You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlahef.c 52 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static doublecomplex c_b1 = {1.,0.};
  487. static integer c__1 = 1;
  488. /* > \brief \b ZLAHEF computes a partial factorization of a complex Hermitian indefinite matrix using the Bunc
  489. h-Kaufman diagonal pivoting method (blocked algorithm, calling Level 3 BLAS). */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download ZLAHEF + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlahef.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlahef.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlahef.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE ZLAHEF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO ) */
  508. /* CHARACTER UPLO */
  509. /* INTEGER INFO, KB, LDA, LDW, N, NB */
  510. /* INTEGER IPIV( * ) */
  511. /* COMPLEX*16 A( LDA, * ), W( LDW, * ) */
  512. /* > \par Purpose: */
  513. /* ============= */
  514. /* > */
  515. /* > \verbatim */
  516. /* > */
  517. /* > ZLAHEF computes a partial factorization of a complex Hermitian */
  518. /* > matrix A using the Bunch-Kaufman diagonal pivoting method. The */
  519. /* > partial factorization has the form: */
  520. /* > */
  521. /* > A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: */
  522. /* > ( 0 U22 ) ( 0 D ) ( U12**H U22**H ) */
  523. /* > */
  524. /* > A = ( L11 0 ) ( D 0 ) ( L11**H L21**H ) if UPLO = 'L' */
  525. /* > ( L21 I ) ( 0 A22 ) ( 0 I ) */
  526. /* > */
  527. /* > where the order of D is at most NB. The actual order is returned in */
  528. /* > the argument KB, and is either NB or NB-1, or N if N <= NB. */
  529. /* > Note that U**H denotes the conjugate transpose of U. */
  530. /* > */
  531. /* > ZLAHEF is an auxiliary routine called by ZHETRF. It uses blocked code */
  532. /* > (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or */
  533. /* > A22 (if UPLO = 'L'). */
  534. /* > \endverbatim */
  535. /* Arguments: */
  536. /* ========== */
  537. /* > \param[in] UPLO */
  538. /* > \verbatim */
  539. /* > UPLO is CHARACTER*1 */
  540. /* > Specifies whether the upper or lower triangular part of the */
  541. /* > Hermitian matrix A is stored: */
  542. /* > = 'U': Upper triangular */
  543. /* > = 'L': Lower triangular */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in] N */
  547. /* > \verbatim */
  548. /* > N is INTEGER */
  549. /* > The order of the matrix A. N >= 0. */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in] NB */
  553. /* > \verbatim */
  554. /* > NB is INTEGER */
  555. /* > The maximum number of columns of the matrix A that should be */
  556. /* > factored. NB should be at least 2 to allow for 2-by-2 pivot */
  557. /* > blocks. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[out] KB */
  561. /* > \verbatim */
  562. /* > KB is INTEGER */
  563. /* > The number of columns of A that were actually factored. */
  564. /* > KB is either NB-1 or NB, or N if N <= NB. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in,out] A */
  568. /* > \verbatim */
  569. /* > A is COMPLEX*16 array, dimension (LDA,N) */
  570. /* > On entry, the Hermitian matrix A. If UPLO = 'U', the leading */
  571. /* > n-by-n upper triangular part of A contains the upper */
  572. /* > triangular part of the matrix A, and the strictly lower */
  573. /* > triangular part of A is not referenced. If UPLO = 'L', the */
  574. /* > leading n-by-n lower triangular part of A contains the lower */
  575. /* > triangular part of the matrix A, and the strictly upper */
  576. /* > triangular part of A is not referenced. */
  577. /* > On exit, A contains details of the partial factorization. */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[in] LDA */
  581. /* > \verbatim */
  582. /* > LDA is INTEGER */
  583. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[out] IPIV */
  587. /* > \verbatim */
  588. /* > IPIV is INTEGER array, dimension (N) */
  589. /* > Details of the interchanges and the block structure of D. */
  590. /* > */
  591. /* > If UPLO = 'U': */
  592. /* > Only the last KB elements of IPIV are set. */
  593. /* > */
  594. /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
  595. /* > interchanged and D(k,k) is a 1-by-1 diagonal block. */
  596. /* > */
  597. /* > If IPIV(k) = IPIV(k-1) < 0, then rows and columns */
  598. /* > k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
  599. /* > is a 2-by-2 diagonal block. */
  600. /* > */
  601. /* > If UPLO = 'L': */
  602. /* > Only the first KB elements of IPIV are set. */
  603. /* > */
  604. /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
  605. /* > interchanged and D(k,k) is a 1-by-1 diagonal block. */
  606. /* > */
  607. /* > If IPIV(k) = IPIV(k+1) < 0, then rows and columns */
  608. /* > k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1) */
  609. /* > is a 2-by-2 diagonal block. */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[out] W */
  613. /* > \verbatim */
  614. /* > W is COMPLEX*16 array, dimension (LDW,NB) */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[in] LDW */
  618. /* > \verbatim */
  619. /* > LDW is INTEGER */
  620. /* > The leading dimension of the array W. LDW >= f2cmax(1,N). */
  621. /* > \endverbatim */
  622. /* > */
  623. /* > \param[out] INFO */
  624. /* > \verbatim */
  625. /* > INFO is INTEGER */
  626. /* > = 0: successful exit */
  627. /* > > 0: if INFO = k, D(k,k) is exactly zero. The factorization */
  628. /* > has been completed, but the block diagonal matrix D is */
  629. /* > exactly singular. */
  630. /* > \endverbatim */
  631. /* Authors: */
  632. /* ======== */
  633. /* > \author Univ. of Tennessee */
  634. /* > \author Univ. of California Berkeley */
  635. /* > \author Univ. of Colorado Denver */
  636. /* > \author NAG Ltd. */
  637. /* > \date December 2016 */
  638. /* > \ingroup complex16HEcomputational */
  639. /* > \par Contributors: */
  640. /* ================== */
  641. /* > */
  642. /* > \verbatim */
  643. /* > */
  644. /* > December 2016, Igor Kozachenko, */
  645. /* > Computer Science Division, */
  646. /* > University of California, Berkeley */
  647. /* > \endverbatim */
  648. /* ===================================================================== */
  649. /* Subroutine */ void zlahef_(char *uplo, integer *n, integer *nb, integer *kb,
  650. doublecomplex *a, integer *lda, integer *ipiv, doublecomplex *w,
  651. integer *ldw, integer *info)
  652. {
  653. /* System generated locals */
  654. integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3, i__4, i__5;
  655. doublereal d__1, d__2, d__3, d__4;
  656. doublecomplex z__1, z__2, z__3, z__4;
  657. /* Local variables */
  658. integer imax, jmax, j, k;
  659. doublereal t, alpha;
  660. extern logical lsame_(char *, char *);
  661. extern /* Subroutine */ void zgemm_(char *, char *, integer *, integer *,
  662. integer *, doublecomplex *, doublecomplex *, integer *,
  663. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  664. integer *);
  665. integer kstep;
  666. extern /* Subroutine */ void zgemv_(char *, integer *, integer *,
  667. doublecomplex *, doublecomplex *, integer *, doublecomplex *,
  668. integer *, doublecomplex *, doublecomplex *, integer *);
  669. doublereal r1;
  670. extern /* Subroutine */ void zcopy_(integer *, doublecomplex *, integer *,
  671. doublecomplex *, integer *), zswap_(integer *, doublecomplex *,
  672. integer *, doublecomplex *, integer *);
  673. doublecomplex d11, d21, d22;
  674. integer jb, jj, kk, jp, kp;
  675. doublereal absakk;
  676. integer kw;
  677. extern /* Subroutine */ void zdscal_(integer *, doublereal *,
  678. doublecomplex *, integer *);
  679. doublereal colmax;
  680. extern /* Subroutine */ void zlacgv_(integer *, doublecomplex *, integer *)
  681. ;
  682. extern integer izamax_(integer *, doublecomplex *, integer *);
  683. doublereal rowmax;
  684. integer kkw;
  685. /* -- LAPACK computational routine (version 3.7.0) -- */
  686. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  687. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  688. /* December 2016 */
  689. /* ===================================================================== */
  690. /* Parameter adjustments */
  691. a_dim1 = *lda;
  692. a_offset = 1 + a_dim1 * 1;
  693. a -= a_offset;
  694. --ipiv;
  695. w_dim1 = *ldw;
  696. w_offset = 1 + w_dim1 * 1;
  697. w -= w_offset;
  698. /* Function Body */
  699. *info = 0;
  700. /* Initialize ALPHA for use in choosing pivot block size. */
  701. alpha = (sqrt(17.) + 1.) / 8.;
  702. if (lsame_(uplo, "U")) {
  703. /* Factorize the trailing columns of A using the upper triangle */
  704. /* of A and working backwards, and compute the matrix W = U12*D */
  705. /* for use in updating A11 (note that conjg(W) is actually stored) */
  706. /* K is the main loop index, decreasing from N in steps of 1 or 2 */
  707. /* KW is the column of W which corresponds to column K of A */
  708. k = *n;
  709. L10:
  710. kw = *nb + k - *n;
  711. /* Exit from loop */
  712. if (k <= *n - *nb + 1 && *nb < *n || k < 1) {
  713. goto L30;
  714. }
  715. kstep = 1;
  716. /* Copy column K of A to column KW of W and update it */
  717. i__1 = k - 1;
  718. zcopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &w[kw * w_dim1 + 1], &c__1);
  719. i__1 = k + kw * w_dim1;
  720. i__2 = k + k * a_dim1;
  721. d__1 = a[i__2].r;
  722. w[i__1].r = d__1, w[i__1].i = 0.;
  723. if (k < *n) {
  724. i__1 = *n - k;
  725. z__1.r = -1., z__1.i = 0.;
  726. zgemv_("No transpose", &k, &i__1, &z__1, &a[(k + 1) * a_dim1 + 1],
  727. lda, &w[k + (kw + 1) * w_dim1], ldw, &c_b1, &w[kw *
  728. w_dim1 + 1], &c__1);
  729. i__1 = k + kw * w_dim1;
  730. i__2 = k + kw * w_dim1;
  731. d__1 = w[i__2].r;
  732. w[i__1].r = d__1, w[i__1].i = 0.;
  733. }
  734. /* Determine rows and columns to be interchanged and whether */
  735. /* a 1-by-1 or 2-by-2 pivot block will be used */
  736. i__1 = k + kw * w_dim1;
  737. absakk = (d__1 = w[i__1].r, abs(d__1));
  738. /* IMAX is the row-index of the largest off-diagonal element in */
  739. /* column K, and COLMAX is its absolute value. */
  740. /* Determine both COLMAX and IMAX. */
  741. if (k > 1) {
  742. i__1 = k - 1;
  743. imax = izamax_(&i__1, &w[kw * w_dim1 + 1], &c__1);
  744. i__1 = imax + kw * w_dim1;
  745. colmax = (d__1 = w[i__1].r, abs(d__1)) + (d__2 = d_imag(&w[imax +
  746. kw * w_dim1]), abs(d__2));
  747. } else {
  748. colmax = 0.;
  749. }
  750. if (f2cmax(absakk,colmax) == 0.) {
  751. /* Column K is zero or underflow: set INFO and continue */
  752. if (*info == 0) {
  753. *info = k;
  754. }
  755. kp = k;
  756. i__1 = k + k * a_dim1;
  757. i__2 = k + k * a_dim1;
  758. d__1 = a[i__2].r;
  759. a[i__1].r = d__1, a[i__1].i = 0.;
  760. } else {
  761. /* ============================================================ */
  762. /* BEGIN pivot search */
  763. /* Case(1) */
  764. if (absakk >= alpha * colmax) {
  765. /* no interchange, use 1-by-1 pivot block */
  766. kp = k;
  767. } else {
  768. /* BEGIN pivot search along IMAX row */
  769. /* Copy column IMAX to column KW-1 of W and update it */
  770. i__1 = imax - 1;
  771. zcopy_(&i__1, &a[imax * a_dim1 + 1], &c__1, &w[(kw - 1) *
  772. w_dim1 + 1], &c__1);
  773. i__1 = imax + (kw - 1) * w_dim1;
  774. i__2 = imax + imax * a_dim1;
  775. d__1 = a[i__2].r;
  776. w[i__1].r = d__1, w[i__1].i = 0.;
  777. i__1 = k - imax;
  778. zcopy_(&i__1, &a[imax + (imax + 1) * a_dim1], lda, &w[imax +
  779. 1 + (kw - 1) * w_dim1], &c__1);
  780. i__1 = k - imax;
  781. zlacgv_(&i__1, &w[imax + 1 + (kw - 1) * w_dim1], &c__1);
  782. if (k < *n) {
  783. i__1 = *n - k;
  784. z__1.r = -1., z__1.i = 0.;
  785. zgemv_("No transpose", &k, &i__1, &z__1, &a[(k + 1) *
  786. a_dim1 + 1], lda, &w[imax + (kw + 1) * w_dim1],
  787. ldw, &c_b1, &w[(kw - 1) * w_dim1 + 1], &c__1);
  788. i__1 = imax + (kw - 1) * w_dim1;
  789. i__2 = imax + (kw - 1) * w_dim1;
  790. d__1 = w[i__2].r;
  791. w[i__1].r = d__1, w[i__1].i = 0.;
  792. }
  793. /* JMAX is the column-index of the largest off-diagonal */
  794. /* element in row IMAX, and ROWMAX is its absolute value. */
  795. /* Determine only ROWMAX. */
  796. i__1 = k - imax;
  797. jmax = imax + izamax_(&i__1, &w[imax + 1 + (kw - 1) * w_dim1],
  798. &c__1);
  799. i__1 = jmax + (kw - 1) * w_dim1;
  800. rowmax = (d__1 = w[i__1].r, abs(d__1)) + (d__2 = d_imag(&w[
  801. jmax + (kw - 1) * w_dim1]), abs(d__2));
  802. if (imax > 1) {
  803. i__1 = imax - 1;
  804. jmax = izamax_(&i__1, &w[(kw - 1) * w_dim1 + 1], &c__1);
  805. /* Computing MAX */
  806. i__1 = jmax + (kw - 1) * w_dim1;
  807. d__3 = rowmax, d__4 = (d__1 = w[i__1].r, abs(d__1)) + (
  808. d__2 = d_imag(&w[jmax + (kw - 1) * w_dim1]), abs(
  809. d__2));
  810. rowmax = f2cmax(d__3,d__4);
  811. }
  812. /* Case(2) */
  813. if (absakk >= alpha * colmax * (colmax / rowmax)) {
  814. /* no interchange, use 1-by-1 pivot block */
  815. kp = k;
  816. /* Case(3) */
  817. } else /* if(complicated condition) */ {
  818. i__1 = imax + (kw - 1) * w_dim1;
  819. if ((d__1 = w[i__1].r, abs(d__1)) >= alpha * rowmax) {
  820. /* interchange rows and columns K and IMAX, use 1-by-1 */
  821. /* pivot block */
  822. kp = imax;
  823. /* copy column KW-1 of W to column KW of W */
  824. zcopy_(&k, &w[(kw - 1) * w_dim1 + 1], &c__1, &w[kw *
  825. w_dim1 + 1], &c__1);
  826. /* Case(4) */
  827. } else {
  828. /* interchange rows and columns K-1 and IMAX, use 2-by-2 */
  829. /* pivot block */
  830. kp = imax;
  831. kstep = 2;
  832. }
  833. }
  834. /* END pivot search along IMAX row */
  835. }
  836. /* END pivot search */
  837. /* ============================================================ */
  838. /* KK is the column of A where pivoting step stopped */
  839. kk = k - kstep + 1;
  840. /* KKW is the column of W which corresponds to column KK of A */
  841. kkw = *nb + kk - *n;
  842. /* Interchange rows and columns KP and KK. */
  843. /* Updated column KP is already stored in column KKW of W. */
  844. if (kp != kk) {
  845. /* Copy non-updated column KK to column KP of submatrix A */
  846. /* at step K. No need to copy element into column K */
  847. /* (or K and K-1 for 2-by-2 pivot) of A, since these columns */
  848. /* will be later overwritten. */
  849. i__1 = kp + kp * a_dim1;
  850. i__2 = kk + kk * a_dim1;
  851. d__1 = a[i__2].r;
  852. a[i__1].r = d__1, a[i__1].i = 0.;
  853. i__1 = kk - 1 - kp;
  854. zcopy_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (kp +
  855. 1) * a_dim1], lda);
  856. i__1 = kk - 1 - kp;
  857. zlacgv_(&i__1, &a[kp + (kp + 1) * a_dim1], lda);
  858. if (kp > 1) {
  859. i__1 = kp - 1;
  860. zcopy_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1
  861. + 1], &c__1);
  862. }
  863. /* Interchange rows KK and KP in last K+1 to N columns of A */
  864. /* (columns K (or K and K-1 for 2-by-2 pivot) of A will be */
  865. /* later overwritten). Interchange rows KK and KP */
  866. /* in last KKW to NB columns of W. */
  867. if (k < *n) {
  868. i__1 = *n - k;
  869. zswap_(&i__1, &a[kk + (k + 1) * a_dim1], lda, &a[kp + (k
  870. + 1) * a_dim1], lda);
  871. }
  872. i__1 = *n - kk + 1;
  873. zswap_(&i__1, &w[kk + kkw * w_dim1], ldw, &w[kp + kkw *
  874. w_dim1], ldw);
  875. }
  876. if (kstep == 1) {
  877. /* 1-by-1 pivot block D(k): column kw of W now holds */
  878. /* W(kw) = U(k)*D(k), */
  879. /* where U(k) is the k-th column of U */
  880. /* (1) Store subdiag. elements of column U(k) */
  881. /* and 1-by-1 block D(k) in column k of A. */
  882. /* (NOTE: Diagonal element U(k,k) is a UNIT element */
  883. /* and not stored) */
  884. /* A(k,k) := D(k,k) = W(k,kw) */
  885. /* A(1:k-1,k) := U(1:k-1,k) = W(1:k-1,kw)/D(k,k) */
  886. /* (NOTE: No need to use for Hermitian matrix */
  887. /* A( K, K ) = DBLE( W( K, K) ) to separately copy diagonal */
  888. /* element D(k,k) from W (potentially saves only one load)) */
  889. zcopy_(&k, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &
  890. c__1);
  891. if (k > 1) {
  892. /* (NOTE: No need to check if A(k,k) is NOT ZERO, */
  893. /* since that was ensured earlier in pivot search: */
  894. /* case A(k,k) = 0 falls into 2x2 pivot case(4)) */
  895. i__1 = k + k * a_dim1;
  896. r1 = 1. / a[i__1].r;
  897. i__1 = k - 1;
  898. zdscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1);
  899. /* (2) Conjugate column W(kw) */
  900. i__1 = k - 1;
  901. zlacgv_(&i__1, &w[kw * w_dim1 + 1], &c__1);
  902. }
  903. } else {
  904. /* 2-by-2 pivot block D(k): columns kw and kw-1 of W now hold */
  905. /* ( W(kw-1) W(kw) ) = ( U(k-1) U(k) )*D(k) */
  906. /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
  907. /* of U */
  908. /* (1) Store U(1:k-2,k-1) and U(1:k-2,k) and 2-by-2 */
  909. /* block D(k-1:k,k-1:k) in columns k-1 and k of A. */
  910. /* (NOTE: 2-by-2 diagonal block U(k-1:k,k-1:k) is a UNIT */
  911. /* block and not stored) */
  912. /* A(k-1:k,k-1:k) := D(k-1:k,k-1:k) = W(k-1:k,kw-1:kw) */
  913. /* A(1:k-2,k-1:k) := U(1:k-2,k:k-1:k) = */
  914. /* = W(1:k-2,kw-1:kw) * ( D(k-1:k,k-1:k)**(-1) ) */
  915. if (k > 2) {
  916. /* Factor out the columns of the inverse of 2-by-2 pivot */
  917. /* block D, so that each column contains 1, to reduce the */
  918. /* number of FLOPS when we multiply panel */
  919. /* ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1). */
  920. /* D**(-1) = ( d11 cj(d21) )**(-1) = */
  921. /* ( d21 d22 ) */
  922. /* = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) = */
  923. /* ( (-d21) ( d11 ) ) */
  924. /* = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) * */
  925. /* * ( d21*( d22/d21 ) conj(d21)*( - 1 ) ) = */
  926. /* ( ( -1 ) ( d11/conj(d21) ) ) */
  927. /* = 1/(|d21|**2) * 1/(D22*D11-1) * */
  928. /* * ( d21*( D11 ) conj(d21)*( -1 ) ) = */
  929. /* ( ( -1 ) ( D22 ) ) */
  930. /* = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*( -1 ) ) = */
  931. /* ( ( -1 ) ( D22 ) ) */
  932. /* = ( (T/conj(d21))*( D11 ) (T/d21)*( -1 ) ) = */
  933. /* ( ( -1 ) ( D22 ) ) */
  934. /* = ( conj(D21)*( D11 ) D21*( -1 ) ) */
  935. /* ( ( -1 ) ( D22 ) ), */
  936. /* where D11 = d22/d21, */
  937. /* D22 = d11/conj(d21), */
  938. /* D21 = T/d21, */
  939. /* T = 1/(D22*D11-1). */
  940. /* (NOTE: No need to check for division by ZERO, */
  941. /* since that was ensured earlier in pivot search: */
  942. /* (a) d21 != 0, since in 2x2 pivot case(4) */
  943. /* |d21| should be larger than |d11| and |d22|; */
  944. /* (b) (D22*D11 - 1) != 0, since from (a), */
  945. /* both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.) */
  946. i__1 = k - 1 + kw * w_dim1;
  947. d21.r = w[i__1].r, d21.i = w[i__1].i;
  948. d_cnjg(&z__2, &d21);
  949. z_div(&z__1, &w[k + kw * w_dim1], &z__2);
  950. d11.r = z__1.r, d11.i = z__1.i;
  951. z_div(&z__1, &w[k - 1 + (kw - 1) * w_dim1], &d21);
  952. d22.r = z__1.r, d22.i = z__1.i;
  953. z__1.r = d11.r * d22.r - d11.i * d22.i, z__1.i = d11.r *
  954. d22.i + d11.i * d22.r;
  955. t = 1. / (z__1.r - 1.);
  956. z__2.r = t, z__2.i = 0.;
  957. z_div(&z__1, &z__2, &d21);
  958. d21.r = z__1.r, d21.i = z__1.i;
  959. /* Update elements in columns A(k-1) and A(k) as */
  960. /* dot products of rows of ( W(kw-1) W(kw) ) and columns */
  961. /* of D**(-1) */
  962. i__1 = k - 2;
  963. for (j = 1; j <= i__1; ++j) {
  964. i__2 = j + (k - 1) * a_dim1;
  965. i__3 = j + (kw - 1) * w_dim1;
  966. z__3.r = d11.r * w[i__3].r - d11.i * w[i__3].i,
  967. z__3.i = d11.r * w[i__3].i + d11.i * w[i__3]
  968. .r;
  969. i__4 = j + kw * w_dim1;
  970. z__2.r = z__3.r - w[i__4].r, z__2.i = z__3.i - w[i__4]
  971. .i;
  972. z__1.r = d21.r * z__2.r - d21.i * z__2.i, z__1.i =
  973. d21.r * z__2.i + d21.i * z__2.r;
  974. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  975. i__2 = j + k * a_dim1;
  976. d_cnjg(&z__2, &d21);
  977. i__3 = j + kw * w_dim1;
  978. z__4.r = d22.r * w[i__3].r - d22.i * w[i__3].i,
  979. z__4.i = d22.r * w[i__3].i + d22.i * w[i__3]
  980. .r;
  981. i__4 = j + (kw - 1) * w_dim1;
  982. z__3.r = z__4.r - w[i__4].r, z__3.i = z__4.i - w[i__4]
  983. .i;
  984. z__1.r = z__2.r * z__3.r - z__2.i * z__3.i, z__1.i =
  985. z__2.r * z__3.i + z__2.i * z__3.r;
  986. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  987. /* L20: */
  988. }
  989. }
  990. /* Copy D(k) to A */
  991. i__1 = k - 1 + (k - 1) * a_dim1;
  992. i__2 = k - 1 + (kw - 1) * w_dim1;
  993. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  994. i__1 = k - 1 + k * a_dim1;
  995. i__2 = k - 1 + kw * w_dim1;
  996. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  997. i__1 = k + k * a_dim1;
  998. i__2 = k + kw * w_dim1;
  999. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1000. /* (2) Conjugate columns W(kw) and W(kw-1) */
  1001. i__1 = k - 1;
  1002. zlacgv_(&i__1, &w[kw * w_dim1 + 1], &c__1);
  1003. i__1 = k - 2;
  1004. zlacgv_(&i__1, &w[(kw - 1) * w_dim1 + 1], &c__1);
  1005. }
  1006. }
  1007. /* Store details of the interchanges in IPIV */
  1008. if (kstep == 1) {
  1009. ipiv[k] = kp;
  1010. } else {
  1011. ipiv[k] = -kp;
  1012. ipiv[k - 1] = -kp;
  1013. }
  1014. /* Decrease K and return to the start of the main loop */
  1015. k -= kstep;
  1016. goto L10;
  1017. L30:
  1018. /* Update the upper triangle of A11 (= A(1:k,1:k)) as */
  1019. /* A11 := A11 - U12*D*U12**H = A11 - U12*W**H */
  1020. /* computing blocks of NB columns at a time (note that conjg(W) is */
  1021. /* actually stored) */
  1022. i__1 = -(*nb);
  1023. for (j = (k - 1) / *nb * *nb + 1; i__1 < 0 ? j >= 1 : j <= 1; j +=
  1024. i__1) {
  1025. /* Computing MIN */
  1026. i__2 = *nb, i__3 = k - j + 1;
  1027. jb = f2cmin(i__2,i__3);
  1028. /* Update the upper triangle of the diagonal block */
  1029. i__2 = j + jb - 1;
  1030. for (jj = j; jj <= i__2; ++jj) {
  1031. i__3 = jj + jj * a_dim1;
  1032. i__4 = jj + jj * a_dim1;
  1033. d__1 = a[i__4].r;
  1034. a[i__3].r = d__1, a[i__3].i = 0.;
  1035. i__3 = jj - j + 1;
  1036. i__4 = *n - k;
  1037. z__1.r = -1., z__1.i = 0.;
  1038. zgemv_("No transpose", &i__3, &i__4, &z__1, &a[j + (k + 1) *
  1039. a_dim1], lda, &w[jj + (kw + 1) * w_dim1], ldw, &c_b1,
  1040. &a[j + jj * a_dim1], &c__1);
  1041. i__3 = jj + jj * a_dim1;
  1042. i__4 = jj + jj * a_dim1;
  1043. d__1 = a[i__4].r;
  1044. a[i__3].r = d__1, a[i__3].i = 0.;
  1045. /* L40: */
  1046. }
  1047. /* Update the rectangular superdiagonal block */
  1048. i__2 = j - 1;
  1049. i__3 = *n - k;
  1050. z__1.r = -1., z__1.i = 0.;
  1051. zgemm_("No transpose", "Transpose", &i__2, &jb, &i__3, &z__1, &a[(
  1052. k + 1) * a_dim1 + 1], lda, &w[j + (kw + 1) * w_dim1], ldw,
  1053. &c_b1, &a[j * a_dim1 + 1], lda);
  1054. /* L50: */
  1055. }
  1056. /* Put U12 in standard form by partially undoing the interchanges */
  1057. /* in columns k+1:n looping backwards from k+1 to n */
  1058. j = k + 1;
  1059. L60:
  1060. /* Undo the interchanges (if any) of rows JJ and JP at each */
  1061. /* step J */
  1062. /* (Here, J is a diagonal index) */
  1063. jj = j;
  1064. jp = ipiv[j];
  1065. if (jp < 0) {
  1066. jp = -jp;
  1067. /* (Here, J is a diagonal index) */
  1068. ++j;
  1069. }
  1070. /* (NOTE: Here, J is used to determine row length. Length N-J+1 */
  1071. /* of the rows to swap back doesn't include diagonal element) */
  1072. ++j;
  1073. if (jp != jj && j <= *n) {
  1074. i__1 = *n - j + 1;
  1075. zswap_(&i__1, &a[jp + j * a_dim1], lda, &a[jj + j * a_dim1], lda);
  1076. }
  1077. if (j < *n) {
  1078. goto L60;
  1079. }
  1080. /* Set KB to the number of columns factorized */
  1081. *kb = *n - k;
  1082. } else {
  1083. /* Factorize the leading columns of A using the lower triangle */
  1084. /* of A and working forwards, and compute the matrix W = L21*D */
  1085. /* for use in updating A22 (note that conjg(W) is actually stored) */
  1086. /* K is the main loop index, increasing from 1 in steps of 1 or 2 */
  1087. k = 1;
  1088. L70:
  1089. /* Exit from loop */
  1090. if (k >= *nb && *nb < *n || k > *n) {
  1091. goto L90;
  1092. }
  1093. kstep = 1;
  1094. /* Copy column K of A to column K of W and update it */
  1095. i__1 = k + k * w_dim1;
  1096. i__2 = k + k * a_dim1;
  1097. d__1 = a[i__2].r;
  1098. w[i__1].r = d__1, w[i__1].i = 0.;
  1099. if (k < *n) {
  1100. i__1 = *n - k;
  1101. zcopy_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &w[k + 1 + k *
  1102. w_dim1], &c__1);
  1103. }
  1104. i__1 = *n - k + 1;
  1105. i__2 = k - 1;
  1106. z__1.r = -1., z__1.i = 0.;
  1107. zgemv_("No transpose", &i__1, &i__2, &z__1, &a[k + a_dim1], lda, &w[k
  1108. + w_dim1], ldw, &c_b1, &w[k + k * w_dim1], &c__1);
  1109. i__1 = k + k * w_dim1;
  1110. i__2 = k + k * w_dim1;
  1111. d__1 = w[i__2].r;
  1112. w[i__1].r = d__1, w[i__1].i = 0.;
  1113. /* Determine rows and columns to be interchanged and whether */
  1114. /* a 1-by-1 or 2-by-2 pivot block will be used */
  1115. i__1 = k + k * w_dim1;
  1116. absakk = (d__1 = w[i__1].r, abs(d__1));
  1117. /* IMAX is the row-index of the largest off-diagonal element in */
  1118. /* column K, and COLMAX is its absolute value. */
  1119. /* Determine both COLMAX and IMAX. */
  1120. if (k < *n) {
  1121. i__1 = *n - k;
  1122. imax = k + izamax_(&i__1, &w[k + 1 + k * w_dim1], &c__1);
  1123. i__1 = imax + k * w_dim1;
  1124. colmax = (d__1 = w[i__1].r, abs(d__1)) + (d__2 = d_imag(&w[imax +
  1125. k * w_dim1]), abs(d__2));
  1126. } else {
  1127. colmax = 0.;
  1128. }
  1129. if (f2cmax(absakk,colmax) == 0.) {
  1130. /* Column K is zero or underflow: set INFO and continue */
  1131. if (*info == 0) {
  1132. *info = k;
  1133. }
  1134. kp = k;
  1135. i__1 = k + k * a_dim1;
  1136. i__2 = k + k * a_dim1;
  1137. d__1 = a[i__2].r;
  1138. a[i__1].r = d__1, a[i__1].i = 0.;
  1139. } else {
  1140. /* ============================================================ */
  1141. /* BEGIN pivot search */
  1142. /* Case(1) */
  1143. if (absakk >= alpha * colmax) {
  1144. /* no interchange, use 1-by-1 pivot block */
  1145. kp = k;
  1146. } else {
  1147. /* BEGIN pivot search along IMAX row */
  1148. /* Copy column IMAX to column K+1 of W and update it */
  1149. i__1 = imax - k;
  1150. zcopy_(&i__1, &a[imax + k * a_dim1], lda, &w[k + (k + 1) *
  1151. w_dim1], &c__1);
  1152. i__1 = imax - k;
  1153. zlacgv_(&i__1, &w[k + (k + 1) * w_dim1], &c__1);
  1154. i__1 = imax + (k + 1) * w_dim1;
  1155. i__2 = imax + imax * a_dim1;
  1156. d__1 = a[i__2].r;
  1157. w[i__1].r = d__1, w[i__1].i = 0.;
  1158. if (imax < *n) {
  1159. i__1 = *n - imax;
  1160. zcopy_(&i__1, &a[imax + 1 + imax * a_dim1], &c__1, &w[
  1161. imax + 1 + (k + 1) * w_dim1], &c__1);
  1162. }
  1163. i__1 = *n - k + 1;
  1164. i__2 = k - 1;
  1165. z__1.r = -1., z__1.i = 0.;
  1166. zgemv_("No transpose", &i__1, &i__2, &z__1, &a[k + a_dim1],
  1167. lda, &w[imax + w_dim1], ldw, &c_b1, &w[k + (k + 1) *
  1168. w_dim1], &c__1);
  1169. i__1 = imax + (k + 1) * w_dim1;
  1170. i__2 = imax + (k + 1) * w_dim1;
  1171. d__1 = w[i__2].r;
  1172. w[i__1].r = d__1, w[i__1].i = 0.;
  1173. /* JMAX is the column-index of the largest off-diagonal */
  1174. /* element in row IMAX, and ROWMAX is its absolute value. */
  1175. /* Determine only ROWMAX. */
  1176. i__1 = imax - k;
  1177. jmax = k - 1 + izamax_(&i__1, &w[k + (k + 1) * w_dim1], &c__1)
  1178. ;
  1179. i__1 = jmax + (k + 1) * w_dim1;
  1180. rowmax = (d__1 = w[i__1].r, abs(d__1)) + (d__2 = d_imag(&w[
  1181. jmax + (k + 1) * w_dim1]), abs(d__2));
  1182. if (imax < *n) {
  1183. i__1 = *n - imax;
  1184. jmax = imax + izamax_(&i__1, &w[imax + 1 + (k + 1) *
  1185. w_dim1], &c__1);
  1186. /* Computing MAX */
  1187. i__1 = jmax + (k + 1) * w_dim1;
  1188. d__3 = rowmax, d__4 = (d__1 = w[i__1].r, abs(d__1)) + (
  1189. d__2 = d_imag(&w[jmax + (k + 1) * w_dim1]), abs(
  1190. d__2));
  1191. rowmax = f2cmax(d__3,d__4);
  1192. }
  1193. /* Case(2) */
  1194. if (absakk >= alpha * colmax * (colmax / rowmax)) {
  1195. /* no interchange, use 1-by-1 pivot block */
  1196. kp = k;
  1197. /* Case(3) */
  1198. } else /* if(complicated condition) */ {
  1199. i__1 = imax + (k + 1) * w_dim1;
  1200. if ((d__1 = w[i__1].r, abs(d__1)) >= alpha * rowmax) {
  1201. /* interchange rows and columns K and IMAX, use 1-by-1 */
  1202. /* pivot block */
  1203. kp = imax;
  1204. /* copy column K+1 of W to column K of W */
  1205. i__1 = *n - k + 1;
  1206. zcopy_(&i__1, &w[k + (k + 1) * w_dim1], &c__1, &w[k +
  1207. k * w_dim1], &c__1);
  1208. /* Case(4) */
  1209. } else {
  1210. /* interchange rows and columns K+1 and IMAX, use 2-by-2 */
  1211. /* pivot block */
  1212. kp = imax;
  1213. kstep = 2;
  1214. }
  1215. }
  1216. /* END pivot search along IMAX row */
  1217. }
  1218. /* END pivot search */
  1219. /* ============================================================ */
  1220. /* KK is the column of A where pivoting step stopped */
  1221. kk = k + kstep - 1;
  1222. /* Interchange rows and columns KP and KK. */
  1223. /* Updated column KP is already stored in column KK of W. */
  1224. if (kp != kk) {
  1225. /* Copy non-updated column KK to column KP of submatrix A */
  1226. /* at step K. No need to copy element into column K */
  1227. /* (or K and K+1 for 2-by-2 pivot) of A, since these columns */
  1228. /* will be later overwritten. */
  1229. i__1 = kp + kp * a_dim1;
  1230. i__2 = kk + kk * a_dim1;
  1231. d__1 = a[i__2].r;
  1232. a[i__1].r = d__1, a[i__1].i = 0.;
  1233. i__1 = kp - kk - 1;
  1234. zcopy_(&i__1, &a[kk + 1 + kk * a_dim1], &c__1, &a[kp + (kk +
  1235. 1) * a_dim1], lda);
  1236. i__1 = kp - kk - 1;
  1237. zlacgv_(&i__1, &a[kp + (kk + 1) * a_dim1], lda);
  1238. if (kp < *n) {
  1239. i__1 = *n - kp;
  1240. zcopy_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1
  1241. + kp * a_dim1], &c__1);
  1242. }
  1243. /* Interchange rows KK and KP in first K-1 columns of A */
  1244. /* (columns K (or K and K+1 for 2-by-2 pivot) of A will be */
  1245. /* later overwritten). Interchange rows KK and KP */
  1246. /* in first KK columns of W. */
  1247. if (k > 1) {
  1248. i__1 = k - 1;
  1249. zswap_(&i__1, &a[kk + a_dim1], lda, &a[kp + a_dim1], lda);
  1250. }
  1251. zswap_(&kk, &w[kk + w_dim1], ldw, &w[kp + w_dim1], ldw);
  1252. }
  1253. if (kstep == 1) {
  1254. /* 1-by-1 pivot block D(k): column k of W now holds */
  1255. /* W(k) = L(k)*D(k), */
  1256. /* where L(k) is the k-th column of L */
  1257. /* (1) Store subdiag. elements of column L(k) */
  1258. /* and 1-by-1 block D(k) in column k of A. */
  1259. /* (NOTE: Diagonal element L(k,k) is a UNIT element */
  1260. /* and not stored) */
  1261. /* A(k,k) := D(k,k) = W(k,k) */
  1262. /* A(k+1:N,k) := L(k+1:N,k) = W(k+1:N,k)/D(k,k) */
  1263. /* (NOTE: No need to use for Hermitian matrix */
  1264. /* A( K, K ) = DBLE( W( K, K) ) to separately copy diagonal */
  1265. /* element D(k,k) from W (potentially saves only one load)) */
  1266. i__1 = *n - k + 1;
  1267. zcopy_(&i__1, &w[k + k * w_dim1], &c__1, &a[k + k * a_dim1], &
  1268. c__1);
  1269. if (k < *n) {
  1270. /* (NOTE: No need to check if A(k,k) is NOT ZERO, */
  1271. /* since that was ensured earlier in pivot search: */
  1272. /* case A(k,k) = 0 falls into 2x2 pivot case(4)) */
  1273. i__1 = k + k * a_dim1;
  1274. r1 = 1. / a[i__1].r;
  1275. i__1 = *n - k;
  1276. zdscal_(&i__1, &r1, &a[k + 1 + k * a_dim1], &c__1);
  1277. /* (2) Conjugate column W(k) */
  1278. i__1 = *n - k;
  1279. zlacgv_(&i__1, &w[k + 1 + k * w_dim1], &c__1);
  1280. }
  1281. } else {
  1282. /* 2-by-2 pivot block D(k): columns k and k+1 of W now hold */
  1283. /* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
  1284. /* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
  1285. /* of L */
  1286. /* (1) Store L(k+2:N,k) and L(k+2:N,k+1) and 2-by-2 */
  1287. /* block D(k:k+1,k:k+1) in columns k and k+1 of A. */
  1288. /* (NOTE: 2-by-2 diagonal block L(k:k+1,k:k+1) is a UNIT */
  1289. /* block and not stored) */
  1290. /* A(k:k+1,k:k+1) := D(k:k+1,k:k+1) = W(k:k+1,k:k+1) */
  1291. /* A(k+2:N,k:k+1) := L(k+2:N,k:k+1) = */
  1292. /* = W(k+2:N,k:k+1) * ( D(k:k+1,k:k+1)**(-1) ) */
  1293. if (k < *n - 1) {
  1294. /* Factor out the columns of the inverse of 2-by-2 pivot */
  1295. /* block D, so that each column contains 1, to reduce the */
  1296. /* number of FLOPS when we multiply panel */
  1297. /* ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1). */
  1298. /* D**(-1) = ( d11 cj(d21) )**(-1) = */
  1299. /* ( d21 d22 ) */
  1300. /* = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) = */
  1301. /* ( (-d21) ( d11 ) ) */
  1302. /* = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) * */
  1303. /* * ( d21*( d22/d21 ) conj(d21)*( - 1 ) ) = */
  1304. /* ( ( -1 ) ( d11/conj(d21) ) ) */
  1305. /* = 1/(|d21|**2) * 1/(D22*D11-1) * */
  1306. /* * ( d21*( D11 ) conj(d21)*( -1 ) ) = */
  1307. /* ( ( -1 ) ( D22 ) ) */
  1308. /* = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*( -1 ) ) = */
  1309. /* ( ( -1 ) ( D22 ) ) */
  1310. /* = ( (T/conj(d21))*( D11 ) (T/d21)*( -1 ) ) = */
  1311. /* ( ( -1 ) ( D22 ) ) */
  1312. /* = ( conj(D21)*( D11 ) D21*( -1 ) ) */
  1313. /* ( ( -1 ) ( D22 ) ), */
  1314. /* where D11 = d22/d21, */
  1315. /* D22 = d11/conj(d21), */
  1316. /* D21 = T/d21, */
  1317. /* T = 1/(D22*D11-1). */
  1318. /* (NOTE: No need to check for division by ZERO, */
  1319. /* since that was ensured earlier in pivot search: */
  1320. /* (a) d21 != 0, since in 2x2 pivot case(4) */
  1321. /* |d21| should be larger than |d11| and |d22|; */
  1322. /* (b) (D22*D11 - 1) != 0, since from (a), */
  1323. /* both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.) */
  1324. i__1 = k + 1 + k * w_dim1;
  1325. d21.r = w[i__1].r, d21.i = w[i__1].i;
  1326. z_div(&z__1, &w[k + 1 + (k + 1) * w_dim1], &d21);
  1327. d11.r = z__1.r, d11.i = z__1.i;
  1328. d_cnjg(&z__2, &d21);
  1329. z_div(&z__1, &w[k + k * w_dim1], &z__2);
  1330. d22.r = z__1.r, d22.i = z__1.i;
  1331. z__1.r = d11.r * d22.r - d11.i * d22.i, z__1.i = d11.r *
  1332. d22.i + d11.i * d22.r;
  1333. t = 1. / (z__1.r - 1.);
  1334. z__2.r = t, z__2.i = 0.;
  1335. z_div(&z__1, &z__2, &d21);
  1336. d21.r = z__1.r, d21.i = z__1.i;
  1337. /* Update elements in columns A(k) and A(k+1) as */
  1338. /* dot products of rows of ( W(k) W(k+1) ) and columns */
  1339. /* of D**(-1) */
  1340. i__1 = *n;
  1341. for (j = k + 2; j <= i__1; ++j) {
  1342. i__2 = j + k * a_dim1;
  1343. d_cnjg(&z__2, &d21);
  1344. i__3 = j + k * w_dim1;
  1345. z__4.r = d11.r * w[i__3].r - d11.i * w[i__3].i,
  1346. z__4.i = d11.r * w[i__3].i + d11.i * w[i__3]
  1347. .r;
  1348. i__4 = j + (k + 1) * w_dim1;
  1349. z__3.r = z__4.r - w[i__4].r, z__3.i = z__4.i - w[i__4]
  1350. .i;
  1351. z__1.r = z__2.r * z__3.r - z__2.i * z__3.i, z__1.i =
  1352. z__2.r * z__3.i + z__2.i * z__3.r;
  1353. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1354. i__2 = j + (k + 1) * a_dim1;
  1355. i__3 = j + (k + 1) * w_dim1;
  1356. z__3.r = d22.r * w[i__3].r - d22.i * w[i__3].i,
  1357. z__3.i = d22.r * w[i__3].i + d22.i * w[i__3]
  1358. .r;
  1359. i__4 = j + k * w_dim1;
  1360. z__2.r = z__3.r - w[i__4].r, z__2.i = z__3.i - w[i__4]
  1361. .i;
  1362. z__1.r = d21.r * z__2.r - d21.i * z__2.i, z__1.i =
  1363. d21.r * z__2.i + d21.i * z__2.r;
  1364. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1365. /* L80: */
  1366. }
  1367. }
  1368. /* Copy D(k) to A */
  1369. i__1 = k + k * a_dim1;
  1370. i__2 = k + k * w_dim1;
  1371. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1372. i__1 = k + 1 + k * a_dim1;
  1373. i__2 = k + 1 + k * w_dim1;
  1374. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1375. i__1 = k + 1 + (k + 1) * a_dim1;
  1376. i__2 = k + 1 + (k + 1) * w_dim1;
  1377. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1378. /* (2) Conjugate columns W(k) and W(k+1) */
  1379. i__1 = *n - k;
  1380. zlacgv_(&i__1, &w[k + 1 + k * w_dim1], &c__1);
  1381. i__1 = *n - k - 1;
  1382. zlacgv_(&i__1, &w[k + 2 + (k + 1) * w_dim1], &c__1);
  1383. }
  1384. }
  1385. /* Store details of the interchanges in IPIV */
  1386. if (kstep == 1) {
  1387. ipiv[k] = kp;
  1388. } else {
  1389. ipiv[k] = -kp;
  1390. ipiv[k + 1] = -kp;
  1391. }
  1392. /* Increase K and return to the start of the main loop */
  1393. k += kstep;
  1394. goto L70;
  1395. L90:
  1396. /* Update the lower triangle of A22 (= A(k:n,k:n)) as */
  1397. /* A22 := A22 - L21*D*L21**H = A22 - L21*W**H */
  1398. /* computing blocks of NB columns at a time (note that conjg(W) is */
  1399. /* actually stored) */
  1400. i__1 = *n;
  1401. i__2 = *nb;
  1402. for (j = k; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  1403. /* Computing MIN */
  1404. i__3 = *nb, i__4 = *n - j + 1;
  1405. jb = f2cmin(i__3,i__4);
  1406. /* Update the lower triangle of the diagonal block */
  1407. i__3 = j + jb - 1;
  1408. for (jj = j; jj <= i__3; ++jj) {
  1409. i__4 = jj + jj * a_dim1;
  1410. i__5 = jj + jj * a_dim1;
  1411. d__1 = a[i__5].r;
  1412. a[i__4].r = d__1, a[i__4].i = 0.;
  1413. i__4 = j + jb - jj;
  1414. i__5 = k - 1;
  1415. z__1.r = -1., z__1.i = 0.;
  1416. zgemv_("No transpose", &i__4, &i__5, &z__1, &a[jj + a_dim1],
  1417. lda, &w[jj + w_dim1], ldw, &c_b1, &a[jj + jj * a_dim1]
  1418. , &c__1);
  1419. i__4 = jj + jj * a_dim1;
  1420. i__5 = jj + jj * a_dim1;
  1421. d__1 = a[i__5].r;
  1422. a[i__4].r = d__1, a[i__4].i = 0.;
  1423. /* L100: */
  1424. }
  1425. /* Update the rectangular subdiagonal block */
  1426. if (j + jb <= *n) {
  1427. i__3 = *n - j - jb + 1;
  1428. i__4 = k - 1;
  1429. z__1.r = -1., z__1.i = 0.;
  1430. zgemm_("No transpose", "Transpose", &i__3, &jb, &i__4, &z__1,
  1431. &a[j + jb + a_dim1], lda, &w[j + w_dim1], ldw, &c_b1,
  1432. &a[j + jb + j * a_dim1], lda);
  1433. }
  1434. /* L110: */
  1435. }
  1436. /* Put L21 in standard form by partially undoing the interchanges */
  1437. /* of rows in columns 1:k-1 looping backwards from k-1 to 1 */
  1438. j = k - 1;
  1439. L120:
  1440. /* Undo the interchanges (if any) of rows JJ and JP at each */
  1441. /* step J */
  1442. /* (Here, J is a diagonal index) */
  1443. jj = j;
  1444. jp = ipiv[j];
  1445. if (jp < 0) {
  1446. jp = -jp;
  1447. /* (Here, J is a diagonal index) */
  1448. --j;
  1449. }
  1450. /* (NOTE: Here, J is used to determine row length. Length J */
  1451. /* of the rows to swap back doesn't include diagonal element) */
  1452. --j;
  1453. if (jp != jj && j >= 1) {
  1454. zswap_(&j, &a[jp + a_dim1], lda, &a[jj + a_dim1], lda);
  1455. }
  1456. if (j > 1) {
  1457. goto L120;
  1458. }
  1459. /* Set KB to the number of columns factorized */
  1460. *kb = k - 1;
  1461. }
  1462. return;
  1463. /* End of ZLAHEF */
  1464. } /* zlahef_ */