You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlarfx.c 33 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. /* > \brief \b DLARFX applies an elementary reflector to a general rectangular matrix, with loop unrolling whe
  486. n the reflector has order ≤ 10. */
  487. /* =========== DOCUMENTATION =========== */
  488. /* Online html documentation available at */
  489. /* http://www.netlib.org/lapack/explore-html/ */
  490. /* > \htmlonly */
  491. /* > Download DLARFX + dependencies */
  492. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarfx.
  493. f"> */
  494. /* > [TGZ]</a> */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarfx.
  496. f"> */
  497. /* > [ZIP]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarfx.
  499. f"> */
  500. /* > [TXT]</a> */
  501. /* > \endhtmlonly */
  502. /* Definition: */
  503. /* =========== */
  504. /* SUBROUTINE DLARFX( SIDE, M, N, V, TAU, C, LDC, WORK ) */
  505. /* CHARACTER SIDE */
  506. /* INTEGER LDC, M, N */
  507. /* DOUBLE PRECISION TAU */
  508. /* DOUBLE PRECISION C( LDC, * ), V( * ), WORK( * ) */
  509. /* > \par Purpose: */
  510. /* ============= */
  511. /* > */
  512. /* > \verbatim */
  513. /* > */
  514. /* > DLARFX applies a real elementary reflector H to a real m by n */
  515. /* > matrix C, from either the left or the right. H is represented in the */
  516. /* > form */
  517. /* > */
  518. /* > H = I - tau * v * v**T */
  519. /* > */
  520. /* > where tau is a real scalar and v is a real vector. */
  521. /* > */
  522. /* > If tau = 0, then H is taken to be the unit matrix */
  523. /* > */
  524. /* > This version uses inline code if H has order < 11. */
  525. /* > \endverbatim */
  526. /* Arguments: */
  527. /* ========== */
  528. /* > \param[in] SIDE */
  529. /* > \verbatim */
  530. /* > SIDE is CHARACTER*1 */
  531. /* > = 'L': form H * C */
  532. /* > = 'R': form C * H */
  533. /* > \endverbatim */
  534. /* > */
  535. /* > \param[in] M */
  536. /* > \verbatim */
  537. /* > M is INTEGER */
  538. /* > The number of rows of the matrix C. */
  539. /* > \endverbatim */
  540. /* > */
  541. /* > \param[in] N */
  542. /* > \verbatim */
  543. /* > N is INTEGER */
  544. /* > The number of columns of the matrix C. */
  545. /* > \endverbatim */
  546. /* > */
  547. /* > \param[in] V */
  548. /* > \verbatim */
  549. /* > V is DOUBLE PRECISION array, dimension (M) if SIDE = 'L' */
  550. /* > or (N) if SIDE = 'R' */
  551. /* > The vector v in the representation of H. */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] TAU */
  555. /* > \verbatim */
  556. /* > TAU is DOUBLE PRECISION */
  557. /* > The value tau in the representation of H. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[in,out] C */
  561. /* > \verbatim */
  562. /* > C is DOUBLE PRECISION array, dimension (LDC,N) */
  563. /* > On entry, the m by n matrix C. */
  564. /* > On exit, C is overwritten by the matrix H * C if SIDE = 'L', */
  565. /* > or C * H if SIDE = 'R'. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] LDC */
  569. /* > \verbatim */
  570. /* > LDC is INTEGER */
  571. /* > The leading dimension of the array C. LDC >= (1,M). */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[out] WORK */
  575. /* > \verbatim */
  576. /* > WORK is DOUBLE PRECISION array, dimension */
  577. /* > (N) if SIDE = 'L' */
  578. /* > or (M) if SIDE = 'R' */
  579. /* > WORK is not referenced if H has order < 11. */
  580. /* > \endverbatim */
  581. /* Authors: */
  582. /* ======== */
  583. /* > \author Univ. of Tennessee */
  584. /* > \author Univ. of California Berkeley */
  585. /* > \author Univ. of Colorado Denver */
  586. /* > \author NAG Ltd. */
  587. /* > \date December 2016 */
  588. /* > \ingroup doubleOTHERauxiliary */
  589. /* ===================================================================== */
  590. /* Subroutine */ void dlarfx_(char *side, integer *m, integer *n, doublereal *
  591. v, doublereal *tau, doublereal *c__, integer *ldc, doublereal *work)
  592. {
  593. /* System generated locals */
  594. integer c_dim1, c_offset, i__1;
  595. /* Local variables */
  596. integer j;
  597. extern /* Subroutine */ void dlarf_(char *, integer *, integer *,
  598. doublereal *, integer *, doublereal *, doublereal *, integer *,
  599. doublereal *);
  600. extern logical lsame_(char *, char *);
  601. doublereal t1, t2, t3, t4, t5, t6, t7, t8, t9, v1, v2, v3, v4, v5, v6, v7,
  602. v8, v9, t10, v10, sum;
  603. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  604. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  605. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  606. /* December 2016 */
  607. /* ===================================================================== */
  608. /* Parameter adjustments */
  609. --v;
  610. c_dim1 = *ldc;
  611. c_offset = 1 + c_dim1 * 1;
  612. c__ -= c_offset;
  613. --work;
  614. /* Function Body */
  615. if (*tau == 0.) {
  616. return;
  617. }
  618. if (lsame_(side, "L")) {
  619. /* Form H * C, where H has order m. */
  620. switch (*m) {
  621. case 1: goto L10;
  622. case 2: goto L30;
  623. case 3: goto L50;
  624. case 4: goto L70;
  625. case 5: goto L90;
  626. case 6: goto L110;
  627. case 7: goto L130;
  628. case 8: goto L150;
  629. case 9: goto L170;
  630. case 10: goto L190;
  631. }
  632. /* Code for general M */
  633. dlarf_(side, m, n, &v[1], &c__1, tau, &c__[c_offset], ldc, &work[1]);
  634. goto L410;
  635. L10:
  636. /* Special code for 1 x 1 Householder */
  637. t1 = 1. - *tau * v[1] * v[1];
  638. i__1 = *n;
  639. for (j = 1; j <= i__1; ++j) {
  640. c__[j * c_dim1 + 1] = t1 * c__[j * c_dim1 + 1];
  641. /* L20: */
  642. }
  643. goto L410;
  644. L30:
  645. /* Special code for 2 x 2 Householder */
  646. v1 = v[1];
  647. t1 = *tau * v1;
  648. v2 = v[2];
  649. t2 = *tau * v2;
  650. i__1 = *n;
  651. for (j = 1; j <= i__1; ++j) {
  652. sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2];
  653. c__[j * c_dim1 + 1] -= sum * t1;
  654. c__[j * c_dim1 + 2] -= sum * t2;
  655. /* L40: */
  656. }
  657. goto L410;
  658. L50:
  659. /* Special code for 3 x 3 Householder */
  660. v1 = v[1];
  661. t1 = *tau * v1;
  662. v2 = v[2];
  663. t2 = *tau * v2;
  664. v3 = v[3];
  665. t3 = *tau * v3;
  666. i__1 = *n;
  667. for (j = 1; j <= i__1; ++j) {
  668. sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2] + v3 *
  669. c__[j * c_dim1 + 3];
  670. c__[j * c_dim1 + 1] -= sum * t1;
  671. c__[j * c_dim1 + 2] -= sum * t2;
  672. c__[j * c_dim1 + 3] -= sum * t3;
  673. /* L60: */
  674. }
  675. goto L410;
  676. L70:
  677. /* Special code for 4 x 4 Householder */
  678. v1 = v[1];
  679. t1 = *tau * v1;
  680. v2 = v[2];
  681. t2 = *tau * v2;
  682. v3 = v[3];
  683. t3 = *tau * v3;
  684. v4 = v[4];
  685. t4 = *tau * v4;
  686. i__1 = *n;
  687. for (j = 1; j <= i__1; ++j) {
  688. sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2] + v3 *
  689. c__[j * c_dim1 + 3] + v4 * c__[j * c_dim1 + 4];
  690. c__[j * c_dim1 + 1] -= sum * t1;
  691. c__[j * c_dim1 + 2] -= sum * t2;
  692. c__[j * c_dim1 + 3] -= sum * t3;
  693. c__[j * c_dim1 + 4] -= sum * t4;
  694. /* L80: */
  695. }
  696. goto L410;
  697. L90:
  698. /* Special code for 5 x 5 Householder */
  699. v1 = v[1];
  700. t1 = *tau * v1;
  701. v2 = v[2];
  702. t2 = *tau * v2;
  703. v3 = v[3];
  704. t3 = *tau * v3;
  705. v4 = v[4];
  706. t4 = *tau * v4;
  707. v5 = v[5];
  708. t5 = *tau * v5;
  709. i__1 = *n;
  710. for (j = 1; j <= i__1; ++j) {
  711. sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2] + v3 *
  712. c__[j * c_dim1 + 3] + v4 * c__[j * c_dim1 + 4] + v5 * c__[
  713. j * c_dim1 + 5];
  714. c__[j * c_dim1 + 1] -= sum * t1;
  715. c__[j * c_dim1 + 2] -= sum * t2;
  716. c__[j * c_dim1 + 3] -= sum * t3;
  717. c__[j * c_dim1 + 4] -= sum * t4;
  718. c__[j * c_dim1 + 5] -= sum * t5;
  719. /* L100: */
  720. }
  721. goto L410;
  722. L110:
  723. /* Special code for 6 x 6 Householder */
  724. v1 = v[1];
  725. t1 = *tau * v1;
  726. v2 = v[2];
  727. t2 = *tau * v2;
  728. v3 = v[3];
  729. t3 = *tau * v3;
  730. v4 = v[4];
  731. t4 = *tau * v4;
  732. v5 = v[5];
  733. t5 = *tau * v5;
  734. v6 = v[6];
  735. t6 = *tau * v6;
  736. i__1 = *n;
  737. for (j = 1; j <= i__1; ++j) {
  738. sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2] + v3 *
  739. c__[j * c_dim1 + 3] + v4 * c__[j * c_dim1 + 4] + v5 * c__[
  740. j * c_dim1 + 5] + v6 * c__[j * c_dim1 + 6];
  741. c__[j * c_dim1 + 1] -= sum * t1;
  742. c__[j * c_dim1 + 2] -= sum * t2;
  743. c__[j * c_dim1 + 3] -= sum * t3;
  744. c__[j * c_dim1 + 4] -= sum * t4;
  745. c__[j * c_dim1 + 5] -= sum * t5;
  746. c__[j * c_dim1 + 6] -= sum * t6;
  747. /* L120: */
  748. }
  749. goto L410;
  750. L130:
  751. /* Special code for 7 x 7 Householder */
  752. v1 = v[1];
  753. t1 = *tau * v1;
  754. v2 = v[2];
  755. t2 = *tau * v2;
  756. v3 = v[3];
  757. t3 = *tau * v3;
  758. v4 = v[4];
  759. t4 = *tau * v4;
  760. v5 = v[5];
  761. t5 = *tau * v5;
  762. v6 = v[6];
  763. t6 = *tau * v6;
  764. v7 = v[7];
  765. t7 = *tau * v7;
  766. i__1 = *n;
  767. for (j = 1; j <= i__1; ++j) {
  768. sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2] + v3 *
  769. c__[j * c_dim1 + 3] + v4 * c__[j * c_dim1 + 4] + v5 * c__[
  770. j * c_dim1 + 5] + v6 * c__[j * c_dim1 + 6] + v7 * c__[j *
  771. c_dim1 + 7];
  772. c__[j * c_dim1 + 1] -= sum * t1;
  773. c__[j * c_dim1 + 2] -= sum * t2;
  774. c__[j * c_dim1 + 3] -= sum * t3;
  775. c__[j * c_dim1 + 4] -= sum * t4;
  776. c__[j * c_dim1 + 5] -= sum * t5;
  777. c__[j * c_dim1 + 6] -= sum * t6;
  778. c__[j * c_dim1 + 7] -= sum * t7;
  779. /* L140: */
  780. }
  781. goto L410;
  782. L150:
  783. /* Special code for 8 x 8 Householder */
  784. v1 = v[1];
  785. t1 = *tau * v1;
  786. v2 = v[2];
  787. t2 = *tau * v2;
  788. v3 = v[3];
  789. t3 = *tau * v3;
  790. v4 = v[4];
  791. t4 = *tau * v4;
  792. v5 = v[5];
  793. t5 = *tau * v5;
  794. v6 = v[6];
  795. t6 = *tau * v6;
  796. v7 = v[7];
  797. t7 = *tau * v7;
  798. v8 = v[8];
  799. t8 = *tau * v8;
  800. i__1 = *n;
  801. for (j = 1; j <= i__1; ++j) {
  802. sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2] + v3 *
  803. c__[j * c_dim1 + 3] + v4 * c__[j * c_dim1 + 4] + v5 * c__[
  804. j * c_dim1 + 5] + v6 * c__[j * c_dim1 + 6] + v7 * c__[j *
  805. c_dim1 + 7] + v8 * c__[j * c_dim1 + 8];
  806. c__[j * c_dim1 + 1] -= sum * t1;
  807. c__[j * c_dim1 + 2] -= sum * t2;
  808. c__[j * c_dim1 + 3] -= sum * t3;
  809. c__[j * c_dim1 + 4] -= sum * t4;
  810. c__[j * c_dim1 + 5] -= sum * t5;
  811. c__[j * c_dim1 + 6] -= sum * t6;
  812. c__[j * c_dim1 + 7] -= sum * t7;
  813. c__[j * c_dim1 + 8] -= sum * t8;
  814. /* L160: */
  815. }
  816. goto L410;
  817. L170:
  818. /* Special code for 9 x 9 Householder */
  819. v1 = v[1];
  820. t1 = *tau * v1;
  821. v2 = v[2];
  822. t2 = *tau * v2;
  823. v3 = v[3];
  824. t3 = *tau * v3;
  825. v4 = v[4];
  826. t4 = *tau * v4;
  827. v5 = v[5];
  828. t5 = *tau * v5;
  829. v6 = v[6];
  830. t6 = *tau * v6;
  831. v7 = v[7];
  832. t7 = *tau * v7;
  833. v8 = v[8];
  834. t8 = *tau * v8;
  835. v9 = v[9];
  836. t9 = *tau * v9;
  837. i__1 = *n;
  838. for (j = 1; j <= i__1; ++j) {
  839. sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2] + v3 *
  840. c__[j * c_dim1 + 3] + v4 * c__[j * c_dim1 + 4] + v5 * c__[
  841. j * c_dim1 + 5] + v6 * c__[j * c_dim1 + 6] + v7 * c__[j *
  842. c_dim1 + 7] + v8 * c__[j * c_dim1 + 8] + v9 * c__[j *
  843. c_dim1 + 9];
  844. c__[j * c_dim1 + 1] -= sum * t1;
  845. c__[j * c_dim1 + 2] -= sum * t2;
  846. c__[j * c_dim1 + 3] -= sum * t3;
  847. c__[j * c_dim1 + 4] -= sum * t4;
  848. c__[j * c_dim1 + 5] -= sum * t5;
  849. c__[j * c_dim1 + 6] -= sum * t6;
  850. c__[j * c_dim1 + 7] -= sum * t7;
  851. c__[j * c_dim1 + 8] -= sum * t8;
  852. c__[j * c_dim1 + 9] -= sum * t9;
  853. /* L180: */
  854. }
  855. goto L410;
  856. L190:
  857. /* Special code for 10 x 10 Householder */
  858. v1 = v[1];
  859. t1 = *tau * v1;
  860. v2 = v[2];
  861. t2 = *tau * v2;
  862. v3 = v[3];
  863. t3 = *tau * v3;
  864. v4 = v[4];
  865. t4 = *tau * v4;
  866. v5 = v[5];
  867. t5 = *tau * v5;
  868. v6 = v[6];
  869. t6 = *tau * v6;
  870. v7 = v[7];
  871. t7 = *tau * v7;
  872. v8 = v[8];
  873. t8 = *tau * v8;
  874. v9 = v[9];
  875. t9 = *tau * v9;
  876. v10 = v[10];
  877. t10 = *tau * v10;
  878. i__1 = *n;
  879. for (j = 1; j <= i__1; ++j) {
  880. sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2] + v3 *
  881. c__[j * c_dim1 + 3] + v4 * c__[j * c_dim1 + 4] + v5 * c__[
  882. j * c_dim1 + 5] + v6 * c__[j * c_dim1 + 6] + v7 * c__[j *
  883. c_dim1 + 7] + v8 * c__[j * c_dim1 + 8] + v9 * c__[j *
  884. c_dim1 + 9] + v10 * c__[j * c_dim1 + 10];
  885. c__[j * c_dim1 + 1] -= sum * t1;
  886. c__[j * c_dim1 + 2] -= sum * t2;
  887. c__[j * c_dim1 + 3] -= sum * t3;
  888. c__[j * c_dim1 + 4] -= sum * t4;
  889. c__[j * c_dim1 + 5] -= sum * t5;
  890. c__[j * c_dim1 + 6] -= sum * t6;
  891. c__[j * c_dim1 + 7] -= sum * t7;
  892. c__[j * c_dim1 + 8] -= sum * t8;
  893. c__[j * c_dim1 + 9] -= sum * t9;
  894. c__[j * c_dim1 + 10] -= sum * t10;
  895. /* L200: */
  896. }
  897. goto L410;
  898. } else {
  899. /* Form C * H, where H has order n. */
  900. switch (*n) {
  901. case 1: goto L210;
  902. case 2: goto L230;
  903. case 3: goto L250;
  904. case 4: goto L270;
  905. case 5: goto L290;
  906. case 6: goto L310;
  907. case 7: goto L330;
  908. case 8: goto L350;
  909. case 9: goto L370;
  910. case 10: goto L390;
  911. }
  912. /* Code for general N */
  913. dlarf_(side, m, n, &v[1], &c__1, tau, &c__[c_offset], ldc, &work[1]);
  914. goto L410;
  915. L210:
  916. /* Special code for 1 x 1 Householder */
  917. t1 = 1. - *tau * v[1] * v[1];
  918. i__1 = *m;
  919. for (j = 1; j <= i__1; ++j) {
  920. c__[j + c_dim1] = t1 * c__[j + c_dim1];
  921. /* L220: */
  922. }
  923. goto L410;
  924. L230:
  925. /* Special code for 2 x 2 Householder */
  926. v1 = v[1];
  927. t1 = *tau * v1;
  928. v2 = v[2];
  929. t2 = *tau * v2;
  930. i__1 = *m;
  931. for (j = 1; j <= i__1; ++j) {
  932. sum = v1 * c__[j + c_dim1] + v2 * c__[j + (c_dim1 << 1)];
  933. c__[j + c_dim1] -= sum * t1;
  934. c__[j + (c_dim1 << 1)] -= sum * t2;
  935. /* L240: */
  936. }
  937. goto L410;
  938. L250:
  939. /* Special code for 3 x 3 Householder */
  940. v1 = v[1];
  941. t1 = *tau * v1;
  942. v2 = v[2];
  943. t2 = *tau * v2;
  944. v3 = v[3];
  945. t3 = *tau * v3;
  946. i__1 = *m;
  947. for (j = 1; j <= i__1; ++j) {
  948. sum = v1 * c__[j + c_dim1] + v2 * c__[j + (c_dim1 << 1)] + v3 *
  949. c__[j + c_dim1 * 3];
  950. c__[j + c_dim1] -= sum * t1;
  951. c__[j + (c_dim1 << 1)] -= sum * t2;
  952. c__[j + c_dim1 * 3] -= sum * t3;
  953. /* L260: */
  954. }
  955. goto L410;
  956. L270:
  957. /* Special code for 4 x 4 Householder */
  958. v1 = v[1];
  959. t1 = *tau * v1;
  960. v2 = v[2];
  961. t2 = *tau * v2;
  962. v3 = v[3];
  963. t3 = *tau * v3;
  964. v4 = v[4];
  965. t4 = *tau * v4;
  966. i__1 = *m;
  967. for (j = 1; j <= i__1; ++j) {
  968. sum = v1 * c__[j + c_dim1] + v2 * c__[j + (c_dim1 << 1)] + v3 *
  969. c__[j + c_dim1 * 3] + v4 * c__[j + (c_dim1 << 2)];
  970. c__[j + c_dim1] -= sum * t1;
  971. c__[j + (c_dim1 << 1)] -= sum * t2;
  972. c__[j + c_dim1 * 3] -= sum * t3;
  973. c__[j + (c_dim1 << 2)] -= sum * t4;
  974. /* L280: */
  975. }
  976. goto L410;
  977. L290:
  978. /* Special code for 5 x 5 Householder */
  979. v1 = v[1];
  980. t1 = *tau * v1;
  981. v2 = v[2];
  982. t2 = *tau * v2;
  983. v3 = v[3];
  984. t3 = *tau * v3;
  985. v4 = v[4];
  986. t4 = *tau * v4;
  987. v5 = v[5];
  988. t5 = *tau * v5;
  989. i__1 = *m;
  990. for (j = 1; j <= i__1; ++j) {
  991. sum = v1 * c__[j + c_dim1] + v2 * c__[j + (c_dim1 << 1)] + v3 *
  992. c__[j + c_dim1 * 3] + v4 * c__[j + (c_dim1 << 2)] + v5 *
  993. c__[j + c_dim1 * 5];
  994. c__[j + c_dim1] -= sum * t1;
  995. c__[j + (c_dim1 << 1)] -= sum * t2;
  996. c__[j + c_dim1 * 3] -= sum * t3;
  997. c__[j + (c_dim1 << 2)] -= sum * t4;
  998. c__[j + c_dim1 * 5] -= sum * t5;
  999. /* L300: */
  1000. }
  1001. goto L410;
  1002. L310:
  1003. /* Special code for 6 x 6 Householder */
  1004. v1 = v[1];
  1005. t1 = *tau * v1;
  1006. v2 = v[2];
  1007. t2 = *tau * v2;
  1008. v3 = v[3];
  1009. t3 = *tau * v3;
  1010. v4 = v[4];
  1011. t4 = *tau * v4;
  1012. v5 = v[5];
  1013. t5 = *tau * v5;
  1014. v6 = v[6];
  1015. t6 = *tau * v6;
  1016. i__1 = *m;
  1017. for (j = 1; j <= i__1; ++j) {
  1018. sum = v1 * c__[j + c_dim1] + v2 * c__[j + (c_dim1 << 1)] + v3 *
  1019. c__[j + c_dim1 * 3] + v4 * c__[j + (c_dim1 << 2)] + v5 *
  1020. c__[j + c_dim1 * 5] + v6 * c__[j + c_dim1 * 6];
  1021. c__[j + c_dim1] -= sum * t1;
  1022. c__[j + (c_dim1 << 1)] -= sum * t2;
  1023. c__[j + c_dim1 * 3] -= sum * t3;
  1024. c__[j + (c_dim1 << 2)] -= sum * t4;
  1025. c__[j + c_dim1 * 5] -= sum * t5;
  1026. c__[j + c_dim1 * 6] -= sum * t6;
  1027. /* L320: */
  1028. }
  1029. goto L410;
  1030. L330:
  1031. /* Special code for 7 x 7 Householder */
  1032. v1 = v[1];
  1033. t1 = *tau * v1;
  1034. v2 = v[2];
  1035. t2 = *tau * v2;
  1036. v3 = v[3];
  1037. t3 = *tau * v3;
  1038. v4 = v[4];
  1039. t4 = *tau * v4;
  1040. v5 = v[5];
  1041. t5 = *tau * v5;
  1042. v6 = v[6];
  1043. t6 = *tau * v6;
  1044. v7 = v[7];
  1045. t7 = *tau * v7;
  1046. i__1 = *m;
  1047. for (j = 1; j <= i__1; ++j) {
  1048. sum = v1 * c__[j + c_dim1] + v2 * c__[j + (c_dim1 << 1)] + v3 *
  1049. c__[j + c_dim1 * 3] + v4 * c__[j + (c_dim1 << 2)] + v5 *
  1050. c__[j + c_dim1 * 5] + v6 * c__[j + c_dim1 * 6] + v7 * c__[
  1051. j + c_dim1 * 7];
  1052. c__[j + c_dim1] -= sum * t1;
  1053. c__[j + (c_dim1 << 1)] -= sum * t2;
  1054. c__[j + c_dim1 * 3] -= sum * t3;
  1055. c__[j + (c_dim1 << 2)] -= sum * t4;
  1056. c__[j + c_dim1 * 5] -= sum * t5;
  1057. c__[j + c_dim1 * 6] -= sum * t6;
  1058. c__[j + c_dim1 * 7] -= sum * t7;
  1059. /* L340: */
  1060. }
  1061. goto L410;
  1062. L350:
  1063. /* Special code for 8 x 8 Householder */
  1064. v1 = v[1];
  1065. t1 = *tau * v1;
  1066. v2 = v[2];
  1067. t2 = *tau * v2;
  1068. v3 = v[3];
  1069. t3 = *tau * v3;
  1070. v4 = v[4];
  1071. t4 = *tau * v4;
  1072. v5 = v[5];
  1073. t5 = *tau * v5;
  1074. v6 = v[6];
  1075. t6 = *tau * v6;
  1076. v7 = v[7];
  1077. t7 = *tau * v7;
  1078. v8 = v[8];
  1079. t8 = *tau * v8;
  1080. i__1 = *m;
  1081. for (j = 1; j <= i__1; ++j) {
  1082. sum = v1 * c__[j + c_dim1] + v2 * c__[j + (c_dim1 << 1)] + v3 *
  1083. c__[j + c_dim1 * 3] + v4 * c__[j + (c_dim1 << 2)] + v5 *
  1084. c__[j + c_dim1 * 5] + v6 * c__[j + c_dim1 * 6] + v7 * c__[
  1085. j + c_dim1 * 7] + v8 * c__[j + (c_dim1 << 3)];
  1086. c__[j + c_dim1] -= sum * t1;
  1087. c__[j + (c_dim1 << 1)] -= sum * t2;
  1088. c__[j + c_dim1 * 3] -= sum * t3;
  1089. c__[j + (c_dim1 << 2)] -= sum * t4;
  1090. c__[j + c_dim1 * 5] -= sum * t5;
  1091. c__[j + c_dim1 * 6] -= sum * t6;
  1092. c__[j + c_dim1 * 7] -= sum * t7;
  1093. c__[j + (c_dim1 << 3)] -= sum * t8;
  1094. /* L360: */
  1095. }
  1096. goto L410;
  1097. L370:
  1098. /* Special code for 9 x 9 Householder */
  1099. v1 = v[1];
  1100. t1 = *tau * v1;
  1101. v2 = v[2];
  1102. t2 = *tau * v2;
  1103. v3 = v[3];
  1104. t3 = *tau * v3;
  1105. v4 = v[4];
  1106. t4 = *tau * v4;
  1107. v5 = v[5];
  1108. t5 = *tau * v5;
  1109. v6 = v[6];
  1110. t6 = *tau * v6;
  1111. v7 = v[7];
  1112. t7 = *tau * v7;
  1113. v8 = v[8];
  1114. t8 = *tau * v8;
  1115. v9 = v[9];
  1116. t9 = *tau * v9;
  1117. i__1 = *m;
  1118. for (j = 1; j <= i__1; ++j) {
  1119. sum = v1 * c__[j + c_dim1] + v2 * c__[j + (c_dim1 << 1)] + v3 *
  1120. c__[j + c_dim1 * 3] + v4 * c__[j + (c_dim1 << 2)] + v5 *
  1121. c__[j + c_dim1 * 5] + v6 * c__[j + c_dim1 * 6] + v7 * c__[
  1122. j + c_dim1 * 7] + v8 * c__[j + (c_dim1 << 3)] + v9 * c__[
  1123. j + c_dim1 * 9];
  1124. c__[j + c_dim1] -= sum * t1;
  1125. c__[j + (c_dim1 << 1)] -= sum * t2;
  1126. c__[j + c_dim1 * 3] -= sum * t3;
  1127. c__[j + (c_dim1 << 2)] -= sum * t4;
  1128. c__[j + c_dim1 * 5] -= sum * t5;
  1129. c__[j + c_dim1 * 6] -= sum * t6;
  1130. c__[j + c_dim1 * 7] -= sum * t7;
  1131. c__[j + (c_dim1 << 3)] -= sum * t8;
  1132. c__[j + c_dim1 * 9] -= sum * t9;
  1133. /* L380: */
  1134. }
  1135. goto L410;
  1136. L390:
  1137. /* Special code for 10 x 10 Householder */
  1138. v1 = v[1];
  1139. t1 = *tau * v1;
  1140. v2 = v[2];
  1141. t2 = *tau * v2;
  1142. v3 = v[3];
  1143. t3 = *tau * v3;
  1144. v4 = v[4];
  1145. t4 = *tau * v4;
  1146. v5 = v[5];
  1147. t5 = *tau * v5;
  1148. v6 = v[6];
  1149. t6 = *tau * v6;
  1150. v7 = v[7];
  1151. t7 = *tau * v7;
  1152. v8 = v[8];
  1153. t8 = *tau * v8;
  1154. v9 = v[9];
  1155. t9 = *tau * v9;
  1156. v10 = v[10];
  1157. t10 = *tau * v10;
  1158. i__1 = *m;
  1159. for (j = 1; j <= i__1; ++j) {
  1160. sum = v1 * c__[j + c_dim1] + v2 * c__[j + (c_dim1 << 1)] + v3 *
  1161. c__[j + c_dim1 * 3] + v4 * c__[j + (c_dim1 << 2)] + v5 *
  1162. c__[j + c_dim1 * 5] + v6 * c__[j + c_dim1 * 6] + v7 * c__[
  1163. j + c_dim1 * 7] + v8 * c__[j + (c_dim1 << 3)] + v9 * c__[
  1164. j + c_dim1 * 9] + v10 * c__[j + c_dim1 * 10];
  1165. c__[j + c_dim1] -= sum * t1;
  1166. c__[j + (c_dim1 << 1)] -= sum * t2;
  1167. c__[j + c_dim1 * 3] -= sum * t3;
  1168. c__[j + (c_dim1 << 2)] -= sum * t4;
  1169. c__[j + c_dim1 * 5] -= sum * t5;
  1170. c__[j + c_dim1 * 6] -= sum * t6;
  1171. c__[j + c_dim1 * 7] -= sum * t7;
  1172. c__[j + (c_dim1 << 3)] -= sum * t8;
  1173. c__[j + c_dim1 * 9] -= sum * t9;
  1174. c__[j + c_dim1 * 10] -= sum * t10;
  1175. /* L400: */
  1176. }
  1177. goto L410;
  1178. }
  1179. L410:
  1180. return;
  1181. /* End of DLARFX */
  1182. } /* dlarfx_ */