You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhetf2.c 40 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. /* > \brief \b ZHETF2 computes the factorization of a complex Hermitian matrix, using the diagonal pivoting me
  488. thod (unblocked algorithm, calling Level 2 BLAS). */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download ZHETF2 + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetf2.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetf2.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetf2.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE ZHETF2( UPLO, N, A, LDA, IPIV, INFO ) */
  507. /* CHARACTER UPLO */
  508. /* INTEGER INFO, LDA, N */
  509. /* INTEGER IPIV( * ) */
  510. /* COMPLEX*16 A( LDA, * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > */
  516. /* > ZHETF2 computes the factorization of a complex Hermitian matrix A */
  517. /* > using the Bunch-Kaufman diagonal pivoting method: */
  518. /* > */
  519. /* > A = U*D*U**H or A = L*D*L**H */
  520. /* > */
  521. /* > where U (or L) is a product of permutation and unit upper (lower) */
  522. /* > triangular matrices, U**H is the conjugate transpose of U, and D is */
  523. /* > Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. */
  524. /* > */
  525. /* > This is the unblocked version of the algorithm, calling Level 2 BLAS. */
  526. /* > \endverbatim */
  527. /* Arguments: */
  528. /* ========== */
  529. /* > \param[in] UPLO */
  530. /* > \verbatim */
  531. /* > UPLO is CHARACTER*1 */
  532. /* > Specifies whether the upper or lower triangular part of the */
  533. /* > Hermitian matrix A is stored: */
  534. /* > = 'U': Upper triangular */
  535. /* > = 'L': Lower triangular */
  536. /* > \endverbatim */
  537. /* > */
  538. /* > \param[in] N */
  539. /* > \verbatim */
  540. /* > N is INTEGER */
  541. /* > The order of the matrix A. N >= 0. */
  542. /* > \endverbatim */
  543. /* > */
  544. /* > \param[in,out] A */
  545. /* > \verbatim */
  546. /* > A is COMPLEX*16 array, dimension (LDA,N) */
  547. /* > On entry, the Hermitian matrix A. If UPLO = 'U', the leading */
  548. /* > n-by-n upper triangular part of A contains the upper */
  549. /* > triangular part of the matrix A, and the strictly lower */
  550. /* > triangular part of A is not referenced. If UPLO = 'L', the */
  551. /* > leading n-by-n lower triangular part of A contains the lower */
  552. /* > triangular part of the matrix A, and the strictly upper */
  553. /* > triangular part of A is not referenced. */
  554. /* > */
  555. /* > On exit, the block diagonal matrix D and the multipliers used */
  556. /* > to obtain the factor U or L (see below for further details). */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in] LDA */
  560. /* > \verbatim */
  561. /* > LDA is INTEGER */
  562. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[out] IPIV */
  566. /* > \verbatim */
  567. /* > IPIV is INTEGER array, dimension (N) */
  568. /* > Details of the interchanges and the block structure of D. */
  569. /* > */
  570. /* > If UPLO = 'U': */
  571. /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
  572. /* > interchanged and D(k,k) is a 1-by-1 diagonal block. */
  573. /* > */
  574. /* > If IPIV(k) = IPIV(k-1) < 0, then rows and columns */
  575. /* > k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
  576. /* > is a 2-by-2 diagonal block. */
  577. /* > */
  578. /* > If UPLO = 'L': */
  579. /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
  580. /* > interchanged and D(k,k) is a 1-by-1 diagonal block. */
  581. /* > */
  582. /* > If IPIV(k) = IPIV(k+1) < 0, then rows and columns */
  583. /* > k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1) */
  584. /* > is a 2-by-2 diagonal block. */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[out] INFO */
  588. /* > \verbatim */
  589. /* > INFO is INTEGER */
  590. /* > = 0: successful exit */
  591. /* > < 0: if INFO = -k, the k-th argument had an illegal value */
  592. /* > > 0: if INFO = k, D(k,k) is exactly zero. The factorization */
  593. /* > has been completed, but the block diagonal matrix D is */
  594. /* > exactly singular, and division by zero will occur if it */
  595. /* > is used to solve a system of equations. */
  596. /* > \endverbatim */
  597. /* Authors: */
  598. /* ======== */
  599. /* > \author Univ. of Tennessee */
  600. /* > \author Univ. of California Berkeley */
  601. /* > \author Univ. of Colorado Denver */
  602. /* > \author NAG Ltd. */
  603. /* > \date November 2013 */
  604. /* > \ingroup complex16HEcomputational */
  605. /* > \par Further Details: */
  606. /* ===================== */
  607. /* > */
  608. /* > \verbatim */
  609. /* > */
  610. /* > If UPLO = 'U', then A = U*D*U**H, where */
  611. /* > U = P(n)*U(n)* ... *P(k)U(k)* ..., */
  612. /* > i.e., U is a product of terms P(k)*U(k), where k decreases from n to */
  613. /* > 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
  614. /* > and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
  615. /* > defined by IPIV(k), and U(k) is a unit upper triangular matrix, such */
  616. /* > that if the diagonal block D(k) is of order s (s = 1 or 2), then */
  617. /* > */
  618. /* > ( I v 0 ) k-s */
  619. /* > U(k) = ( 0 I 0 ) s */
  620. /* > ( 0 0 I ) n-k */
  621. /* > k-s s n-k */
  622. /* > */
  623. /* > If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). */
  624. /* > If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), */
  625. /* > and A(k,k), and v overwrites A(1:k-2,k-1:k). */
  626. /* > */
  627. /* > If UPLO = 'L', then A = L*D*L**H, where */
  628. /* > L = P(1)*L(1)* ... *P(k)*L(k)* ..., */
  629. /* > i.e., L is a product of terms P(k)*L(k), where k increases from 1 to */
  630. /* > n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
  631. /* > and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
  632. /* > defined by IPIV(k), and L(k) is a unit lower triangular matrix, such */
  633. /* > that if the diagonal block D(k) is of order s (s = 1 or 2), then */
  634. /* > */
  635. /* > ( I 0 0 ) k-1 */
  636. /* > L(k) = ( 0 I 0 ) s */
  637. /* > ( 0 v I ) n-k-s+1 */
  638. /* > k-1 s n-k-s+1 */
  639. /* > */
  640. /* > If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). */
  641. /* > If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), */
  642. /* > and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). */
  643. /* > \endverbatim */
  644. /* > \par Contributors: */
  645. /* ================== */
  646. /* > */
  647. /* > \verbatim */
  648. /* > 09-29-06 - patch from */
  649. /* > Bobby Cheng, MathWorks */
  650. /* > */
  651. /* > Replace l.210 and l.393 */
  652. /* > IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN */
  653. /* > by */
  654. /* > IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN */
  655. /* > */
  656. /* > 01-01-96 - Based on modifications by */
  657. /* > J. Lewis, Boeing Computer Services Company */
  658. /* > A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */
  659. /* > \endverbatim */
  660. /* ===================================================================== */
  661. /* Subroutine */ int zhetf2_(char *uplo, integer *n, doublecomplex *a,
  662. integer *lda, integer *ipiv, integer *info)
  663. {
  664. /* System generated locals */
  665. integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6;
  666. doublereal d__1, d__2, d__3, d__4;
  667. doublecomplex z__1, z__2, z__3, z__4, z__5, z__6;
  668. /* Local variables */
  669. integer imax, jmax;
  670. extern /* Subroutine */ int zher_(char *, integer *, doublereal *,
  671. doublecomplex *, integer *, doublecomplex *, integer *);
  672. doublereal d__;
  673. integer i__, j, k;
  674. doublecomplex t;
  675. doublereal alpha;
  676. extern logical lsame_(char *, char *);
  677. integer kstep;
  678. logical upper;
  679. doublereal r1;
  680. extern /* Subroutine */ int zswap_(integer *, doublecomplex *, integer *,
  681. doublecomplex *, integer *);
  682. extern doublereal dlapy2_(doublereal *, doublereal *);
  683. doublereal d11;
  684. doublecomplex d12;
  685. doublereal d22;
  686. doublecomplex d21;
  687. integer kk, kp;
  688. doublereal absakk;
  689. doublecomplex wk;
  690. doublereal tt;
  691. extern logical disnan_(doublereal *);
  692. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), zdscal_(
  693. integer *, doublereal *, doublecomplex *, integer *);
  694. doublereal colmax;
  695. extern integer izamax_(integer *, doublecomplex *, integer *);
  696. doublereal rowmax;
  697. doublecomplex wkm1, wkp1;
  698. /* -- LAPACK computational routine (version 3.5.0) -- */
  699. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  700. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  701. /* November 2013 */
  702. /* ===================================================================== */
  703. /* Test the input parameters. */
  704. /* Parameter adjustments */
  705. a_dim1 = *lda;
  706. a_offset = 1 + a_dim1 * 1;
  707. a -= a_offset;
  708. --ipiv;
  709. /* Function Body */
  710. *info = 0;
  711. upper = lsame_(uplo, "U");
  712. if (! upper && ! lsame_(uplo, "L")) {
  713. *info = -1;
  714. } else if (*n < 0) {
  715. *info = -2;
  716. } else if (*lda < f2cmax(1,*n)) {
  717. *info = -4;
  718. }
  719. if (*info != 0) {
  720. i__1 = -(*info);
  721. xerbla_("ZHETF2", &i__1, (ftnlen)6);
  722. return 0;
  723. }
  724. /* Initialize ALPHA for use in choosing pivot block size. */
  725. alpha = (sqrt(17.) + 1.) / 8.;
  726. if (upper) {
  727. /* Factorize A as U*D*U**H using the upper triangle of A */
  728. /* K is the main loop index, decreasing from N to 1 in steps of */
  729. /* 1 or 2 */
  730. k = *n;
  731. L10:
  732. /* If K < 1, exit from loop */
  733. if (k < 1) {
  734. goto L90;
  735. }
  736. kstep = 1;
  737. /* Determine rows and columns to be interchanged and whether */
  738. /* a 1-by-1 or 2-by-2 pivot block will be used */
  739. i__1 = k + k * a_dim1;
  740. absakk = (d__1 = a[i__1].r, abs(d__1));
  741. /* IMAX is the row-index of the largest off-diagonal element in */
  742. /* column K, and COLMAX is its absolute value. */
  743. /* Determine both COLMAX and IMAX. */
  744. if (k > 1) {
  745. i__1 = k - 1;
  746. imax = izamax_(&i__1, &a[k * a_dim1 + 1], &c__1);
  747. i__1 = imax + k * a_dim1;
  748. colmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[imax +
  749. k * a_dim1]), abs(d__2));
  750. } else {
  751. colmax = 0.;
  752. }
  753. if (f2cmax(absakk,colmax) == 0. || disnan_(&absakk)) {
  754. /* Column K is zero or underflow, or contains a NaN: */
  755. /* set INFO and continue */
  756. if (*info == 0) {
  757. *info = k;
  758. }
  759. kp = k;
  760. i__1 = k + k * a_dim1;
  761. i__2 = k + k * a_dim1;
  762. d__1 = a[i__2].r;
  763. a[i__1].r = d__1, a[i__1].i = 0.;
  764. } else {
  765. /* ============================================================ */
  766. /* Test for interchange */
  767. if (absakk >= alpha * colmax) {
  768. /* no interchange, use 1-by-1 pivot block */
  769. kp = k;
  770. } else {
  771. /* JMAX is the column-index of the largest off-diagonal */
  772. /* element in row IMAX, and ROWMAX is its absolute value. */
  773. /* Determine only ROWMAX. */
  774. i__1 = k - imax;
  775. jmax = imax + izamax_(&i__1, &a[imax + (imax + 1) * a_dim1],
  776. lda);
  777. i__1 = imax + jmax * a_dim1;
  778. rowmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[
  779. imax + jmax * a_dim1]), abs(d__2));
  780. if (imax > 1) {
  781. i__1 = imax - 1;
  782. jmax = izamax_(&i__1, &a[imax * a_dim1 + 1], &c__1);
  783. /* Computing MAX */
  784. i__1 = jmax + imax * a_dim1;
  785. d__3 = rowmax, d__4 = (d__1 = a[i__1].r, abs(d__1)) + (
  786. d__2 = d_imag(&a[jmax + imax * a_dim1]), abs(d__2)
  787. );
  788. rowmax = f2cmax(d__3,d__4);
  789. }
  790. if (absakk >= alpha * colmax * (colmax / rowmax)) {
  791. /* no interchange, use 1-by-1 pivot block */
  792. kp = k;
  793. } else /* if(complicated condition) */ {
  794. i__1 = imax + imax * a_dim1;
  795. if ((d__1 = a[i__1].r, abs(d__1)) >= alpha * rowmax) {
  796. /* interchange rows and columns K and IMAX, use 1-by-1 */
  797. /* pivot block */
  798. kp = imax;
  799. } else {
  800. /* interchange rows and columns K-1 and IMAX, use 2-by-2 */
  801. /* pivot block */
  802. kp = imax;
  803. kstep = 2;
  804. }
  805. }
  806. }
  807. /* ============================================================ */
  808. kk = k - kstep + 1;
  809. if (kp != kk) {
  810. /* Interchange rows and columns KK and KP in the leading */
  811. /* submatrix A(1:k,1:k) */
  812. i__1 = kp - 1;
  813. zswap_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1 + 1],
  814. &c__1);
  815. i__1 = kk - 1;
  816. for (j = kp + 1; j <= i__1; ++j) {
  817. d_cnjg(&z__1, &a[j + kk * a_dim1]);
  818. t.r = z__1.r, t.i = z__1.i;
  819. i__2 = j + kk * a_dim1;
  820. d_cnjg(&z__1, &a[kp + j * a_dim1]);
  821. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  822. i__2 = kp + j * a_dim1;
  823. a[i__2].r = t.r, a[i__2].i = t.i;
  824. /* L20: */
  825. }
  826. i__1 = kp + kk * a_dim1;
  827. d_cnjg(&z__1, &a[kp + kk * a_dim1]);
  828. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  829. i__1 = kk + kk * a_dim1;
  830. r1 = a[i__1].r;
  831. i__1 = kk + kk * a_dim1;
  832. i__2 = kp + kp * a_dim1;
  833. d__1 = a[i__2].r;
  834. a[i__1].r = d__1, a[i__1].i = 0.;
  835. i__1 = kp + kp * a_dim1;
  836. a[i__1].r = r1, a[i__1].i = 0.;
  837. if (kstep == 2) {
  838. i__1 = k + k * a_dim1;
  839. i__2 = k + k * a_dim1;
  840. d__1 = a[i__2].r;
  841. a[i__1].r = d__1, a[i__1].i = 0.;
  842. i__1 = k - 1 + k * a_dim1;
  843. t.r = a[i__1].r, t.i = a[i__1].i;
  844. i__1 = k - 1 + k * a_dim1;
  845. i__2 = kp + k * a_dim1;
  846. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  847. i__1 = kp + k * a_dim1;
  848. a[i__1].r = t.r, a[i__1].i = t.i;
  849. }
  850. } else {
  851. i__1 = k + k * a_dim1;
  852. i__2 = k + k * a_dim1;
  853. d__1 = a[i__2].r;
  854. a[i__1].r = d__1, a[i__1].i = 0.;
  855. if (kstep == 2) {
  856. i__1 = k - 1 + (k - 1) * a_dim1;
  857. i__2 = k - 1 + (k - 1) * a_dim1;
  858. d__1 = a[i__2].r;
  859. a[i__1].r = d__1, a[i__1].i = 0.;
  860. }
  861. }
  862. /* Update the leading submatrix */
  863. if (kstep == 1) {
  864. /* 1-by-1 pivot block D(k): column k now holds */
  865. /* W(k) = U(k)*D(k) */
  866. /* where U(k) is the k-th column of U */
  867. /* Perform a rank-1 update of A(1:k-1,1:k-1) as */
  868. /* A := A - U(k)*D(k)*U(k)**H = A - W(k)*1/D(k)*W(k)**H */
  869. i__1 = k + k * a_dim1;
  870. r1 = 1. / a[i__1].r;
  871. i__1 = k - 1;
  872. d__1 = -r1;
  873. zher_(uplo, &i__1, &d__1, &a[k * a_dim1 + 1], &c__1, &a[
  874. a_offset], lda);
  875. /* Store U(k) in column k */
  876. i__1 = k - 1;
  877. zdscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1);
  878. } else {
  879. /* 2-by-2 pivot block D(k): columns k and k-1 now hold */
  880. /* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
  881. /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
  882. /* of U */
  883. /* Perform a rank-2 update of A(1:k-2,1:k-2) as */
  884. /* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**H */
  885. /* = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**H */
  886. if (k > 2) {
  887. i__1 = k - 1 + k * a_dim1;
  888. d__1 = a[i__1].r;
  889. d__2 = d_imag(&a[k - 1 + k * a_dim1]);
  890. d__ = dlapy2_(&d__1, &d__2);
  891. i__1 = k - 1 + (k - 1) * a_dim1;
  892. d22 = a[i__1].r / d__;
  893. i__1 = k + k * a_dim1;
  894. d11 = a[i__1].r / d__;
  895. tt = 1. / (d11 * d22 - 1.);
  896. i__1 = k - 1 + k * a_dim1;
  897. z__1.r = a[i__1].r / d__, z__1.i = a[i__1].i / d__;
  898. d12.r = z__1.r, d12.i = z__1.i;
  899. d__ = tt / d__;
  900. for (j = k - 2; j >= 1; --j) {
  901. i__1 = j + (k - 1) * a_dim1;
  902. z__3.r = d11 * a[i__1].r, z__3.i = d11 * a[i__1].i;
  903. d_cnjg(&z__5, &d12);
  904. i__2 = j + k * a_dim1;
  905. z__4.r = z__5.r * a[i__2].r - z__5.i * a[i__2].i,
  906. z__4.i = z__5.r * a[i__2].i + z__5.i * a[i__2]
  907. .r;
  908. z__2.r = z__3.r - z__4.r, z__2.i = z__3.i - z__4.i;
  909. z__1.r = d__ * z__2.r, z__1.i = d__ * z__2.i;
  910. wkm1.r = z__1.r, wkm1.i = z__1.i;
  911. i__1 = j + k * a_dim1;
  912. z__3.r = d22 * a[i__1].r, z__3.i = d22 * a[i__1].i;
  913. i__2 = j + (k - 1) * a_dim1;
  914. z__4.r = d12.r * a[i__2].r - d12.i * a[i__2].i,
  915. z__4.i = d12.r * a[i__2].i + d12.i * a[i__2]
  916. .r;
  917. z__2.r = z__3.r - z__4.r, z__2.i = z__3.i - z__4.i;
  918. z__1.r = d__ * z__2.r, z__1.i = d__ * z__2.i;
  919. wk.r = z__1.r, wk.i = z__1.i;
  920. for (i__ = j; i__ >= 1; --i__) {
  921. i__1 = i__ + j * a_dim1;
  922. i__2 = i__ + j * a_dim1;
  923. i__3 = i__ + k * a_dim1;
  924. d_cnjg(&z__4, &wk);
  925. z__3.r = a[i__3].r * z__4.r - a[i__3].i * z__4.i,
  926. z__3.i = a[i__3].r * z__4.i + a[i__3].i *
  927. z__4.r;
  928. z__2.r = a[i__2].r - z__3.r, z__2.i = a[i__2].i -
  929. z__3.i;
  930. i__4 = i__ + (k - 1) * a_dim1;
  931. d_cnjg(&z__6, &wkm1);
  932. z__5.r = a[i__4].r * z__6.r - a[i__4].i * z__6.i,
  933. z__5.i = a[i__4].r * z__6.i + a[i__4].i *
  934. z__6.r;
  935. z__1.r = z__2.r - z__5.r, z__1.i = z__2.i -
  936. z__5.i;
  937. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  938. /* L30: */
  939. }
  940. i__1 = j + k * a_dim1;
  941. a[i__1].r = wk.r, a[i__1].i = wk.i;
  942. i__1 = j + (k - 1) * a_dim1;
  943. a[i__1].r = wkm1.r, a[i__1].i = wkm1.i;
  944. i__1 = j + j * a_dim1;
  945. i__2 = j + j * a_dim1;
  946. d__1 = a[i__2].r;
  947. z__1.r = d__1, z__1.i = 0.;
  948. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  949. /* L40: */
  950. }
  951. }
  952. }
  953. }
  954. /* Store details of the interchanges in IPIV */
  955. if (kstep == 1) {
  956. ipiv[k] = kp;
  957. } else {
  958. ipiv[k] = -kp;
  959. ipiv[k - 1] = -kp;
  960. }
  961. /* Decrease K and return to the start of the main loop */
  962. k -= kstep;
  963. goto L10;
  964. } else {
  965. /* Factorize A as L*D*L**H using the lower triangle of A */
  966. /* K is the main loop index, increasing from 1 to N in steps of */
  967. /* 1 or 2 */
  968. k = 1;
  969. L50:
  970. /* If K > N, exit from loop */
  971. if (k > *n) {
  972. goto L90;
  973. }
  974. kstep = 1;
  975. /* Determine rows and columns to be interchanged and whether */
  976. /* a 1-by-1 or 2-by-2 pivot block will be used */
  977. i__1 = k + k * a_dim1;
  978. absakk = (d__1 = a[i__1].r, abs(d__1));
  979. /* IMAX is the row-index of the largest off-diagonal element in */
  980. /* column K, and COLMAX is its absolute value. */
  981. /* Determine both COLMAX and IMAX. */
  982. if (k < *n) {
  983. i__1 = *n - k;
  984. imax = k + izamax_(&i__1, &a[k + 1 + k * a_dim1], &c__1);
  985. i__1 = imax + k * a_dim1;
  986. colmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[imax +
  987. k * a_dim1]), abs(d__2));
  988. } else {
  989. colmax = 0.;
  990. }
  991. if (f2cmax(absakk,colmax) == 0. || disnan_(&absakk)) {
  992. /* Column K is zero or underflow, or contains a NaN: */
  993. /* set INFO and continue */
  994. if (*info == 0) {
  995. *info = k;
  996. }
  997. kp = k;
  998. i__1 = k + k * a_dim1;
  999. i__2 = k + k * a_dim1;
  1000. d__1 = a[i__2].r;
  1001. a[i__1].r = d__1, a[i__1].i = 0.;
  1002. } else {
  1003. /* ============================================================ */
  1004. /* Test for interchange */
  1005. if (absakk >= alpha * colmax) {
  1006. /* no interchange, use 1-by-1 pivot block */
  1007. kp = k;
  1008. } else {
  1009. /* JMAX is the column-index of the largest off-diagonal */
  1010. /* element in row IMAX, and ROWMAX is its absolute value. */
  1011. /* Determine only ROWMAX. */
  1012. i__1 = imax - k;
  1013. jmax = k - 1 + izamax_(&i__1, &a[imax + k * a_dim1], lda);
  1014. i__1 = imax + jmax * a_dim1;
  1015. rowmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[
  1016. imax + jmax * a_dim1]), abs(d__2));
  1017. if (imax < *n) {
  1018. i__1 = *n - imax;
  1019. jmax = imax + izamax_(&i__1, &a[imax + 1 + imax * a_dim1],
  1020. &c__1);
  1021. /* Computing MAX */
  1022. i__1 = jmax + imax * a_dim1;
  1023. d__3 = rowmax, d__4 = (d__1 = a[i__1].r, abs(d__1)) + (
  1024. d__2 = d_imag(&a[jmax + imax * a_dim1]), abs(d__2)
  1025. );
  1026. rowmax = f2cmax(d__3,d__4);
  1027. }
  1028. if (absakk >= alpha * colmax * (colmax / rowmax)) {
  1029. /* no interchange, use 1-by-1 pivot block */
  1030. kp = k;
  1031. } else /* if(complicated condition) */ {
  1032. i__1 = imax + imax * a_dim1;
  1033. if ((d__1 = a[i__1].r, abs(d__1)) >= alpha * rowmax) {
  1034. /* interchange rows and columns K and IMAX, use 1-by-1 */
  1035. /* pivot block */
  1036. kp = imax;
  1037. } else {
  1038. /* interchange rows and columns K+1 and IMAX, use 2-by-2 */
  1039. /* pivot block */
  1040. kp = imax;
  1041. kstep = 2;
  1042. }
  1043. }
  1044. }
  1045. /* ============================================================ */
  1046. kk = k + kstep - 1;
  1047. if (kp != kk) {
  1048. /* Interchange rows and columns KK and KP in the trailing */
  1049. /* submatrix A(k:n,k:n) */
  1050. if (kp < *n) {
  1051. i__1 = *n - kp;
  1052. zswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1
  1053. + kp * a_dim1], &c__1);
  1054. }
  1055. i__1 = kp - 1;
  1056. for (j = kk + 1; j <= i__1; ++j) {
  1057. d_cnjg(&z__1, &a[j + kk * a_dim1]);
  1058. t.r = z__1.r, t.i = z__1.i;
  1059. i__2 = j + kk * a_dim1;
  1060. d_cnjg(&z__1, &a[kp + j * a_dim1]);
  1061. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1062. i__2 = kp + j * a_dim1;
  1063. a[i__2].r = t.r, a[i__2].i = t.i;
  1064. /* L60: */
  1065. }
  1066. i__1 = kp + kk * a_dim1;
  1067. d_cnjg(&z__1, &a[kp + kk * a_dim1]);
  1068. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  1069. i__1 = kk + kk * a_dim1;
  1070. r1 = a[i__1].r;
  1071. i__1 = kk + kk * a_dim1;
  1072. i__2 = kp + kp * a_dim1;
  1073. d__1 = a[i__2].r;
  1074. a[i__1].r = d__1, a[i__1].i = 0.;
  1075. i__1 = kp + kp * a_dim1;
  1076. a[i__1].r = r1, a[i__1].i = 0.;
  1077. if (kstep == 2) {
  1078. i__1 = k + k * a_dim1;
  1079. i__2 = k + k * a_dim1;
  1080. d__1 = a[i__2].r;
  1081. a[i__1].r = d__1, a[i__1].i = 0.;
  1082. i__1 = k + 1 + k * a_dim1;
  1083. t.r = a[i__1].r, t.i = a[i__1].i;
  1084. i__1 = k + 1 + k * a_dim1;
  1085. i__2 = kp + k * a_dim1;
  1086. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  1087. i__1 = kp + k * a_dim1;
  1088. a[i__1].r = t.r, a[i__1].i = t.i;
  1089. }
  1090. } else {
  1091. i__1 = k + k * a_dim1;
  1092. i__2 = k + k * a_dim1;
  1093. d__1 = a[i__2].r;
  1094. a[i__1].r = d__1, a[i__1].i = 0.;
  1095. if (kstep == 2) {
  1096. i__1 = k + 1 + (k + 1) * a_dim1;
  1097. i__2 = k + 1 + (k + 1) * a_dim1;
  1098. d__1 = a[i__2].r;
  1099. a[i__1].r = d__1, a[i__1].i = 0.;
  1100. }
  1101. }
  1102. /* Update the trailing submatrix */
  1103. if (kstep == 1) {
  1104. /* 1-by-1 pivot block D(k): column k now holds */
  1105. /* W(k) = L(k)*D(k) */
  1106. /* where L(k) is the k-th column of L */
  1107. if (k < *n) {
  1108. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  1109. /* A := A - L(k)*D(k)*L(k)**H = A - W(k)*(1/D(k))*W(k)**H */
  1110. i__1 = k + k * a_dim1;
  1111. r1 = 1. / a[i__1].r;
  1112. i__1 = *n - k;
  1113. d__1 = -r1;
  1114. zher_(uplo, &i__1, &d__1, &a[k + 1 + k * a_dim1], &c__1, &
  1115. a[k + 1 + (k + 1) * a_dim1], lda);
  1116. /* Store L(k) in column K */
  1117. i__1 = *n - k;
  1118. zdscal_(&i__1, &r1, &a[k + 1 + k * a_dim1], &c__1);
  1119. }
  1120. } else {
  1121. /* 2-by-2 pivot block D(k) */
  1122. if (k < *n - 1) {
  1123. /* Perform a rank-2 update of A(k+2:n,k+2:n) as */
  1124. /* A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**H */
  1125. /* = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**H */
  1126. /* where L(k) and L(k+1) are the k-th and (k+1)-th */
  1127. /* columns of L */
  1128. i__1 = k + 1 + k * a_dim1;
  1129. d__1 = a[i__1].r;
  1130. d__2 = d_imag(&a[k + 1 + k * a_dim1]);
  1131. d__ = dlapy2_(&d__1, &d__2);
  1132. i__1 = k + 1 + (k + 1) * a_dim1;
  1133. d11 = a[i__1].r / d__;
  1134. i__1 = k + k * a_dim1;
  1135. d22 = a[i__1].r / d__;
  1136. tt = 1. / (d11 * d22 - 1.);
  1137. i__1 = k + 1 + k * a_dim1;
  1138. z__1.r = a[i__1].r / d__, z__1.i = a[i__1].i / d__;
  1139. d21.r = z__1.r, d21.i = z__1.i;
  1140. d__ = tt / d__;
  1141. i__1 = *n;
  1142. for (j = k + 2; j <= i__1; ++j) {
  1143. i__2 = j + k * a_dim1;
  1144. z__3.r = d11 * a[i__2].r, z__3.i = d11 * a[i__2].i;
  1145. i__3 = j + (k + 1) * a_dim1;
  1146. z__4.r = d21.r * a[i__3].r - d21.i * a[i__3].i,
  1147. z__4.i = d21.r * a[i__3].i + d21.i * a[i__3]
  1148. .r;
  1149. z__2.r = z__3.r - z__4.r, z__2.i = z__3.i - z__4.i;
  1150. z__1.r = d__ * z__2.r, z__1.i = d__ * z__2.i;
  1151. wk.r = z__1.r, wk.i = z__1.i;
  1152. i__2 = j + (k + 1) * a_dim1;
  1153. z__3.r = d22 * a[i__2].r, z__3.i = d22 * a[i__2].i;
  1154. d_cnjg(&z__5, &d21);
  1155. i__3 = j + k * a_dim1;
  1156. z__4.r = z__5.r * a[i__3].r - z__5.i * a[i__3].i,
  1157. z__4.i = z__5.r * a[i__3].i + z__5.i * a[i__3]
  1158. .r;
  1159. z__2.r = z__3.r - z__4.r, z__2.i = z__3.i - z__4.i;
  1160. z__1.r = d__ * z__2.r, z__1.i = d__ * z__2.i;
  1161. wkp1.r = z__1.r, wkp1.i = z__1.i;
  1162. i__2 = *n;
  1163. for (i__ = j; i__ <= i__2; ++i__) {
  1164. i__3 = i__ + j * a_dim1;
  1165. i__4 = i__ + j * a_dim1;
  1166. i__5 = i__ + k * a_dim1;
  1167. d_cnjg(&z__4, &wk);
  1168. z__3.r = a[i__5].r * z__4.r - a[i__5].i * z__4.i,
  1169. z__3.i = a[i__5].r * z__4.i + a[i__5].i *
  1170. z__4.r;
  1171. z__2.r = a[i__4].r - z__3.r, z__2.i = a[i__4].i -
  1172. z__3.i;
  1173. i__6 = i__ + (k + 1) * a_dim1;
  1174. d_cnjg(&z__6, &wkp1);
  1175. z__5.r = a[i__6].r * z__6.r - a[i__6].i * z__6.i,
  1176. z__5.i = a[i__6].r * z__6.i + a[i__6].i *
  1177. z__6.r;
  1178. z__1.r = z__2.r - z__5.r, z__1.i = z__2.i -
  1179. z__5.i;
  1180. a[i__3].r = z__1.r, a[i__3].i = z__1.i;
  1181. /* L70: */
  1182. }
  1183. i__2 = j + k * a_dim1;
  1184. a[i__2].r = wk.r, a[i__2].i = wk.i;
  1185. i__2 = j + (k + 1) * a_dim1;
  1186. a[i__2].r = wkp1.r, a[i__2].i = wkp1.i;
  1187. i__2 = j + j * a_dim1;
  1188. i__3 = j + j * a_dim1;
  1189. d__1 = a[i__3].r;
  1190. z__1.r = d__1, z__1.i = 0.;
  1191. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1192. /* L80: */
  1193. }
  1194. }
  1195. }
  1196. }
  1197. /* Store details of the interchanges in IPIV */
  1198. if (kstep == 1) {
  1199. ipiv[k] = kp;
  1200. } else {
  1201. ipiv[k] = -kp;
  1202. ipiv[k + 1] = -kp;
  1203. }
  1204. /* Increase K and return to the start of the main loop */
  1205. k += kstep;
  1206. goto L50;
  1207. }
  1208. L90:
  1209. return 0;
  1210. /* End of ZHETF2 */
  1211. } /* zhetf2_ */