You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cstedc.c 32 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__9 = 9;
  485. static integer c__0 = 0;
  486. static integer c__2 = 2;
  487. static real c_b17 = 0.f;
  488. static real c_b18 = 1.f;
  489. static integer c__1 = 1;
  490. /* > \brief \b CSTEDC */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download CSTEDC + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cstedc.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cstedc.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cstedc.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE CSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, RWORK, */
  509. /* LRWORK, IWORK, LIWORK, INFO ) */
  510. /* CHARACTER COMPZ */
  511. /* INTEGER INFO, LDZ, LIWORK, LRWORK, LWORK, N */
  512. /* INTEGER IWORK( * ) */
  513. /* REAL D( * ), E( * ), RWORK( * ) */
  514. /* COMPLEX WORK( * ), Z( LDZ, * ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > CSTEDC computes all eigenvalues and, optionally, eigenvectors of a */
  521. /* > symmetric tridiagonal matrix using the divide and conquer method. */
  522. /* > The eigenvectors of a full or band complex Hermitian matrix can also */
  523. /* > be found if CHETRD or CHPTRD or CHBTRD has been used to reduce this */
  524. /* > matrix to tridiagonal form. */
  525. /* > */
  526. /* > This code makes very mild assumptions about floating point */
  527. /* > arithmetic. It will work on machines with a guard digit in */
  528. /* > add/subtract, or on those binary machines without guard digits */
  529. /* > which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. */
  530. /* > It could conceivably fail on hexadecimal or decimal machines */
  531. /* > without guard digits, but we know of none. See SLAED3 for details. */
  532. /* > \endverbatim */
  533. /* Arguments: */
  534. /* ========== */
  535. /* > \param[in] COMPZ */
  536. /* > \verbatim */
  537. /* > COMPZ is CHARACTER*1 */
  538. /* > = 'N': Compute eigenvalues only. */
  539. /* > = 'I': Compute eigenvectors of tridiagonal matrix also. */
  540. /* > = 'V': Compute eigenvectors of original Hermitian matrix */
  541. /* > also. On entry, Z contains the unitary matrix used */
  542. /* > to reduce the original matrix to tridiagonal form. */
  543. /* > \endverbatim */
  544. /* > */
  545. /* > \param[in] N */
  546. /* > \verbatim */
  547. /* > N is INTEGER */
  548. /* > The dimension of the symmetric tridiagonal matrix. N >= 0. */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[in,out] D */
  552. /* > \verbatim */
  553. /* > D is REAL array, dimension (N) */
  554. /* > On entry, the diagonal elements of the tridiagonal matrix. */
  555. /* > On exit, if INFO = 0, the eigenvalues in ascending order. */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[in,out] E */
  559. /* > \verbatim */
  560. /* > E is REAL array, dimension (N-1) */
  561. /* > On entry, the subdiagonal elements of the tridiagonal matrix. */
  562. /* > On exit, E has been destroyed. */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[in,out] Z */
  566. /* > \verbatim */
  567. /* > Z is COMPLEX array, dimension (LDZ,N) */
  568. /* > On entry, if COMPZ = 'V', then Z contains the unitary */
  569. /* > matrix used in the reduction to tridiagonal form. */
  570. /* > On exit, if INFO = 0, then if COMPZ = 'V', Z contains the */
  571. /* > orthonormal eigenvectors of the original Hermitian matrix, */
  572. /* > and if COMPZ = 'I', Z contains the orthonormal eigenvectors */
  573. /* > of the symmetric tridiagonal matrix. */
  574. /* > If COMPZ = 'N', then Z is not referenced. */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in] LDZ */
  578. /* > \verbatim */
  579. /* > LDZ is INTEGER */
  580. /* > The leading dimension of the array Z. LDZ >= 1. */
  581. /* > If eigenvectors are desired, then LDZ >= f2cmax(1,N). */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[out] WORK */
  585. /* > \verbatim */
  586. /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
  587. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[in] LWORK */
  591. /* > \verbatim */
  592. /* > LWORK is INTEGER */
  593. /* > The dimension of the array WORK. */
  594. /* > If COMPZ = 'N' or 'I', or N <= 1, LWORK must be at least 1. */
  595. /* > If COMPZ = 'V' and N > 1, LWORK must be at least N*N. */
  596. /* > Note that for COMPZ = 'V', then if N is less than or */
  597. /* > equal to the minimum divide size, usually 25, then LWORK need */
  598. /* > only be 1. */
  599. /* > */
  600. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  601. /* > only calculates the optimal sizes of the WORK, RWORK and */
  602. /* > IWORK arrays, returns these values as the first entries of */
  603. /* > the WORK, RWORK and IWORK arrays, and no error message */
  604. /* > related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[out] RWORK */
  608. /* > \verbatim */
  609. /* > RWORK is REAL array, dimension (MAX(1,LRWORK)) */
  610. /* > On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. */
  611. /* > \endverbatim */
  612. /* > */
  613. /* > \param[in] LRWORK */
  614. /* > \verbatim */
  615. /* > LRWORK is INTEGER */
  616. /* > The dimension of the array RWORK. */
  617. /* > If COMPZ = 'N' or N <= 1, LRWORK must be at least 1. */
  618. /* > If COMPZ = 'V' and N > 1, LRWORK must be at least */
  619. /* > 1 + 3*N + 2*N*lg N + 4*N**2 , */
  620. /* > where lg( N ) = smallest integer k such */
  621. /* > that 2**k >= N. */
  622. /* > If COMPZ = 'I' and N > 1, LRWORK must be at least */
  623. /* > 1 + 4*N + 2*N**2 . */
  624. /* > Note that for COMPZ = 'I' or 'V', then if N is less than or */
  625. /* > equal to the minimum divide size, usually 25, then LRWORK */
  626. /* > need only be f2cmax(1,2*(N-1)). */
  627. /* > */
  628. /* > If LRWORK = -1, then a workspace query is assumed; the */
  629. /* > routine only calculates the optimal sizes of the WORK, RWORK */
  630. /* > and IWORK arrays, returns these values as the first entries */
  631. /* > of the WORK, RWORK and IWORK arrays, and no error message */
  632. /* > related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
  633. /* > \endverbatim */
  634. /* > */
  635. /* > \param[out] IWORK */
  636. /* > \verbatim */
  637. /* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
  638. /* > On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
  639. /* > \endverbatim */
  640. /* > */
  641. /* > \param[in] LIWORK */
  642. /* > \verbatim */
  643. /* > LIWORK is INTEGER */
  644. /* > The dimension of the array IWORK. */
  645. /* > If COMPZ = 'N' or N <= 1, LIWORK must be at least 1. */
  646. /* > If COMPZ = 'V' or N > 1, LIWORK must be at least */
  647. /* > 6 + 6*N + 5*N*lg N. */
  648. /* > If COMPZ = 'I' or N > 1, LIWORK must be at least */
  649. /* > 3 + 5*N . */
  650. /* > Note that for COMPZ = 'I' or 'V', then if N is less than or */
  651. /* > equal to the minimum divide size, usually 25, then LIWORK */
  652. /* > need only be 1. */
  653. /* > */
  654. /* > If LIWORK = -1, then a workspace query is assumed; the */
  655. /* > routine only calculates the optimal sizes of the WORK, RWORK */
  656. /* > and IWORK arrays, returns these values as the first entries */
  657. /* > of the WORK, RWORK and IWORK arrays, and no error message */
  658. /* > related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
  659. /* > \endverbatim */
  660. /* > */
  661. /* > \param[out] INFO */
  662. /* > \verbatim */
  663. /* > INFO is INTEGER */
  664. /* > = 0: successful exit. */
  665. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  666. /* > > 0: The algorithm failed to compute an eigenvalue while */
  667. /* > working on the submatrix lying in rows and columns */
  668. /* > INFO/(N+1) through mod(INFO,N+1). */
  669. /* > \endverbatim */
  670. /* Authors: */
  671. /* ======== */
  672. /* > \author Univ. of Tennessee */
  673. /* > \author Univ. of California Berkeley */
  674. /* > \author Univ. of Colorado Denver */
  675. /* > \author NAG Ltd. */
  676. /* > \date December 2016 */
  677. /* > \ingroup complexOTHERcomputational */
  678. /* > \par Contributors: */
  679. /* ================== */
  680. /* > */
  681. /* > Jeff Rutter, Computer Science Division, University of California */
  682. /* > at Berkeley, USA */
  683. /* ===================================================================== */
  684. /* Subroutine */ void cstedc_(char *compz, integer *n, real *d__, real *e,
  685. complex *z__, integer *ldz, complex *work, integer *lwork, real *
  686. rwork, integer *lrwork, integer *iwork, integer *liwork, integer *
  687. info)
  688. {
  689. /* System generated locals */
  690. integer z_dim1, z_offset, i__1, i__2, i__3, i__4;
  691. real r__1, r__2;
  692. /* Local variables */
  693. real tiny;
  694. integer i__, j, k, m;
  695. real p;
  696. extern logical lsame_(char *, char *);
  697. extern /* Subroutine */ void cswap_(integer *, complex *, integer *,
  698. complex *, integer *);
  699. integer lwmin;
  700. extern /* Subroutine */ void claed0_(integer *, integer *, real *, real *,
  701. complex *, integer *, complex *, integer *, real *, integer *,
  702. integer *);
  703. integer start, ii, ll;
  704. extern /* Subroutine */ void clacrm_(integer *, integer *, complex *,
  705. integer *, real *, integer *, complex *, integer *, real *);
  706. extern real slamch_(char *);
  707. extern /* Subroutine */ void clacpy_(char *, integer *, integer *, complex
  708. *, integer *, complex *, integer *);
  709. extern int xerbla_(char *, integer *, ftnlen);
  710. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  711. integer *, integer *, ftnlen, ftnlen);
  712. integer finish;
  713. extern /* Subroutine */ void slascl_(char *, integer *, integer *, real *,
  714. real *, integer *, integer *, real *, integer *, integer *), sstedc_(char *, integer *, real *, real *, real *,
  715. integer *, real *, integer *, integer *, integer *, integer *), slaset_(char *, integer *, integer *, real *, real *,
  716. real *, integer *);
  717. integer liwmin, icompz;
  718. extern /* Subroutine */ void csteqr_(char *, integer *, real *, real *,
  719. complex *, integer *, real *, integer *);
  720. real orgnrm;
  721. extern real slanst_(char *, integer *, real *, real *);
  722. extern /* Subroutine */ void ssterf_(integer *, real *, real *, integer *);
  723. integer lrwmin;
  724. logical lquery;
  725. integer smlsiz;
  726. extern /* Subroutine */ void ssteqr_(char *, integer *, real *, real *,
  727. real *, integer *, real *, integer *);
  728. integer lgn;
  729. real eps;
  730. /* -- LAPACK computational routine (version 3.7.0) -- */
  731. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  732. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  733. /* December 2016 */
  734. /* ===================================================================== */
  735. /* Test the input parameters. */
  736. /* Parameter adjustments */
  737. --d__;
  738. --e;
  739. z_dim1 = *ldz;
  740. z_offset = 1 + z_dim1 * 1;
  741. z__ -= z_offset;
  742. --work;
  743. --rwork;
  744. --iwork;
  745. /* Function Body */
  746. *info = 0;
  747. lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1;
  748. if (lsame_(compz, "N")) {
  749. icompz = 0;
  750. } else if (lsame_(compz, "V")) {
  751. icompz = 1;
  752. } else if (lsame_(compz, "I")) {
  753. icompz = 2;
  754. } else {
  755. icompz = -1;
  756. }
  757. if (icompz < 0) {
  758. *info = -1;
  759. } else if (*n < 0) {
  760. *info = -2;
  761. } else if (*ldz < 1 || icompz > 0 && *ldz < f2cmax(1,*n)) {
  762. *info = -6;
  763. }
  764. if (*info == 0) {
  765. /* Compute the workspace requirements */
  766. smlsiz = ilaenv_(&c__9, "CSTEDC", " ", &c__0, &c__0, &c__0, &c__0, (
  767. ftnlen)6, (ftnlen)1);
  768. if (*n <= 1 || icompz == 0) {
  769. lwmin = 1;
  770. liwmin = 1;
  771. lrwmin = 1;
  772. } else if (*n <= smlsiz) {
  773. lwmin = 1;
  774. liwmin = 1;
  775. lrwmin = *n - 1 << 1;
  776. } else if (icompz == 1) {
  777. lgn = (integer) (log((real) (*n)) / log(2.f));
  778. if (pow_ii(c__2, lgn) < *n) {
  779. ++lgn;
  780. }
  781. if (pow_ii(c__2, lgn) < *n) {
  782. ++lgn;
  783. }
  784. lwmin = *n * *n;
  785. /* Computing 2nd power */
  786. i__1 = *n;
  787. lrwmin = *n * 3 + 1 + (*n << 1) * lgn + (i__1 * i__1 << 2);
  788. liwmin = *n * 6 + 6 + *n * 5 * lgn;
  789. } else if (icompz == 2) {
  790. lwmin = 1;
  791. /* Computing 2nd power */
  792. i__1 = *n;
  793. lrwmin = (*n << 2) + 1 + (i__1 * i__1 << 1);
  794. liwmin = *n * 5 + 3;
  795. }
  796. work[1].r = (real) lwmin, work[1].i = 0.f;
  797. rwork[1] = (real) lrwmin;
  798. iwork[1] = liwmin;
  799. if (*lwork < lwmin && ! lquery) {
  800. *info = -8;
  801. } else if (*lrwork < lrwmin && ! lquery) {
  802. *info = -10;
  803. } else if (*liwork < liwmin && ! lquery) {
  804. *info = -12;
  805. }
  806. }
  807. if (*info != 0) {
  808. i__1 = -(*info);
  809. xerbla_("CSTEDC", &i__1, (ftnlen)6);
  810. return;
  811. } else if (lquery) {
  812. return;
  813. }
  814. /* Quick return if possible */
  815. if (*n == 0) {
  816. return;
  817. }
  818. if (*n == 1) {
  819. if (icompz != 0) {
  820. i__1 = z_dim1 + 1;
  821. z__[i__1].r = 1.f, z__[i__1].i = 0.f;
  822. }
  823. return;
  824. }
  825. /* If the following conditional clause is removed, then the routine */
  826. /* will use the Divide and Conquer routine to compute only the */
  827. /* eigenvalues, which requires (3N + 3N**2) real workspace and */
  828. /* (2 + 5N + 2N lg(N)) integer workspace. */
  829. /* Since on many architectures SSTERF is much faster than any other */
  830. /* algorithm for finding eigenvalues only, it is used here */
  831. /* as the default. If the conditional clause is removed, then */
  832. /* information on the size of workspace needs to be changed. */
  833. /* If COMPZ = 'N', use SSTERF to compute the eigenvalues. */
  834. if (icompz == 0) {
  835. ssterf_(n, &d__[1], &e[1], info);
  836. goto L70;
  837. }
  838. /* If N is smaller than the minimum divide size (SMLSIZ+1), then */
  839. /* solve the problem with another solver. */
  840. if (*n <= smlsiz) {
  841. csteqr_(compz, n, &d__[1], &e[1], &z__[z_offset], ldz, &rwork[1],
  842. info);
  843. } else {
  844. /* If COMPZ = 'I', we simply call SSTEDC instead. */
  845. if (icompz == 2) {
  846. slaset_("Full", n, n, &c_b17, &c_b18, &rwork[1], n);
  847. ll = *n * *n + 1;
  848. i__1 = *lrwork - ll + 1;
  849. sstedc_("I", n, &d__[1], &e[1], &rwork[1], n, &rwork[ll], &i__1, &
  850. iwork[1], liwork, info);
  851. i__1 = *n;
  852. for (j = 1; j <= i__1; ++j) {
  853. i__2 = *n;
  854. for (i__ = 1; i__ <= i__2; ++i__) {
  855. i__3 = i__ + j * z_dim1;
  856. i__4 = (j - 1) * *n + i__;
  857. z__[i__3].r = rwork[i__4], z__[i__3].i = 0.f;
  858. /* L10: */
  859. }
  860. /* L20: */
  861. }
  862. goto L70;
  863. }
  864. /* From now on, only option left to be handled is COMPZ = 'V', */
  865. /* i.e. ICOMPZ = 1. */
  866. /* Scale. */
  867. orgnrm = slanst_("M", n, &d__[1], &e[1]);
  868. if (orgnrm == 0.f) {
  869. goto L70;
  870. }
  871. eps = slamch_("Epsilon");
  872. start = 1;
  873. /* while ( START <= N ) */
  874. L30:
  875. if (start <= *n) {
  876. /* Let FINISH be the position of the next subdiagonal entry */
  877. /* such that E( FINISH ) <= TINY or FINISH = N if no such */
  878. /* subdiagonal exists. The matrix identified by the elements */
  879. /* between START and FINISH constitutes an independent */
  880. /* sub-problem. */
  881. finish = start;
  882. L40:
  883. if (finish < *n) {
  884. tiny = eps * sqrt((r__1 = d__[finish], abs(r__1))) * sqrt((
  885. r__2 = d__[finish + 1], abs(r__2)));
  886. if ((r__1 = e[finish], abs(r__1)) > tiny) {
  887. ++finish;
  888. goto L40;
  889. }
  890. }
  891. /* (Sub) Problem determined. Compute its size and solve it. */
  892. m = finish - start + 1;
  893. if (m > smlsiz) {
  894. /* Scale. */
  895. orgnrm = slanst_("M", &m, &d__[start], &e[start]);
  896. slascl_("G", &c__0, &c__0, &orgnrm, &c_b18, &m, &c__1, &d__[
  897. start], &m, info);
  898. i__1 = m - 1;
  899. i__2 = m - 1;
  900. slascl_("G", &c__0, &c__0, &orgnrm, &c_b18, &i__1, &c__1, &e[
  901. start], &i__2, info);
  902. claed0_(n, &m, &d__[start], &e[start], &z__[start * z_dim1 +
  903. 1], ldz, &work[1], n, &rwork[1], &iwork[1], info);
  904. if (*info > 0) {
  905. *info = (*info / (m + 1) + start - 1) * (*n + 1) + *info %
  906. (m + 1) + start - 1;
  907. goto L70;
  908. }
  909. /* Scale back. */
  910. slascl_("G", &c__0, &c__0, &c_b18, &orgnrm, &m, &c__1, &d__[
  911. start], &m, info);
  912. } else {
  913. ssteqr_("I", &m, &d__[start], &e[start], &rwork[1], &m, &
  914. rwork[m * m + 1], info);
  915. clacrm_(n, &m, &z__[start * z_dim1 + 1], ldz, &rwork[1], &m, &
  916. work[1], n, &rwork[m * m + 1]);
  917. clacpy_("A", n, &m, &work[1], n, &z__[start * z_dim1 + 1],
  918. ldz);
  919. if (*info > 0) {
  920. *info = start * (*n + 1) + finish;
  921. goto L70;
  922. }
  923. }
  924. start = finish + 1;
  925. goto L30;
  926. }
  927. /* endwhile */
  928. /* Use Selection Sort to minimize swaps of eigenvectors */
  929. i__1 = *n;
  930. for (ii = 2; ii <= i__1; ++ii) {
  931. i__ = ii - 1;
  932. k = i__;
  933. p = d__[i__];
  934. i__2 = *n;
  935. for (j = ii; j <= i__2; ++j) {
  936. if (d__[j] < p) {
  937. k = j;
  938. p = d__[j];
  939. }
  940. /* L50: */
  941. }
  942. if (k != i__) {
  943. d__[k] = d__[i__];
  944. d__[i__] = p;
  945. cswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * z_dim1 + 1],
  946. &c__1);
  947. }
  948. /* L60: */
  949. }
  950. }
  951. L70:
  952. work[1].r = (real) lwmin, work[1].i = 0.f;
  953. rwork[1] = (real) lrwmin;
  954. iwork[1] = liwmin;
  955. return;
  956. /* End of CSTEDC */
  957. } /* cstedc_ */