cswap_(&l, &b[j * b_dim1 + 1], &c__1, &b[m * b_dim1 + 1], &c__1);
  854. L180:
  855. switch (iflow) {
  856. case 1: goto L20;
  857. case 2: goto L90;
  858. }
  859. L190:
  860. *ilo = k;
  861. *ihi = l;
  862. if (lsame_(job, "P")) {
  863. i__1 = *ihi;
  864. for (i__ = *ilo; i__ <= i__1; ++i__) {
  865. lscale[i__] = 1.f;
  866. rscale[i__] = 1.f;
  867. /* L195: */
  868. }
  869. return;
  870. }
  871. if (*ilo == *ihi) {
  872. return;
  873. }
  874. /* Balance the submatrix in rows ILO to IHI. */
  875. nr = *ihi - *ilo + 1;
  876. i__1 = *ihi;
  877. for (i__ = *ilo; i__ <= i__1; ++i__) {
  878. rscale[i__] = 0.f;
  879. lscale[i__] = 0.f;
  880. work[i__] = 0.f;
  881. work[i__ + *n] = 0.f;
  882. work[i__ + (*n << 1)] = 0.f;
  883. work[i__ + *n * 3] = 0.f;
  884. work[i__ + (*n << 2)] = 0.f;
  885. work[i__ + *n * 5] = 0.f;
  886. /* L200: */
  887. }
  888. /* Compute right side vector in resulting linear equations */
  889. basl = r_lg10(&c_b36);
  890. i__1 = *ihi;
  891. for (i__ = *ilo; i__ <= i__1; ++i__) {
  892. i__2 = *ihi;
  893. for (j = *ilo; j <= i__2; ++j) {
  894. i__3 = i__ + j * a_dim1;
  895. if (a[i__3].r == 0.f && a[i__3].i == 0.f) {
  896. ta = 0.f;
  897. goto L210;
  898. }
  899. i__3 = i__ + j * a_dim1;
  900. r__3 = (r__1 = a[i__3].r, abs(r__1)) + (r__2 = r_imag(&a[i__ + j *
  901. a_dim1]), abs(r__2));
  902. ta = r_lg10(&r__3) / basl;
  903. L210:
  904. i__3 = i__ + j * b_dim1;
  905. if (b[i__3].r == 0.f && b[i__3].i == 0.f) {
  906. tb = 0.f;
  907. goto L220;
  908. }
  909. i__3 = i__ + j * b_dim1;
  910. r__3 = (r__1 = b[i__3].r, abs(r__1)) + (r__2 = r_imag(&b[i__ + j *
  911. b_dim1]), abs(r__2));
  912. tb = r_lg10(&r__3) / basl;
  913. L220:
  914. work[i__ + (*n << 2)] = work[i__ + (*n << 2)] - ta - tb;
  915. work[j + *n * 5] = work[j + *n * 5] - ta - tb;
  916. /* L230: */
  917. }
  918. /* L240: */
  919. }
  920. coef = 1.f / (real) (nr << 1);
  921. coef2 = coef * coef;
  922. coef5 = coef2 * .5f;
  923. nrp2 = nr + 2;
  924. beta = 0.f;
  925. it = 1;
  926. /* Start generalized conjugate gradient iteration */
  927. L250:
  928. gamma = sdot_(&nr, &work[*ilo + (*n << 2)], &c__1, &work[*ilo + (*n << 2)]
  929. , &c__1) + sdot_(&nr, &work[*ilo + *n * 5], &c__1, &work[*ilo + *
  930. n * 5], &c__1);
  931. ew = 0.f;
  932. ewc = 0.f;
  933. i__1 = *ihi;
  934. for (i__ = *ilo; i__ <= i__1; ++i__) {
  935. ew += work[i__ + (*n << 2)];
  936. ewc += work[i__ + *n * 5];
  937. /* L260: */
  938. }
  939. /* Computing 2nd power */
  940. r__1 = ew;
  941. /* Computing 2nd power */
  942. r__2 = ewc;
  943. /* Computing 2nd power */
  944. r__3 = ew - ewc;
  945. gamma = coef * gamma - coef2 * (r__1 * r__1 + r__2 * r__2) - coef5 * (
  946. r__3 * r__3);
  947. if (gamma == 0.f) {
  948. goto L350;
  949. }
  950. if (it != 1) {
  951. beta = gamma / pgamma;
  952. }
  953. t = coef5 * (ewc - ew * 3.f);
  954. tc = coef5 * (ew - ewc * 3.f);
  955. sscal_(&nr, &beta, &work[*ilo], &c__1);
  956. sscal_(&nr, &beta, &work[*ilo + *n], &c__1);
  957. saxpy_(&nr, &coef, &work[*ilo + (*n << 2)], &c__1, &work[*ilo + *n], &
  958. c__1);
  959. saxpy_(&nr, &coef, &work[*ilo + *n * 5], &c__1, &work[*ilo], &c__1);
  960. i__1 = *ihi;
  961. for (i__ = *ilo; i__ <= i__1; ++i__) {
  962. work[i__] += tc;
  963. work[i__ + *n] += t;
  964. /* L270: */
  965. }
  966. /* Apply matrix to vector */
  967. i__1 = *ihi;
  968. for (i__ = *ilo; i__ <= i__1; ++i__) {
  969. kount = 0;
  970. sum = 0.f;
  971. i__2 = *ihi;
  972. for (j = *ilo; j <= i__2; ++j) {
  973. i__3 = i__ + j * a_dim1;
  974. if (a[i__3].r == 0.f && a[i__3].i == 0.f) {
  975. goto L280;
  976. }
  977. ++kount;
  978. sum += work[j];
  979. L280:
  980. i__3 = i__ + j * b_dim1;
  981. if (b[i__3].r == 0.f && b[i__3].i == 0.f) {
  982. goto L290;
  983. }
  984. ++kount;
  985. sum += work[j];
  986. L290:
  987. ;
  988. }
  989. work[i__ + (*n << 1)] = (real) kount * work[i__ + *n] + sum;
  990. /* L300: */
  991. }
  992. i__1 = *ihi;
  993. for (j = *ilo; j <= i__1; ++j) {
  994. kount = 0;
  995. sum = 0.f;
  996. i__2 = *ihi;
  997. for (i__ = *ilo; i__ <= i__2; ++i__) {
  998. i__3 = i__ + j * a_dim1;
  999. if (a[i__3].r == 0.f && a[i__3].i == 0.f) {
  1000. goto L310;
  1001. }
  1002. ++kount;
  1003. sum += work[i__ + *n];
  1004. L310:
  1005. i__3 = i__ + j * b_dim1;
  1006. if (b[i__3].r == 0.f && b[i__3].i == 0.f) {
  1007. goto L320;
  1008. }
  1009. ++kount;
  1010. sum += work[i__ + *n];
  1011. L320:
  1012. ;
  1013. }
  1014. work[j + *n * 3] = (real) kount * work[j] + sum;
  1015. /* L330: */
  1016. }
  1017. sum = sdot_(&nr, &work[*ilo + *n], &c__1, &work[*ilo + (*n << 1)], &c__1)
  1018. + sdot_(&nr, &work[*ilo], &c__1, &work[*ilo + *n * 3], &c__1);
  1019. alpha = gamma / sum;
  1020. /* Determine correction to current iteration */
  1021. cmax = 0.f;
  1022. i__1 = *ihi;
  1023. for (i__ = *ilo; i__ <= i__1; ++i__) {
  1024. cor = alpha * work[i__ + *n];
  1025. if (abs(cor) > cmax) {
  1026. cmax = abs(cor);
  1027. }
  1028. lscale[i__] += cor;
  1029. cor = alpha * work[i__];
  1030. if (abs(cor) > cmax) {
  1031. cmax = abs(cor);
  1032. }
  1033. rscale[i__] += cor;
  1034. /* L340: */
  1035. }
  1036. if (cmax < .5f) {
  1037. goto L350;
  1038. }
  1039. r__1 = -alpha;
  1040. saxpy_(&nr, &r__1, &work[*ilo + (*n << 1)], &c__1, &work[*ilo + (*n << 2)]
  1041. , &c__1);
  1042. r__1 = -alpha;
  1043. saxpy_(&nr, &r__1, &work[*ilo + *n * 3], &c__1, &work[*ilo + *n * 5], &
  1044. c__1);
  1045. pgamma = gamma;
  1046. ++it;
  1047. if (it <= nrp2) {
  1048. goto L250;
  1049. }
  1050. /* End generalized conjugate gradient iteration */
  1051. L350:
  1052. sfmin = slamch_("S");
  1053. sfmax = 1.f / sfmin;
  1054. lsfmin = (integer) (r_lg10(&sfmin) / basl + 1.f);
  1055. lsfmax = (integer) (r_lg10(&sfmax) / basl);
  1056. i__1 = *ihi;
  1057. for (i__ = *ilo; i__ <= i__1; ++i__) {
  1058. i__2 = *n - *ilo + 1;
  1059. irab = icamax_(&i__2, &a[i__ + *ilo * a_dim1], lda);
  1060. rab = c_abs(&a[i__ + (irab + *ilo - 1) * a_dim1]);
  1061. i__2 = *n - *ilo + 1;
  1062. irab = icamax_(&i__2, &b[i__ + *ilo * b_dim1], ldb);
  1063. /* Computing MAX */
  1064. r__1 = rab, r__2 = c_abs(&b[i__ + (irab + *ilo - 1) * b_dim1]);
  1065. rab = f2cmax(r__1,r__2);
  1066. r__1 = rab + sfmin;
  1067. lrab = (integer) (r_lg10(&r__1) / basl + 1.f);
  1068. ir = lscale[i__] + r_sign(&c_b72, &lscale[i__]);
  1069. /* Computing MIN */
  1070. i__2 = f2cmax(ir,lsfmin), i__2 = f2cmin(i__2,lsfmax), i__3 = lsfmax - lrab;
  1071. ir = f2cmin(i__2,i__3);
  1072. lscale[i__] = pow_ri(&c_b36, &ir);
  1073. icab = icamax_(ihi, &a[i__ * a_dim1 + 1], &c__1);
  1074. cab = c_abs(&a[icab + i__ * a_dim1]);
  1075. icab = icamax_(ihi, &b[i__ * b_dim1 + 1], &c__1);
  1076. /* Computing MAX */
  1077. r__1 = cab, r__2 = c_abs(&b[icab + i__ * b_dim1]);
  1078. cab = f2cmax(r__1,r__2);
  1079. r__1 = cab + sfmin;
  1080. lcab = (integer) (r_lg10(&r__1) / basl + 1.f);
  1081. jc = rscale[i__] + r_sign(&c_b72, &rscale[i__]);
  1082. /* Computing MIN */
  1083. i__2 = f2cmax(jc,lsfmin), i__2 = f2cmin(i__2,lsfmax), i__3 = lsfmax - lcab;
  1084. jc = f2cmin(i__2,i__3);
  1085. rscale[i__] = pow_ri(&c_b36, &jc);
  1086. /* L360: */
  1087. }
  1088. /* Row scaling of matrices A and B */
  1089. i__1 = *ihi;
  1090. for (i__ = *ilo; i__ <= i__1; ++i__) {
  1091. i__2 = *n - *ilo + 1;
  1092. csscal_(&i__2, &lscale[i__], &a[i__ + *ilo * a_dim1], lda);
  1093. i__2 = *n - *ilo + 1;
  1094. csscal_(&i__2, &lscale[i__], &b[i__ + *ilo * b_dim1], ldb);
  1095. /* L370: */
  1096. }
  1097. /* Column scaling of matrices A and B */
  1098. i__1 = *ihi;
  1099. for (j = *ilo; j <= i__1; ++j) {
  1100. csscal_(ihi, &rscale[j], &a[j * a_dim1 + 1], &c__1);
  1101. csscal_(ihi, &rscale[j], &b[j * b_dim1 + 1], &c__1);
  1102. /* L380: */
  1103. }
  1104. return;
  1105. /* End of CGGBAL */
  1106. } /* cggbal_ */