You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlasd2.c 35 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static doublereal c_b30 = 0.;
  486. /* > \brief \b DLASD2 merges the two sets of singular values together into a single sorted set. Used by sbdsdc
  487. . */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download DLASD2 + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd2.
  494. f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd2.
  497. f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd2.
  500. f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE DLASD2( NL, NR, SQRE, K, D, Z, ALPHA, BETA, U, LDU, VT, */
  506. /* LDVT, DSIGMA, U2, LDU2, VT2, LDVT2, IDXP, IDX, */
  507. /* IDXC, IDXQ, COLTYP, INFO ) */
  508. /* INTEGER INFO, K, LDU, LDU2, LDVT, LDVT2, NL, NR, SQRE */
  509. /* DOUBLE PRECISION ALPHA, BETA */
  510. /* INTEGER COLTYP( * ), IDX( * ), IDXC( * ), IDXP( * ), */
  511. /* $ IDXQ( * ) */
  512. /* DOUBLE PRECISION D( * ), DSIGMA( * ), U( LDU, * ), */
  513. /* $ U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ), */
  514. /* $ Z( * ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > DLASD2 merges the two sets of singular values together into a single */
  521. /* > sorted set. Then it tries to deflate the size of the problem. */
  522. /* > There are two ways in which deflation can occur: when two or more */
  523. /* > singular values are close together or if there is a tiny entry in the */
  524. /* > Z vector. For each such occurrence the order of the related secular */
  525. /* > equation problem is reduced by one. */
  526. /* > */
  527. /* > DLASD2 is called from DLASD1. */
  528. /* > \endverbatim */
  529. /* Arguments: */
  530. /* ========== */
  531. /* > \param[in] NL */
  532. /* > \verbatim */
  533. /* > NL is INTEGER */
  534. /* > The row dimension of the upper block. NL >= 1. */
  535. /* > \endverbatim */
  536. /* > */
  537. /* > \param[in] NR */
  538. /* > \verbatim */
  539. /* > NR is INTEGER */
  540. /* > The row dimension of the lower block. NR >= 1. */
  541. /* > \endverbatim */
  542. /* > */
  543. /* > \param[in] SQRE */
  544. /* > \verbatim */
  545. /* > SQRE is INTEGER */
  546. /* > = 0: the lower block is an NR-by-NR square matrix. */
  547. /* > = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
  548. /* > */
  549. /* > The bidiagonal matrix has N = NL + NR + 1 rows and */
  550. /* > M = N + SQRE >= N columns. */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[out] K */
  554. /* > \verbatim */
  555. /* > K is INTEGER */
  556. /* > Contains the dimension of the non-deflated matrix, */
  557. /* > This is the order of the related secular equation. 1 <= K <=N. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[in,out] D */
  561. /* > \verbatim */
  562. /* > D is DOUBLE PRECISION array, dimension(N) */
  563. /* > On entry D contains the singular values of the two submatrices */
  564. /* > to be combined. On exit D contains the trailing (N-K) updated */
  565. /* > singular values (those which were deflated) sorted into */
  566. /* > increasing order. */
  567. /* > \endverbatim */
  568. /* > */
  569. /* > \param[out] Z */
  570. /* > \verbatim */
  571. /* > Z is DOUBLE PRECISION array, dimension(N) */
  572. /* > On exit Z contains the updating row vector in the secular */
  573. /* > equation. */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[in] ALPHA */
  577. /* > \verbatim */
  578. /* > ALPHA is DOUBLE PRECISION */
  579. /* > Contains the diagonal element associated with the added row. */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[in] BETA */
  583. /* > \verbatim */
  584. /* > BETA is DOUBLE PRECISION */
  585. /* > Contains the off-diagonal element associated with the added */
  586. /* > row. */
  587. /* > \endverbatim */
  588. /* > */
  589. /* > \param[in,out] U */
  590. /* > \verbatim */
  591. /* > U is DOUBLE PRECISION array, dimension(LDU,N) */
  592. /* > On entry U contains the left singular vectors of two */
  593. /* > submatrices in the two square blocks with corners at (1,1), */
  594. /* > (NL, NL), and (NL+2, NL+2), (N,N). */
  595. /* > On exit U contains the trailing (N-K) updated left singular */
  596. /* > vectors (those which were deflated) in its last N-K columns. */
  597. /* > \endverbatim */
  598. /* > */
  599. /* > \param[in] LDU */
  600. /* > \verbatim */
  601. /* > LDU is INTEGER */
  602. /* > The leading dimension of the array U. LDU >= N. */
  603. /* > \endverbatim */
  604. /* > */
  605. /* > \param[in,out] VT */
  606. /* > \verbatim */
  607. /* > VT is DOUBLE PRECISION array, dimension(LDVT,M) */
  608. /* > On entry VT**T contains the right singular vectors of two */
  609. /* > submatrices in the two square blocks with corners at (1,1), */
  610. /* > (NL+1, NL+1), and (NL+2, NL+2), (M,M). */
  611. /* > On exit VT**T contains the trailing (N-K) updated right singular */
  612. /* > vectors (those which were deflated) in its last N-K columns. */
  613. /* > In case SQRE =1, the last row of VT spans the right null */
  614. /* > space. */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[in] LDVT */
  618. /* > \verbatim */
  619. /* > LDVT is INTEGER */
  620. /* > The leading dimension of the array VT. LDVT >= M. */
  621. /* > \endverbatim */
  622. /* > */
  623. /* > \param[out] DSIGMA */
  624. /* > \verbatim */
  625. /* > DSIGMA is DOUBLE PRECISION array, dimension (N) */
  626. /* > Contains a copy of the diagonal elements (K-1 singular values */
  627. /* > and one zero) in the secular equation. */
  628. /* > \endverbatim */
  629. /* > */
  630. /* > \param[out] U2 */
  631. /* > \verbatim */
  632. /* > U2 is DOUBLE PRECISION array, dimension(LDU2,N) */
  633. /* > Contains a copy of the first K-1 left singular vectors which */
  634. /* > will be used by DLASD3 in a matrix multiply (DGEMM) to solve */
  635. /* > for the new left singular vectors. U2 is arranged into four */
  636. /* > blocks. The first block contains a column with 1 at NL+1 and */
  637. /* > zero everywhere else; the second block contains non-zero */
  638. /* > entries only at and above NL; the third contains non-zero */
  639. /* > entries only below NL+1; and the fourth is dense. */
  640. /* > \endverbatim */
  641. /* > */
  642. /* > \param[in] LDU2 */
  643. /* > \verbatim */
  644. /* > LDU2 is INTEGER */
  645. /* > The leading dimension of the array U2. LDU2 >= N. */
  646. /* > \endverbatim */
  647. /* > */
  648. /* > \param[out] VT2 */
  649. /* > \verbatim */
  650. /* > VT2 is DOUBLE PRECISION array, dimension(LDVT2,N) */
  651. /* > VT2**T contains a copy of the first K right singular vectors */
  652. /* > which will be used by DLASD3 in a matrix multiply (DGEMM) to */
  653. /* > solve for the new right singular vectors. VT2 is arranged into */
  654. /* > three blocks. The first block contains a row that corresponds */
  655. /* > to the special 0 diagonal element in SIGMA; the second block */
  656. /* > contains non-zeros only at and before NL +1; the third block */
  657. /* > contains non-zeros only at and after NL +2. */
  658. /* > \endverbatim */
  659. /* > */
  660. /* > \param[in] LDVT2 */
  661. /* > \verbatim */
  662. /* > LDVT2 is INTEGER */
  663. /* > The leading dimension of the array VT2. LDVT2 >= M. */
  664. /* > \endverbatim */
  665. /* > */
  666. /* > \param[out] IDXP */
  667. /* > \verbatim */
  668. /* > IDXP is INTEGER array, dimension(N) */
  669. /* > This will contain the permutation used to place deflated */
  670. /* > values of D at the end of the array. On output IDXP(2:K) */
  671. /* > points to the nondeflated D-values and IDXP(K+1:N) */
  672. /* > points to the deflated singular values. */
  673. /* > \endverbatim */
  674. /* > */
  675. /* > \param[out] IDX */
  676. /* > \verbatim */
  677. /* > IDX is INTEGER array, dimension(N) */
  678. /* > This will contain the permutation used to sort the contents of */
  679. /* > D into ascending order. */
  680. /* > \endverbatim */
  681. /* > */
  682. /* > \param[out] IDXC */
  683. /* > \verbatim */
  684. /* > IDXC is INTEGER array, dimension(N) */
  685. /* > This will contain the permutation used to arrange the columns */
  686. /* > of the deflated U matrix into three groups: the first group */
  687. /* > contains non-zero entries only at and above NL, the second */
  688. /* > contains non-zero entries only below NL+2, and the third is */
  689. /* > dense. */
  690. /* > \endverbatim */
  691. /* > */
  692. /* > \param[in,out] IDXQ */
  693. /* > \verbatim */
  694. /* > IDXQ is INTEGER array, dimension(N) */
  695. /* > This contains the permutation which separately sorts the two */
  696. /* > sub-problems in D into ascending order. Note that entries in */
  697. /* > the first hlaf of this permutation must first be moved one */
  698. /* > position backward; and entries in the second half */
  699. /* > must first have NL+1 added to their values. */
  700. /* > \endverbatim */
  701. /* > */
  702. /* > \param[out] COLTYP */
  703. /* > \verbatim */
  704. /* > COLTYP is INTEGER array, dimension(N) */
  705. /* > As workspace, this will contain a label which will indicate */
  706. /* > which of the following types a column in the U2 matrix or a */
  707. /* > row in the VT2 matrix is: */
  708. /* > 1 : non-zero in the upper half only */
  709. /* > 2 : non-zero in the lower half only */
  710. /* > 3 : dense */
  711. /* > 4 : deflated */
  712. /* > */
  713. /* > On exit, it is an array of dimension 4, with COLTYP(I) being */
  714. /* > the dimension of the I-th type columns. */
  715. /* > \endverbatim */
  716. /* > */
  717. /* > \param[out] INFO */
  718. /* > \verbatim */
  719. /* > INFO is INTEGER */
  720. /* > = 0: successful exit. */
  721. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  722. /* > \endverbatim */
  723. /* Authors: */
  724. /* ======== */
  725. /* > \author Univ. of Tennessee */
  726. /* > \author Univ. of California Berkeley */
  727. /* > \author Univ. of Colorado Denver */
  728. /* > \author NAG Ltd. */
  729. /* > \date June 2017 */
  730. /* > \ingroup OTHERauxiliary */
  731. /* > \par Contributors: */
  732. /* ================== */
  733. /* > */
  734. /* > Ming Gu and Huan Ren, Computer Science Division, University of */
  735. /* > California at Berkeley, USA */
  736. /* > */
  737. /* ===================================================================== */
  738. /* Subroutine */ void dlasd2_(integer *nl, integer *nr, integer *sqre, integer
  739. *k, doublereal *d__, doublereal *z__, doublereal *alpha, doublereal *
  740. beta, doublereal *u, integer *ldu, doublereal *vt, integer *ldvt,
  741. doublereal *dsigma, doublereal *u2, integer *ldu2, doublereal *vt2,
  742. integer *ldvt2, integer *idxp, integer *idx, integer *idxc, integer *
  743. idxq, integer *coltyp, integer *info)
  744. {
  745. /* System generated locals */
  746. integer u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1, vt_offset,
  747. vt2_dim1, vt2_offset, i__1;
  748. doublereal d__1, d__2;
  749. /* Local variables */
  750. integer idxi, idxj;
  751. extern /* Subroutine */ void drot_(integer *, doublereal *, integer *,
  752. doublereal *, integer *, doublereal *, doublereal *);
  753. integer ctot[4];
  754. doublereal c__;
  755. integer i__, j, m, n;
  756. doublereal s;
  757. integer idxjp;
  758. extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
  759. doublereal *, integer *);
  760. integer jprev, k2;
  761. doublereal z1;
  762. extern doublereal dlapy2_(doublereal *, doublereal *);
  763. integer ct;
  764. extern doublereal dlamch_(char *);
  765. integer jp;
  766. extern /* Subroutine */ void dlamrg_(integer *, integer *, doublereal *,
  767. integer *, integer *, integer *), dlacpy_(char *, integer *,
  768. integer *, doublereal *, integer *, doublereal *, integer *), dlaset_(char *, integer *, integer *, doublereal *,
  769. doublereal *, doublereal *, integer *);
  770. extern int xerbla_(char *, integer *, ftnlen);
  771. doublereal hlftol, eps, tau, tol;
  772. integer psm[4], nlp1, nlp2;
  773. /* -- LAPACK auxiliary routine (version 3.7.1) -- */
  774. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  775. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  776. /* June 2017 */
  777. /* ===================================================================== */
  778. /* Test the input parameters. */
  779. /* Parameter adjustments */
  780. --d__;
  781. --z__;
  782. u_dim1 = *ldu;
  783. u_offset = 1 + u_dim1 * 1;
  784. u -= u_offset;
  785. vt_dim1 = *ldvt;
  786. vt_offset = 1 + vt_dim1 * 1;
  787. vt -= vt_offset;
  788. --dsigma;
  789. u2_dim1 = *ldu2;
  790. u2_offset = 1 + u2_dim1 * 1;
  791. u2 -= u2_offset;
  792. vt2_dim1 = *ldvt2;
  793. vt2_offset = 1 + vt2_dim1 * 1;
  794. vt2 -= vt2_offset;
  795. --idxp;
  796. --idx;
  797. --idxc;
  798. --idxq;
  799. --coltyp;
  800. /* Function Body */
  801. *info = 0;
  802. if (*nl < 1) {
  803. *info = -1;
  804. } else if (*nr < 1) {
  805. *info = -2;
  806. } else if (*sqre != 1 && *sqre != 0) {
  807. *info = -3;
  808. }
  809. n = *nl + *nr + 1;
  810. m = n + *sqre;
  811. if (*ldu < n) {
  812. *info = -10;
  813. } else if (*ldvt < m) {
  814. *info = -12;
  815. } else if (*ldu2 < n) {
  816. *info = -15;
  817. } else if (*ldvt2 < m) {
  818. *info = -17;
  819. }
  820. if (*info != 0) {
  821. i__1 = -(*info);
  822. xerbla_("DLASD2", &i__1, (ftnlen)6);
  823. return;
  824. }
  825. nlp1 = *nl + 1;
  826. nlp2 = *nl + 2;
  827. /* Generate the first part of the vector Z; and move the singular */
  828. /* values in the first part of D one position backward. */
  829. z1 = *alpha * vt[nlp1 + nlp1 * vt_dim1];
  830. z__[1] = z1;
  831. for (i__ = *nl; i__ >= 1; --i__) {
  832. z__[i__ + 1] = *alpha * vt[i__ + nlp1 * vt_dim1];
  833. d__[i__ + 1] = d__[i__];
  834. idxq[i__ + 1] = idxq[i__] + 1;
  835. /* L10: */
  836. }
  837. /* Generate the second part of the vector Z. */
  838. i__1 = m;
  839. for (i__ = nlp2; i__ <= i__1; ++i__) {
  840. z__[i__] = *beta * vt[i__ + nlp2 * vt_dim1];
  841. /* L20: */
  842. }
  843. /* Initialize some reference arrays. */
  844. i__1 = nlp1;
  845. for (i__ = 2; i__ <= i__1; ++i__) {
  846. coltyp[i__] = 1;
  847. /* L30: */
  848. }
  849. i__1 = n;
  850. for (i__ = nlp2; i__ <= i__1; ++i__) {
  851. coltyp[i__] = 2;
  852. /* L40: */
  853. }
  854. /* Sort the singular values into increasing order */
  855. i__1 = n;
  856. for (i__ = nlp2; i__ <= i__1; ++i__) {
  857. idxq[i__] += nlp1;
  858. /* L50: */
  859. }
  860. /* DSIGMA, IDXC, IDXC, and the first column of U2 */
  861. /* are used as storage space. */
  862. i__1 = n;
  863. for (i__ = 2; i__ <= i__1; ++i__) {
  864. dsigma[i__] = d__[idxq[i__]];
  865. u2[i__ + u2_dim1] = z__[idxq[i__]];
  866. idxc[i__] = coltyp[idxq[i__]];
  867. /* L60: */
  868. }
  869. dlamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]);
  870. i__1 = n;
  871. for (i__ = 2; i__ <= i__1; ++i__) {
  872. idxi = idx[i__] + 1;
  873. d__[i__] = dsigma[idxi];
  874. z__[i__] = u2[idxi + u2_dim1];
  875. coltyp[i__] = idxc[idxi];
  876. /* L70: */
  877. }
  878. /* Calculate the allowable deflation tolerance */
  879. eps = dlamch_("Epsilon");
  880. /* Computing MAX */
  881. d__1 = abs(*alpha), d__2 = abs(*beta);
  882. tol = f2cmax(d__1,d__2);
  883. /* Computing MAX */
  884. d__2 = (d__1 = d__[n], abs(d__1));
  885. tol = eps * 8. * f2cmax(d__2,tol);
  886. /* There are 2 kinds of deflation -- first a value in the z-vector */
  887. /* is small, second two (or more) singular values are very close */
  888. /* together (their difference is small). */
  889. /* If the value in the z-vector is small, we simply permute the */
  890. /* array so that the corresponding singular value is moved to the */
  891. /* end. */
  892. /* If two values in the D-vector are close, we perform a two-sided */
  893. /* rotation designed to make one of the corresponding z-vector */
  894. /* entries zero, and then permute the array so that the deflated */
  895. /* singular value is moved to the end. */
  896. /* If there are multiple singular values then the problem deflates. */
  897. /* Here the number of equal singular values are found. As each equal */
  898. /* singular value is found, an elementary reflector is computed to */
  899. /* rotate the corresponding singular subspace so that the */
  900. /* corresponding components of Z are zero in this new basis. */
  901. *k = 1;
  902. k2 = n + 1;
  903. i__1 = n;
  904. for (j = 2; j <= i__1; ++j) {
  905. if ((d__1 = z__[j], abs(d__1)) <= tol) {
  906. /* Deflate due to small z component. */
  907. --k2;
  908. idxp[k2] = j;
  909. coltyp[j] = 4;
  910. if (j == n) {
  911. goto L120;
  912. }
  913. } else {
  914. jprev = j;
  915. goto L90;
  916. }
  917. /* L80: */
  918. }
  919. L90:
  920. j = jprev;
  921. L100:
  922. ++j;
  923. if (j > n) {
  924. goto L110;
  925. }
  926. if ((d__1 = z__[j], abs(d__1)) <= tol) {
  927. /* Deflate due to small z component. */
  928. --k2;
  929. idxp[k2] = j;
  930. coltyp[j] = 4;
  931. } else {
  932. /* Check if singular values are close enough to allow deflation. */
  933. if ((d__1 = d__[j] - d__[jprev], abs(d__1)) <= tol) {
  934. /* Deflation is possible. */
  935. s = z__[jprev];
  936. c__ = z__[j];
  937. /* Find sqrt(a**2+b**2) without overflow or */
  938. /* destructive underflow. */
  939. tau = dlapy2_(&c__, &s);
  940. c__ /= tau;
  941. s = -s / tau;
  942. z__[j] = tau;
  943. z__[jprev] = 0.;
  944. /* Apply back the Givens rotation to the left and right */
  945. /* singular vector matrices. */
  946. idxjp = idxq[idx[jprev] + 1];
  947. idxj = idxq[idx[j] + 1];
  948. if (idxjp <= nlp1) {
  949. --idxjp;
  950. }
  951. if (idxj <= nlp1) {
  952. --idxj;
  953. }
  954. drot_(&n, &u[idxjp * u_dim1 + 1], &c__1, &u[idxj * u_dim1 + 1], &
  955. c__1, &c__, &s);
  956. drot_(&m, &vt[idxjp + vt_dim1], ldvt, &vt[idxj + vt_dim1], ldvt, &
  957. c__, &s);
  958. if (coltyp[j] != coltyp[jprev]) {
  959. coltyp[j] = 3;
  960. }
  961. coltyp[jprev] = 4;
  962. --k2;
  963. idxp[k2] = jprev;
  964. jprev = j;
  965. } else {
  966. ++(*k);
  967. u2[*k + u2_dim1] = z__[jprev];
  968. dsigma[*k] = d__[jprev];
  969. idxp[*k] = jprev;
  970. jprev = j;
  971. }
  972. }
  973. goto L100;
  974. L110:
  975. /* Record the last singular value. */
  976. ++(*k);
  977. u2[*k + u2_dim1] = z__[jprev];
  978. dsigma[*k] = d__[jprev];
  979. idxp[*k] = jprev;
  980. L120:
  981. /* Count up the total number of the various types of columns, then */
  982. /* form a permutation which positions the four column types into */
  983. /* four groups of uniform structure (although one or more of these */
  984. /* groups may be empty). */
  985. for (j = 1; j <= 4; ++j) {
  986. ctot[j - 1] = 0;
  987. /* L130: */
  988. }
  989. i__1 = n;
  990. for (j = 2; j <= i__1; ++j) {
  991. ct = coltyp[j];
  992. ++ctot[ct - 1];
  993. /* L140: */
  994. }
  995. /* PSM(*) = Position in SubMatrix (of types 1 through 4) */
  996. psm[0] = 2;
  997. psm[1] = ctot[0] + 2;
  998. psm[2] = psm[1] + ctot[1];
  999. psm[3] = psm[2] + ctot[2];
  1000. /* Fill out the IDXC array so that the permutation which it induces */
  1001. /* will place all type-1 columns first, all type-2 columns next, */
  1002. /* then all type-3's, and finally all type-4's, starting from the */
  1003. /* second column. This applies similarly to the rows of VT. */
  1004. i__1 = n;
  1005. for (j = 2; j <= i__1; ++j) {
  1006. jp = idxp[j];
  1007. ct = coltyp[jp];
  1008. idxc[psm[ct - 1]] = j;
  1009. ++psm[ct - 1];
  1010. /* L150: */
  1011. }
  1012. /* Sort the singular values and corresponding singular vectors into */
  1013. /* DSIGMA, U2, and VT2 respectively. The singular values/vectors */
  1014. /* which were not deflated go into the first K slots of DSIGMA, U2, */
  1015. /* and VT2 respectively, while those which were deflated go into the */
  1016. /* last N - K slots, except that the first column/row will be treated */
  1017. /* separately. */
  1018. i__1 = n;
  1019. for (j = 2; j <= i__1; ++j) {
  1020. jp = idxp[j];
  1021. dsigma[j] = d__[jp];
  1022. idxj = idxq[idx[idxp[idxc[j]]] + 1];
  1023. if (idxj <= nlp1) {
  1024. --idxj;
  1025. }
  1026. dcopy_(&n, &u[idxj * u_dim1 + 1], &c__1, &u2[j * u2_dim1 + 1], &c__1);
  1027. dcopy_(&m, &vt[idxj + vt_dim1], ldvt, &vt2[j + vt2_dim1], ldvt2);
  1028. /* L160: */
  1029. }
  1030. /* Determine DSIGMA(1), DSIGMA(2) and Z(1) */
  1031. dsigma[1] = 0.;
  1032. hlftol = tol / 2.;
  1033. if (abs(dsigma[2]) <= hlftol) {
  1034. dsigma[2] = hlftol;
  1035. }
  1036. if (m > n) {
  1037. z__[1] = dlapy2_(&z1, &z__[m]);
  1038. if (z__[1] <= tol) {
  1039. c__ = 1.;
  1040. s = 0.;
  1041. z__[1] = tol;
  1042. } else {
  1043. c__ = z1 / z__[1];
  1044. s = z__[m] / z__[1];
  1045. }
  1046. } else {
  1047. if (abs(z1) <= tol) {
  1048. z__[1] = tol;
  1049. } else {
  1050. z__[1] = z1;
  1051. }
  1052. }
  1053. /* Move the rest of the updating row to Z. */
  1054. i__1 = *k - 1;
  1055. dcopy_(&i__1, &u2[u2_dim1 + 2], &c__1, &z__[2], &c__1);
  1056. /* Determine the first column of U2, the first row of VT2 and the */
  1057. /* last row of VT. */
  1058. dlaset_("A", &n, &c__1, &c_b30, &c_b30, &u2[u2_offset], ldu2);
  1059. u2[nlp1 + u2_dim1] = 1.;
  1060. if (m > n) {
  1061. i__1 = nlp1;
  1062. for (i__ = 1; i__ <= i__1; ++i__) {
  1063. vt[m + i__ * vt_dim1] = -s * vt[nlp1 + i__ * vt_dim1];
  1064. vt2[i__ * vt2_dim1 + 1] = c__ * vt[nlp1 + i__ * vt_dim1];
  1065. /* L170: */
  1066. }
  1067. i__1 = m;
  1068. for (i__ = nlp2; i__ <= i__1; ++i__) {
  1069. vt2[i__ * vt2_dim1 + 1] = s * vt[m + i__ * vt_dim1];
  1070. vt[m + i__ * vt_dim1] = c__ * vt[m + i__ * vt_dim1];
  1071. /* L180: */
  1072. }
  1073. } else {
  1074. dcopy_(&m, &vt[nlp1 + vt_dim1], ldvt, &vt2[vt2_dim1 + 1], ldvt2);
  1075. }
  1076. if (m > n) {
  1077. dcopy_(&m, &vt[m + vt_dim1], ldvt, &vt2[m + vt2_dim1], ldvt2);
  1078. }
  1079. /* The deflated singular values and their corresponding vectors go */
  1080. /* into the back of D, U, and V respectively. */
  1081. if (n > *k) {
  1082. i__1 = n - *k;
  1083. dcopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1);
  1084. i__1 = n - *k;
  1085. dlacpy_("A", &n, &i__1, &u2[(*k + 1) * u2_dim1 + 1], ldu2, &u[(*k + 1)
  1086. * u_dim1 + 1], ldu);
  1087. i__1 = n - *k;
  1088. dlacpy_("A", &i__1, &m, &vt2[*k + 1 + vt2_dim1], ldvt2, &vt[*k + 1 +
  1089. vt_dim1], ldvt);
  1090. }
  1091. /* Copy CTOT into COLTYP for referencing in DLASD3. */
  1092. for (j = 1; j <= 4; ++j) {
  1093. coltyp[j] = ctot[j - 1];
  1094. /* L190: */
  1095. }
  1096. return;
  1097. /* End of DLASD2 */
  1098. } /* dlasd2_ */