You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slaed2.c 31 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static real c_b3 = -1.f;
  485. static integer c__1 = 1;
  486. /* > \brief \b SLAED2 used by sstedc. Merges eigenvalues and deflates secular equation. Used when the original
  487. matrix is tridiagonal. */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download SLAED2 + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaed2.
  494. f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaed2.
  497. f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaed2.
  500. f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE SLAED2( K, N, N1, D, Q, LDQ, INDXQ, RHO, Z, DLAMDA, W, */
  506. /* Q2, INDX, INDXC, INDXP, COLTYP, INFO ) */
  507. /* INTEGER INFO, K, LDQ, N, N1 */
  508. /* REAL RHO */
  509. /* INTEGER COLTYP( * ), INDX( * ), INDXC( * ), INDXP( * ), */
  510. /* $ INDXQ( * ) */
  511. /* REAL D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ), */
  512. /* $ W( * ), Z( * ) */
  513. /* > \par Purpose: */
  514. /* ============= */
  515. /* > */
  516. /* > \verbatim */
  517. /* > */
  518. /* > SLAED2 merges the two sets of eigenvalues together into a single */
  519. /* > sorted set. Then it tries to deflate the size of the problem. */
  520. /* > There are two ways in which deflation can occur: when two or more */
  521. /* > eigenvalues are close together or if there is a tiny entry in the */
  522. /* > Z vector. For each such occurrence the order of the related secular */
  523. /* > equation problem is reduced by one. */
  524. /* > \endverbatim */
  525. /* Arguments: */
  526. /* ========== */
  527. /* > \param[out] K */
  528. /* > \verbatim */
  529. /* > K is INTEGER */
  530. /* > The number of non-deflated eigenvalues, and the order of the */
  531. /* > related secular equation. 0 <= K <=N. */
  532. /* > \endverbatim */
  533. /* > */
  534. /* > \param[in] N */
  535. /* > \verbatim */
  536. /* > N is INTEGER */
  537. /* > The dimension of the symmetric tridiagonal matrix. N >= 0. */
  538. /* > \endverbatim */
  539. /* > */
  540. /* > \param[in] N1 */
  541. /* > \verbatim */
  542. /* > N1 is INTEGER */
  543. /* > The location of the last eigenvalue in the leading sub-matrix. */
  544. /* > f2cmin(1,N) <= N1 <= N/2. */
  545. /* > \endverbatim */
  546. /* > */
  547. /* > \param[in,out] D */
  548. /* > \verbatim */
  549. /* > D is REAL array, dimension (N) */
  550. /* > On entry, D contains the eigenvalues of the two submatrices to */
  551. /* > be combined. */
  552. /* > On exit, D contains the trailing (N-K) updated eigenvalues */
  553. /* > (those which were deflated) sorted into increasing order. */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in,out] Q */
  557. /* > \verbatim */
  558. /* > Q is REAL array, dimension (LDQ, N) */
  559. /* > On entry, Q contains the eigenvectors of two submatrices in */
  560. /* > the two square blocks with corners at (1,1), (N1,N1) */
  561. /* > and (N1+1, N1+1), (N,N). */
  562. /* > On exit, Q contains the trailing (N-K) updated eigenvectors */
  563. /* > (those which were deflated) in its last N-K columns. */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in] LDQ */
  567. /* > \verbatim */
  568. /* > LDQ is INTEGER */
  569. /* > The leading dimension of the array Q. LDQ >= f2cmax(1,N). */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in,out] INDXQ */
  573. /* > \verbatim */
  574. /* > INDXQ is INTEGER array, dimension (N) */
  575. /* > The permutation which separately sorts the two sub-problems */
  576. /* > in D into ascending order. Note that elements in the second */
  577. /* > half of this permutation must first have N1 added to their */
  578. /* > values. Destroyed on exit. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[in,out] RHO */
  582. /* > \verbatim */
  583. /* > RHO is REAL */
  584. /* > On entry, the off-diagonal element associated with the rank-1 */
  585. /* > cut which originally split the two submatrices which are now */
  586. /* > being recombined. */
  587. /* > On exit, RHO has been modified to the value required by */
  588. /* > SLAED3. */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[in] Z */
  592. /* > \verbatim */
  593. /* > Z is REAL array, dimension (N) */
  594. /* > On entry, Z contains the updating vector (the last */
  595. /* > row of the first sub-eigenvector matrix and the first row of */
  596. /* > the second sub-eigenvector matrix). */
  597. /* > On exit, the contents of Z have been destroyed by the updating */
  598. /* > process. */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[out] DLAMDA */
  602. /* > \verbatim */
  603. /* > DLAMDA is REAL array, dimension (N) */
  604. /* > A copy of the first K eigenvalues which will be used by */
  605. /* > SLAED3 to form the secular equation. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[out] W */
  609. /* > \verbatim */
  610. /* > W is REAL array, dimension (N) */
  611. /* > The first k values of the final deflation-altered z-vector */
  612. /* > which will be passed to SLAED3. */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[out] Q2 */
  616. /* > \verbatim */
  617. /* > Q2 is REAL array, dimension (N1**2+(N-N1)**2) */
  618. /* > A copy of the first K eigenvectors which will be used by */
  619. /* > SLAED3 in a matrix multiply (SGEMM) to solve for the new */
  620. /* > eigenvectors. */
  621. /* > \endverbatim */
  622. /* > */
  623. /* > \param[out] INDX */
  624. /* > \verbatim */
  625. /* > INDX is INTEGER array, dimension (N) */
  626. /* > The permutation used to sort the contents of DLAMDA into */
  627. /* > ascending order. */
  628. /* > \endverbatim */
  629. /* > */
  630. /* > \param[out] INDXC */
  631. /* > \verbatim */
  632. /* > INDXC is INTEGER array, dimension (N) */
  633. /* > The permutation used to arrange the columns of the deflated */
  634. /* > Q matrix into three groups: the first group contains non-zero */
  635. /* > elements only at and above N1, the second contains */
  636. /* > non-zero elements only below N1, and the third is dense. */
  637. /* > \endverbatim */
  638. /* > */
  639. /* > \param[out] INDXP */
  640. /* > \verbatim */
  641. /* > INDXP is INTEGER array, dimension (N) */
  642. /* > The permutation used to place deflated values of D at the end */
  643. /* > of the array. INDXP(1:K) points to the nondeflated D-values */
  644. /* > and INDXP(K+1:N) points to the deflated eigenvalues. */
  645. /* > \endverbatim */
  646. /* > */
  647. /* > \param[out] COLTYP */
  648. /* > \verbatim */
  649. /* > COLTYP is INTEGER array, dimension (N) */
  650. /* > During execution, a label which will indicate which of the */
  651. /* > following types a column in the Q2 matrix is: */
  652. /* > 1 : non-zero in the upper half only; */
  653. /* > 2 : dense; */
  654. /* > 3 : non-zero in the lower half only; */
  655. /* > 4 : deflated. */
  656. /* > On exit, COLTYP(i) is the number of columns of type i, */
  657. /* > for i=1 to 4 only. */
  658. /* > \endverbatim */
  659. /* > */
  660. /* > \param[out] INFO */
  661. /* > \verbatim */
  662. /* > INFO is INTEGER */
  663. /* > = 0: successful exit. */
  664. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  665. /* > \endverbatim */
  666. /* Authors: */
  667. /* ======== */
  668. /* > \author Univ. of Tennessee */
  669. /* > \author Univ. of California Berkeley */
  670. /* > \author Univ. of Colorado Denver */
  671. /* > \author NAG Ltd. */
  672. /* > \date December 2016 */
  673. /* > \ingroup auxOTHERcomputational */
  674. /* > \par Contributors: */
  675. /* ================== */
  676. /* > */
  677. /* > Jeff Rutter, Computer Science Division, University of California */
  678. /* > at Berkeley, USA \n */
  679. /* > Modified by Francoise Tisseur, University of Tennessee */
  680. /* > */
  681. /* ===================================================================== */
  682. /* Subroutine */ void slaed2_(integer *k, integer *n, integer *n1, real *d__,
  683. real *q, integer *ldq, integer *indxq, real *rho, real *z__, real *
  684. dlamda, real *w, real *q2, integer *indx, integer *indxc, integer *
  685. indxp, integer *coltyp, integer *info)
  686. {
  687. /* System generated locals */
  688. integer q_dim1, q_offset, i__1, i__2;
  689. real r__1, r__2, r__3, r__4;
  690. /* Local variables */
  691. integer imax, jmax, ctot[4];
  692. extern /* Subroutine */ void srot_(integer *, real *, integer *, real *,
  693. integer *, real *, real *);
  694. real c__;
  695. integer i__, j;
  696. real s, t;
  697. extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
  698. integer k2;
  699. extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
  700. integer *);
  701. integer n2;
  702. extern real slapy2_(real *, real *);
  703. integer ct, nj, pj, js;
  704. extern real slamch_(char *);
  705. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  706. extern integer isamax_(integer *, real *, integer *);
  707. extern /* Subroutine */ void slamrg_(integer *, integer *, real *, integer
  708. *, integer *, integer *), slacpy_(char *, integer *, integer *,
  709. real *, integer *, real *, integer *);
  710. integer iq1, iq2, n1p1;
  711. real eps, tau, tol;
  712. integer psm[4];
  713. /* -- LAPACK computational routine (version 3.7.0) -- */
  714. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  715. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  716. /* December 2016 */
  717. /* ===================================================================== */
  718. /* Test the input parameters. */
  719. /* Parameter adjustments */
  720. --d__;
  721. q_dim1 = *ldq;
  722. q_offset = 1 + q_dim1 * 1;
  723. q -= q_offset;
  724. --indxq;
  725. --z__;
  726. --dlamda;
  727. --w;
  728. --q2;
  729. --indx;
  730. --indxc;
  731. --indxp;
  732. --coltyp;
  733. /* Function Body */
  734. *info = 0;
  735. if (*n < 0) {
  736. *info = -2;
  737. } else if (*ldq < f2cmax(1,*n)) {
  738. *info = -6;
  739. } else /* if(complicated condition) */ {
  740. /* Computing MIN */
  741. i__1 = 1, i__2 = *n / 2;
  742. if (f2cmin(i__1,i__2) > *n1 || *n / 2 < *n1) {
  743. *info = -3;
  744. }
  745. }
  746. if (*info != 0) {
  747. i__1 = -(*info);
  748. xerbla_("SLAED2", &i__1, (ftnlen)6);
  749. return;
  750. }
  751. /* Quick return if possible */
  752. if (*n == 0) {
  753. return;
  754. }
  755. n2 = *n - *n1;
  756. n1p1 = *n1 + 1;
  757. if (*rho < 0.f) {
  758. sscal_(&n2, &c_b3, &z__[n1p1], &c__1);
  759. }
  760. /* Normalize z so that norm(z) = 1. Since z is the concatenation of */
  761. /* two normalized vectors, norm2(z) = sqrt(2). */
  762. t = 1.f / sqrt(2.f);
  763. sscal_(n, &t, &z__[1], &c__1);
  764. /* RHO = ABS( norm(z)**2 * RHO ) */
  765. *rho = (r__1 = *rho * 2.f, abs(r__1));
  766. /* Sort the eigenvalues into increasing order */
  767. i__1 = *n;
  768. for (i__ = n1p1; i__ <= i__1; ++i__) {
  769. indxq[i__] += *n1;
  770. /* L10: */
  771. }
  772. /* re-integrate the deflated parts from the last pass */
  773. i__1 = *n;
  774. for (i__ = 1; i__ <= i__1; ++i__) {
  775. dlamda[i__] = d__[indxq[i__]];
  776. /* L20: */
  777. }
  778. slamrg_(n1, &n2, &dlamda[1], &c__1, &c__1, &indxc[1]);
  779. i__1 = *n;
  780. for (i__ = 1; i__ <= i__1; ++i__) {
  781. indx[i__] = indxq[indxc[i__]];
  782. /* L30: */
  783. }
  784. /* Calculate the allowable deflation tolerance */
  785. imax = isamax_(n, &z__[1], &c__1);
  786. jmax = isamax_(n, &d__[1], &c__1);
  787. eps = slamch_("Epsilon");
  788. /* Computing MAX */
  789. r__3 = (r__1 = d__[jmax], abs(r__1)), r__4 = (r__2 = z__[imax], abs(r__2))
  790. ;
  791. tol = eps * 8.f * f2cmax(r__3,r__4);
  792. /* If the rank-1 modifier is small enough, no more needs to be done */
  793. /* except to reorganize Q so that its columns correspond with the */
  794. /* elements in D. */
  795. if (*rho * (r__1 = z__[imax], abs(r__1)) <= tol) {
  796. *k = 0;
  797. iq2 = 1;
  798. i__1 = *n;
  799. for (j = 1; j <= i__1; ++j) {
  800. i__ = indx[j];
  801. scopy_(n, &q[i__ * q_dim1 + 1], &c__1, &q2[iq2], &c__1);
  802. dlamda[j] = d__[i__];
  803. iq2 += *n;
  804. /* L40: */
  805. }
  806. slacpy_("A", n, n, &q2[1], n, &q[q_offset], ldq);
  807. scopy_(n, &dlamda[1], &c__1, &d__[1], &c__1);
  808. goto L190;
  809. }
  810. /* If there are multiple eigenvalues then the problem deflates. Here */
  811. /* the number of equal eigenvalues are found. As each equal */
  812. /* eigenvalue is found, an elementary reflector is computed to rotate */
  813. /* the corresponding eigensubspace so that the corresponding */
  814. /* components of Z are zero in this new basis. */
  815. i__1 = *n1;
  816. for (i__ = 1; i__ <= i__1; ++i__) {
  817. coltyp[i__] = 1;
  818. /* L50: */
  819. }
  820. i__1 = *n;
  821. for (i__ = n1p1; i__ <= i__1; ++i__) {
  822. coltyp[i__] = 3;
  823. /* L60: */
  824. }
  825. *k = 0;
  826. k2 = *n + 1;
  827. i__1 = *n;
  828. for (j = 1; j <= i__1; ++j) {
  829. nj = indx[j];
  830. if (*rho * (r__1 = z__[nj], abs(r__1)) <= tol) {
  831. /* Deflate due to small z component. */
  832. --k2;
  833. coltyp[nj] = 4;
  834. indxp[k2] = nj;
  835. if (j == *n) {
  836. goto L100;
  837. }
  838. } else {
  839. pj = nj;
  840. goto L80;
  841. }
  842. /* L70: */
  843. }
  844. L80:
  845. ++j;
  846. nj = indx[j];
  847. if (j > *n) {
  848. goto L100;
  849. }
  850. if (*rho * (r__1 = z__[nj], abs(r__1)) <= tol) {
  851. /* Deflate due to small z component. */
  852. --k2;
  853. coltyp[nj] = 4;
  854. indxp[k2] = nj;
  855. } else {
  856. /* Check if eigenvalues are close enough to allow deflation. */
  857. s = z__[pj];
  858. c__ = z__[nj];
  859. /* Find sqrt(a**2+b**2) without overflow or */
  860. /* destructive underflow. */
  861. tau = slapy2_(&c__, &s);
  862. t = d__[nj] - d__[pj];
  863. c__ /= tau;
  864. s = -s / tau;
  865. if ((r__1 = t * c__ * s, abs(r__1)) <= tol) {
  866. /* Deflation is possible. */
  867. z__[nj] = tau;
  868. z__[pj] = 0.f;
  869. if (coltyp[nj] != coltyp[pj]) {
  870. coltyp[nj] = 2;
  871. }
  872. coltyp[pj] = 4;
  873. srot_(n, &q[pj * q_dim1 + 1], &c__1, &q[nj * q_dim1 + 1], &c__1, &
  874. c__, &s);
  875. /* Computing 2nd power */
  876. r__1 = c__;
  877. /* Computing 2nd power */
  878. r__2 = s;
  879. t = d__[pj] * (r__1 * r__1) + d__[nj] * (r__2 * r__2);
  880. /* Computing 2nd power */
  881. r__1 = s;
  882. /* Computing 2nd power */
  883. r__2 = c__;
  884. d__[nj] = d__[pj] * (r__1 * r__1) + d__[nj] * (r__2 * r__2);
  885. d__[pj] = t;
  886. --k2;
  887. i__ = 1;
  888. L90:
  889. if (k2 + i__ <= *n) {
  890. if (d__[pj] < d__[indxp[k2 + i__]]) {
  891. indxp[k2 + i__ - 1] = indxp[k2 + i__];
  892. indxp[k2 + i__] = pj;
  893. ++i__;
  894. goto L90;
  895. } else {
  896. indxp[k2 + i__ - 1] = pj;
  897. }
  898. } else {
  899. indxp[k2 + i__ - 1] = pj;
  900. }
  901. pj = nj;
  902. } else {
  903. ++(*k);
  904. dlamda[*k] = d__[pj];
  905. w[*k] = z__[pj];
  906. indxp[*k] = pj;
  907. pj = nj;
  908. }
  909. }
  910. goto L80;
  911. L100:
  912. /* Record the last eigenvalue. */
  913. ++(*k);
  914. dlamda[*k] = d__[pj];
  915. w[*k] = z__[pj];
  916. indxp[*k] = pj;
  917. /* Count up the total number of the various types of columns, then */
  918. /* form a permutation which positions the four column types into */
  919. /* four uniform groups (although one or more of these groups may be */
  920. /* empty). */
  921. for (j = 1; j <= 4; ++j) {
  922. ctot[j - 1] = 0;
  923. /* L110: */
  924. }
  925. i__1 = *n;
  926. for (j = 1; j <= i__1; ++j) {
  927. ct = coltyp[j];
  928. ++ctot[ct - 1];
  929. /* L120: */
  930. }
  931. /* PSM(*) = Position in SubMatrix (of types 1 through 4) */
  932. psm[0] = 1;
  933. psm[1] = ctot[0] + 1;
  934. psm[2] = psm[1] + ctot[1];
  935. psm[3] = psm[2] + ctot[2];
  936. *k = *n - ctot[3];
  937. /* Fill out the INDXC array so that the permutation which it induces */
  938. /* will place all type-1 columns first, all type-2 columns next, */
  939. /* then all type-3's, and finally all type-4's. */
  940. i__1 = *n;
  941. for (j = 1; j <= i__1; ++j) {
  942. js = indxp[j];
  943. ct = coltyp[js];
  944. indx[psm[ct - 1]] = js;
  945. indxc[psm[ct - 1]] = j;
  946. ++psm[ct - 1];
  947. /* L130: */
  948. }
  949. /* Sort the eigenvalues and corresponding eigenvectors into DLAMDA */
  950. /* and Q2 respectively. The eigenvalues/vectors which were not */
  951. /* deflated go into the first K slots of DLAMDA and Q2 respectively, */
  952. /* while those which were deflated go into the last N - K slots. */
  953. i__ = 1;
  954. iq1 = 1;
  955. iq2 = (ctot[0] + ctot[1]) * *n1 + 1;
  956. i__1 = ctot[0];
  957. for (j = 1; j <= i__1; ++j) {
  958. js = indx[i__];
  959. scopy_(n1, &q[js * q_dim1 + 1], &c__1, &q2[iq1], &c__1);
  960. z__[i__] = d__[js];
  961. ++i__;
  962. iq1 += *n1;
  963. /* L140: */
  964. }
  965. i__1 = ctot[1];
  966. for (j = 1; j <= i__1; ++j) {
  967. js = indx[i__];
  968. scopy_(n1, &q[js * q_dim1 + 1], &c__1, &q2[iq1], &c__1);
  969. scopy_(&n2, &q[*n1 + 1 + js * q_dim1], &c__1, &q2[iq2], &c__1);
  970. z__[i__] = d__[js];
  971. ++i__;
  972. iq1 += *n1;
  973. iq2 += n2;
  974. /* L150: */
  975. }
  976. i__1 = ctot[2];
  977. for (j = 1; j <= i__1; ++j) {
  978. js = indx[i__];
  979. scopy_(&n2, &q[*n1 + 1 + js * q_dim1], &c__1, &q2[iq2], &c__1);
  980. z__[i__] = d__[js];
  981. ++i__;
  982. iq2 += n2;
  983. /* L160: */
  984. }
  985. iq1 = iq2;
  986. i__1 = ctot[3];
  987. for (j = 1; j <= i__1; ++j) {
  988. js = indx[i__];
  989. scopy_(n, &q[js * q_dim1 + 1], &c__1, &q2[iq2], &c__1);
  990. iq2 += *n;
  991. z__[i__] = d__[js];
  992. ++i__;
  993. /* L170: */
  994. }
  995. /* The deflated eigenvalues and their corresponding vectors go back */
  996. /* into the last N - K slots of D and Q respectively. */
  997. if (*k < *n) {
  998. slacpy_("A", n, &ctot[3], &q2[iq1], n, &q[(*k + 1) * q_dim1 + 1], ldq);
  999. i__1 = *n - *k;
  1000. scopy_(&i__1, &z__[*k + 1], &c__1, &d__[*k + 1], &c__1);
  1001. }
  1002. /* Copy CTOT into COLTYP for referencing in SLAED3. */
  1003. for (j = 1; j <= 4; ++j) {
  1004. coltyp[j] = ctot[j - 1];
  1005. /* L180: */
  1006. }
  1007. L190:
  1008. return;
  1009. /* End of SLAED2 */
  1010. } /* slaed2_ */