You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clarfb.c 39 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static complex c_b1 = {1.f,0.f};
  485. static integer c__1 = 1;
  486. /* > \brief \b CLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix. */
  487. /* =========== DOCUMENTATION =========== */
  488. /* Online html documentation available at */
  489. /* http://www.netlib.org/lapack/explore-html/ */
  490. /* > \htmlonly */
  491. /* > Download CLARFB + dependencies */
  492. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarfb.
  493. f"> */
  494. /* > [TGZ]</a> */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarfb.
  496. f"> */
  497. /* > [ZIP]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarfb.
  499. f"> */
  500. /* > [TXT]</a> */
  501. /* > \endhtmlonly */
  502. /* Definition: */
  503. /* =========== */
  504. /* SUBROUTINE CLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, */
  505. /* T, LDT, C, LDC, WORK, LDWORK ) */
  506. /* CHARACTER DIRECT, SIDE, STOREV, TRANS */
  507. /* INTEGER K, LDC, LDT, LDV, LDWORK, M, N */
  508. /* COMPLEX C( LDC, * ), T( LDT, * ), V( LDV, * ), */
  509. /* $ WORK( LDWORK, * ) */
  510. /* > \par Purpose: */
  511. /* ============= */
  512. /* > */
  513. /* > \verbatim */
  514. /* > */
  515. /* > CLARFB applies a complex block reflector H or its transpose H**H to a */
  516. /* > complex M-by-N matrix C, from either the left or the right. */
  517. /* > \endverbatim */
  518. /* Arguments: */
  519. /* ========== */
  520. /* > \param[in] SIDE */
  521. /* > \verbatim */
  522. /* > SIDE is CHARACTER*1 */
  523. /* > = 'L': apply H or H**H from the Left */
  524. /* > = 'R': apply H or H**H from the Right */
  525. /* > \endverbatim */
  526. /* > */
  527. /* > \param[in] TRANS */
  528. /* > \verbatim */
  529. /* > TRANS is CHARACTER*1 */
  530. /* > = 'N': apply H (No transpose) */
  531. /* > = 'C': apply H**H (Conjugate transpose) */
  532. /* > \endverbatim */
  533. /* > */
  534. /* > \param[in] DIRECT */
  535. /* > \verbatim */
  536. /* > DIRECT is CHARACTER*1 */
  537. /* > Indicates how H is formed from a product of elementary */
  538. /* > reflectors */
  539. /* > = 'F': H = H(1) H(2) . . . H(k) (Forward) */
  540. /* > = 'B': H = H(k) . . . H(2) H(1) (Backward) */
  541. /* > \endverbatim */
  542. /* > */
  543. /* > \param[in] STOREV */
  544. /* > \verbatim */
  545. /* > STOREV is CHARACTER*1 */
  546. /* > Indicates how the vectors which define the elementary */
  547. /* > reflectors are stored: */
  548. /* > = 'C': Columnwise */
  549. /* > = 'R': Rowwise */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in] M */
  553. /* > \verbatim */
  554. /* > M is INTEGER */
  555. /* > The number of rows of the matrix C. */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[in] N */
  559. /* > \verbatim */
  560. /* > N is INTEGER */
  561. /* > The number of columns of the matrix C. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] K */
  565. /* > \verbatim */
  566. /* > K is INTEGER */
  567. /* > The order of the matrix T (= the number of elementary */
  568. /* > reflectors whose product defines the block reflector). */
  569. /* > If SIDE = 'L', M >= K >= 0; */
  570. /* > if SIDE = 'R', N >= K >= 0. */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[in] V */
  574. /* > \verbatim */
  575. /* > V is COMPLEX array, dimension */
  576. /* > (LDV,K) if STOREV = 'C' */
  577. /* > (LDV,M) if STOREV = 'R' and SIDE = 'L' */
  578. /* > (LDV,N) if STOREV = 'R' and SIDE = 'R' */
  579. /* > The matrix V. See Further Details. */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[in] LDV */
  583. /* > \verbatim */
  584. /* > LDV is INTEGER */
  585. /* > The leading dimension of the array V. */
  586. /* > If STOREV = 'C' and SIDE = 'L', LDV >= f2cmax(1,M); */
  587. /* > if STOREV = 'C' and SIDE = 'R', LDV >= f2cmax(1,N); */
  588. /* > if STOREV = 'R', LDV >= K. */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[in] T */
  592. /* > \verbatim */
  593. /* > T is COMPLEX array, dimension (LDT,K) */
  594. /* > The triangular K-by-K matrix T in the representation of the */
  595. /* > block reflector. */
  596. /* > \endverbatim */
  597. /* > */
  598. /* > \param[in] LDT */
  599. /* > \verbatim */
  600. /* > LDT is INTEGER */
  601. /* > The leading dimension of the array T. LDT >= K. */
  602. /* > \endverbatim */
  603. /* > */
  604. /* > \param[in,out] C */
  605. /* > \verbatim */
  606. /* > C is COMPLEX array, dimension (LDC,N) */
  607. /* > On entry, the M-by-N matrix C. */
  608. /* > On exit, C is overwritten by H*C or H**H*C or C*H or C*H**H. */
  609. /* > \endverbatim */
  610. /* > */
  611. /* > \param[in] LDC */
  612. /* > \verbatim */
  613. /* > LDC is INTEGER */
  614. /* > The leading dimension of the array C. LDC >= f2cmax(1,M). */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[out] WORK */
  618. /* > \verbatim */
  619. /* > WORK is COMPLEX array, dimension (LDWORK,K) */
  620. /* > \endverbatim */
  621. /* > */
  622. /* > \param[in] LDWORK */
  623. /* > \verbatim */
  624. /* > LDWORK is INTEGER */
  625. /* > The leading dimension of the array WORK. */
  626. /* > If SIDE = 'L', LDWORK >= f2cmax(1,N); */
  627. /* > if SIDE = 'R', LDWORK >= f2cmax(1,M). */
  628. /* > \endverbatim */
  629. /* Authors: */
  630. /* ======== */
  631. /* > \author Univ. of Tennessee */
  632. /* > \author Univ. of California Berkeley */
  633. /* > \author Univ. of Colorado Denver */
  634. /* > \author NAG Ltd. */
  635. /* > \date June 2013 */
  636. /* > \ingroup complexOTHERauxiliary */
  637. /* > \par Further Details: */
  638. /* ===================== */
  639. /* > */
  640. /* > \verbatim */
  641. /* > */
  642. /* > The shape of the matrix V and the storage of the vectors which define */
  643. /* > the H(i) is best illustrated by the following example with n = 5 and */
  644. /* > k = 3. The elements equal to 1 are not stored; the corresponding */
  645. /* > array elements are modified but restored on exit. The rest of the */
  646. /* > array is not used. */
  647. /* > */
  648. /* > DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': */
  649. /* > */
  650. /* > V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) */
  651. /* > ( v1 1 ) ( 1 v2 v2 v2 ) */
  652. /* > ( v1 v2 1 ) ( 1 v3 v3 ) */
  653. /* > ( v1 v2 v3 ) */
  654. /* > ( v1 v2 v3 ) */
  655. /* > */
  656. /* > DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': */
  657. /* > */
  658. /* > V = ( v1 v2 v3 ) V = ( v1 v1 1 ) */
  659. /* > ( v1 v2 v3 ) ( v2 v2 v2 1 ) */
  660. /* > ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) */
  661. /* > ( 1 v3 ) */
  662. /* > ( 1 ) */
  663. /* > \endverbatim */
  664. /* > */
  665. /* ===================================================================== */
  666. /* Subroutine */ void clarfb_(char *side, char *trans, char *direct, char *
  667. storev, integer *m, integer *n, integer *k, complex *v, integer *ldv,
  668. complex *t, integer *ldt, complex *c__, integer *ldc, complex *work,
  669. integer *ldwork)
  670. {
  671. /* System generated locals */
  672. integer c_dim1, c_offset, t_dim1, t_offset, v_dim1, v_offset, work_dim1,
  673. work_offset, i__1, i__2, i__3, i__4, i__5;
  674. complex q__1, q__2;
  675. /* Local variables */
  676. integer i__, j;
  677. extern /* Subroutine */ void cgemm_(char *, char *, integer *, integer *,
  678. integer *, complex *, complex *, integer *, complex *, integer *,
  679. complex *, complex *, integer *);
  680. extern logical lsame_(char *, char *);
  681. extern /* Subroutine */ void ccopy_(integer *, complex *, integer *,
  682. complex *, integer *), ctrmm_(char *, char *, char *, char *,
  683. integer *, integer *, complex *, complex *, integer *, complex *,
  684. integer *), clacgv_(integer *,
  685. complex *, integer *);
  686. char transt[1];
  687. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  688. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  689. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  690. /* June 2013 */
  691. /* ===================================================================== */
  692. /* Quick return if possible */
  693. /* Parameter adjustments */
  694. v_dim1 = *ldv;
  695. v_offset = 1 + v_dim1 * 1;
  696. v -= v_offset;
  697. t_dim1 = *ldt;
  698. t_offset = 1 + t_dim1 * 1;
  699. t -= t_offset;
  700. c_dim1 = *ldc;
  701. c_offset = 1 + c_dim1 * 1;
  702. c__ -= c_offset;
  703. work_dim1 = *ldwork;
  704. work_offset = 1 + work_dim1 * 1;
  705. work -= work_offset;
  706. /* Function Body */
  707. if (*m <= 0 || *n <= 0) {
  708. return;
  709. }
  710. if (lsame_(trans, "N")) {
  711. *(unsigned char *)transt = 'C';
  712. } else {
  713. *(unsigned char *)transt = 'N';
  714. }
  715. if (lsame_(storev, "C")) {
  716. if (lsame_(direct, "F")) {
  717. /* Let V = ( V1 ) (first K rows) */
  718. /* ( V2 ) */
  719. /* where V1 is unit lower triangular. */
  720. if (lsame_(side, "L")) {
  721. /* Form H * C or H**H * C where C = ( C1 ) */
  722. /* ( C2 ) */
  723. /* W := C**H * V = (C1**H * V1 + C2**H * V2) (stored in WORK) */
  724. /* W := C1**H */
  725. i__1 = *k;
  726. for (j = 1; j <= i__1; ++j) {
  727. ccopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1],
  728. &c__1);
  729. clacgv_(n, &work[j * work_dim1 + 1], &c__1);
  730. /* L10: */
  731. }
  732. /* W := W * V1 */
  733. ctrmm_("Right", "Lower", "No transpose", "Unit", n, k, &c_b1,
  734. &v[v_offset], ldv, &work[work_offset], ldwork);
  735. if (*m > *k) {
  736. /* W := W + C2**H *V2 */
  737. i__1 = *m - *k;
  738. cgemm_("Conjugate transpose", "No transpose", n, k, &i__1,
  739. &c_b1, &c__[*k + 1 + c_dim1], ldc, &v[*k + 1 +
  740. v_dim1], ldv, &c_b1, &work[work_offset], ldwork);
  741. }
  742. /* W := W * T**H or W * T */
  743. ctrmm_("Right", "Upper", transt, "Non-unit", n, k, &c_b1, &t[
  744. t_offset], ldt, &work[work_offset], ldwork);
  745. /* C := C - V * W**H */
  746. if (*m > *k) {
  747. /* C2 := C2 - V2 * W**H */
  748. i__1 = *m - *k;
  749. q__1.r = -1.f, q__1.i = 0.f;
  750. cgemm_("No transpose", "Conjugate transpose", &i__1, n, k,
  751. &q__1, &v[*k + 1 + v_dim1], ldv, &work[
  752. work_offset], ldwork, &c_b1, &c__[*k + 1 + c_dim1]
  753. , ldc);
  754. }
  755. /* W := W * V1**H */
  756. ctrmm_("Right", "Lower", "Conjugate transpose", "Unit", n, k,
  757. &c_b1, &v[v_offset], ldv, &work[work_offset], ldwork);
  758. /* C1 := C1 - W**H */
  759. i__1 = *k;
  760. for (j = 1; j <= i__1; ++j) {
  761. i__2 = *n;
  762. for (i__ = 1; i__ <= i__2; ++i__) {
  763. i__3 = j + i__ * c_dim1;
  764. i__4 = j + i__ * c_dim1;
  765. r_cnjg(&q__2, &work[i__ + j * work_dim1]);
  766. q__1.r = c__[i__4].r - q__2.r, q__1.i = c__[i__4].i -
  767. q__2.i;
  768. c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
  769. /* L20: */
  770. }
  771. /* L30: */
  772. }
  773. } else if (lsame_(side, "R")) {
  774. /* Form C * H or C * H**H where C = ( C1 C2 ) */
  775. /* W := C * V = (C1*V1 + C2*V2) (stored in WORK) */
  776. /* W := C1 */
  777. i__1 = *k;
  778. for (j = 1; j <= i__1; ++j) {
  779. ccopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j *
  780. work_dim1 + 1], &c__1);
  781. /* L40: */
  782. }
  783. /* W := W * V1 */
  784. ctrmm_("Right", "Lower", "No transpose", "Unit", m, k, &c_b1,
  785. &v[v_offset], ldv, &work[work_offset], ldwork);
  786. if (*n > *k) {
  787. /* W := W + C2 * V2 */
  788. i__1 = *n - *k;
  789. cgemm_("No transpose", "No transpose", m, k, &i__1, &c_b1,
  790. &c__[(*k + 1) * c_dim1 + 1], ldc, &v[*k + 1 +
  791. v_dim1], ldv, &c_b1, &work[work_offset], ldwork);
  792. }
  793. /* W := W * T or W * T**H */
  794. ctrmm_("Right", "Upper", trans, "Non-unit", m, k, &c_b1, &t[
  795. t_offset], ldt, &work[work_offset], ldwork);
  796. /* C := C - W * V**H */
  797. if (*n > *k) {
  798. /* C2 := C2 - W * V2**H */
  799. i__1 = *n - *k;
  800. q__1.r = -1.f, q__1.i = 0.f;
  801. cgemm_("No transpose", "Conjugate transpose", m, &i__1, k,
  802. &q__1, &work[work_offset], ldwork, &v[*k + 1 +
  803. v_dim1], ldv, &c_b1, &c__[(*k + 1) * c_dim1 + 1],
  804. ldc);
  805. }
  806. /* W := W * V1**H */
  807. ctrmm_("Right", "Lower", "Conjugate transpose", "Unit", m, k,
  808. &c_b1, &v[v_offset], ldv, &work[work_offset], ldwork);
  809. /* C1 := C1 - W */
  810. i__1 = *k;
  811. for (j = 1; j <= i__1; ++j) {
  812. i__2 = *m;
  813. for (i__ = 1; i__ <= i__2; ++i__) {
  814. i__3 = i__ + j * c_dim1;
  815. i__4 = i__ + j * c_dim1;
  816. i__5 = i__ + j * work_dim1;
  817. q__1.r = c__[i__4].r - work[i__5].r, q__1.i = c__[
  818. i__4].i - work[i__5].i;
  819. c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
  820. /* L50: */
  821. }
  822. /* L60: */
  823. }
  824. }
  825. } else {
  826. /* Let V = ( V1 ) */
  827. /* ( V2 ) (last K rows) */
  828. /* where V2 is unit upper triangular. */
  829. if (lsame_(side, "L")) {
  830. /* Form H * C or H**H * C where C = ( C1 ) */
  831. /* ( C2 ) */
  832. /* W := C**H * V = (C1**H * V1 + C2**H * V2) (stored in WORK) */
  833. /* W := C2**H */
  834. i__1 = *k;
  835. for (j = 1; j <= i__1; ++j) {
  836. ccopy_(n, &c__[*m - *k + j + c_dim1], ldc, &work[j *
  837. work_dim1 + 1], &c__1);
  838. clacgv_(n, &work[j * work_dim1 + 1], &c__1);
  839. /* L70: */
  840. }
  841. /* W := W * V2 */
  842. ctrmm_("Right", "Upper", "No transpose", "Unit", n, k, &c_b1,
  843. &v[*m - *k + 1 + v_dim1], ldv, &work[work_offset],
  844. ldwork);
  845. if (*m > *k) {
  846. /* W := W + C1**H * V1 */
  847. i__1 = *m - *k;
  848. cgemm_("Conjugate transpose", "No transpose", n, k, &i__1,
  849. &c_b1, &c__[c_offset], ldc, &v[v_offset], ldv, &
  850. c_b1, &work[work_offset], ldwork);
  851. }
  852. /* W := W * T**H or W * T */
  853. ctrmm_("Right", "Lower", transt, "Non-unit", n, k, &c_b1, &t[
  854. t_offset], ldt, &work[work_offset], ldwork);
  855. /* C := C - V * W**H */
  856. if (*m > *k) {
  857. /* C1 := C1 - V1 * W**H */
  858. i__1 = *m - *k;
  859. q__1.r = -1.f, q__1.i = 0.f;
  860. cgemm_("No transpose", "Conjugate transpose", &i__1, n, k,
  861. &q__1, &v[v_offset], ldv, &work[work_offset],
  862. ldwork, &c_b1, &c__[c_offset], ldc);
  863. }
  864. /* W := W * V2**H */
  865. ctrmm_("Right", "Upper", "Conjugate transpose", "Unit", n, k,
  866. &c_b1, &v[*m - *k + 1 + v_dim1], ldv, &work[
  867. work_offset], ldwork);
  868. /* C2 := C2 - W**H */
  869. i__1 = *k;
  870. for (j = 1; j <= i__1; ++j) {
  871. i__2 = *n;
  872. for (i__ = 1; i__ <= i__2; ++i__) {
  873. i__3 = *m - *k + j + i__ * c_dim1;
  874. i__4 = *m - *k + j + i__ * c_dim1;
  875. r_cnjg(&q__2, &work[i__ + j * work_dim1]);
  876. q__1.r = c__[i__4].r - q__2.r, q__1.i = c__[i__4].i -
  877. q__2.i;
  878. c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
  879. /* L80: */
  880. }
  881. /* L90: */
  882. }
  883. } else if (lsame_(side, "R")) {
  884. /* Form C * H or C * H**H where C = ( C1 C2 ) */
  885. /* W := C * V = (C1*V1 + C2*V2) (stored in WORK) */
  886. /* W := C2 */
  887. i__1 = *k;
  888. for (j = 1; j <= i__1; ++j) {
  889. ccopy_(m, &c__[(*n - *k + j) * c_dim1 + 1], &c__1, &work[
  890. j * work_dim1 + 1], &c__1);
  891. /* L100: */
  892. }
  893. /* W := W * V2 */
  894. ctrmm_("Right", "Upper", "No transpose", "Unit", m, k, &c_b1,
  895. &v[*n - *k + 1 + v_dim1], ldv, &work[work_offset],
  896. ldwork);
  897. if (*n > *k) {
  898. /* W := W + C1 * V1 */
  899. i__1 = *n - *k;
  900. cgemm_("No transpose", "No transpose", m, k, &i__1, &c_b1,
  901. &c__[c_offset], ldc, &v[v_offset], ldv, &c_b1, &
  902. work[work_offset], ldwork)
  903. ;
  904. }
  905. /* W := W * T or W * T**H */
  906. ctrmm_("Right", "Lower", trans, "Non-unit", m, k, &c_b1, &t[
  907. t_offset], ldt, &work[work_offset], ldwork);
  908. /* C := C - W * V**H */
  909. if (*n > *k) {
  910. /* C1 := C1 - W * V1**H */
  911. i__1 = *n - *k;
  912. q__1.r = -1.f, q__1.i = 0.f;
  913. cgemm_("No transpose", "Conjugate transpose", m, &i__1, k,
  914. &q__1, &work[work_offset], ldwork, &v[v_offset],
  915. ldv, &c_b1, &c__[c_offset], ldc);
  916. }
  917. /* W := W * V2**H */
  918. ctrmm_("Right", "Upper", "Conjugate transpose", "Unit", m, k,
  919. &c_b1, &v[*n - *k + 1 + v_dim1], ldv, &work[
  920. work_offset], ldwork);
  921. /* C2 := C2 - W */
  922. i__1 = *k;
  923. for (j = 1; j <= i__1; ++j) {
  924. i__2 = *m;
  925. for (i__ = 1; i__ <= i__2; ++i__) {
  926. i__3 = i__ + (*n - *k + j) * c_dim1;
  927. i__4 = i__ + (*n - *k + j) * c_dim1;
  928. i__5 = i__ + j * work_dim1;
  929. q__1.r = c__[i__4].r - work[i__5].r, q__1.i = c__[
  930. i__4].i - work[i__5].i;
  931. c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
  932. /* L110: */
  933. }
  934. /* L120: */
  935. }
  936. }
  937. }
  938. } else if (lsame_(storev, "R")) {
  939. if (lsame_(direct, "F")) {
  940. /* Let V = ( V1 V2 ) (V1: first K columns) */
  941. /* where V1 is unit upper triangular. */
  942. if (lsame_(side, "L")) {
  943. /* Form H * C or H**H * C where C = ( C1 ) */
  944. /* ( C2 ) */
  945. /* W := C**H * V**H = (C1**H * V1**H + C2**H * V2**H) (stored in WORK) */
  946. /* W := C1**H */
  947. i__1 = *k;
  948. for (j = 1; j <= i__1; ++j) {
  949. ccopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1],
  950. &c__1);
  951. clacgv_(n, &work[j * work_dim1 + 1], &c__1);
  952. /* L130: */
  953. }
  954. /* W := W * V1**H */
  955. ctrmm_("Right", "Upper", "Conjugate transpose", "Unit", n, k,
  956. &c_b1, &v[v_offset], ldv, &work[work_offset], ldwork);
  957. if (*m > *k) {
  958. /* W := W + C2**H * V2**H */
  959. i__1 = *m - *k;
  960. cgemm_("Conjugate transpose", "Conjugate transpose", n, k,
  961. &i__1, &c_b1, &c__[*k + 1 + c_dim1], ldc, &v[(*k
  962. + 1) * v_dim1 + 1], ldv, &c_b1, &work[work_offset]
  963. , ldwork);
  964. }
  965. /* W := W * T**H or W * T */
  966. ctrmm_("Right", "Upper", transt, "Non-unit", n, k, &c_b1, &t[
  967. t_offset], ldt, &work[work_offset], ldwork);
  968. /* C := C - V**H * W**H */
  969. if (*m > *k) {
  970. /* C2 := C2 - V2**H * W**H */
  971. i__1 = *m - *k;
  972. q__1.r = -1.f, q__1.i = 0.f;
  973. cgemm_("Conjugate transpose", "Conjugate transpose", &
  974. i__1, n, k, &q__1, &v[(*k + 1) * v_dim1 + 1], ldv,
  975. &work[work_offset], ldwork, &c_b1, &c__[*k + 1 +
  976. c_dim1], ldc);
  977. }
  978. /* W := W * V1 */
  979. ctrmm_("Right", "Upper", "No transpose", "Unit", n, k, &c_b1,
  980. &v[v_offset], ldv, &work[work_offset], ldwork);
  981. /* C1 := C1 - W**H */
  982. i__1 = *k;
  983. for (j = 1; j <= i__1; ++j) {
  984. i__2 = *n;
  985. for (i__ = 1; i__ <= i__2; ++i__) {
  986. i__3 = j + i__ * c_dim1;
  987. i__4 = j + i__ * c_dim1;
  988. r_cnjg(&q__2, &work[i__ + j * work_dim1]);
  989. q__1.r = c__[i__4].r - q__2.r, q__1.i = c__[i__4].i -
  990. q__2.i;
  991. c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
  992. /* L140: */
  993. }
  994. /* L150: */
  995. }
  996. } else if (lsame_(side, "R")) {
  997. /* Form C * H or C * H**H where C = ( C1 C2 ) */
  998. /* W := C * V**H = (C1*V1**H + C2*V2**H) (stored in WORK) */
  999. /* W := C1 */
  1000. i__1 = *k;
  1001. for (j = 1; j <= i__1; ++j) {
  1002. ccopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j *
  1003. work_dim1 + 1], &c__1);
  1004. /* L160: */
  1005. }
  1006. /* W := W * V1**H */
  1007. ctrmm_("Right", "Upper", "Conjugate transpose", "Unit", m, k,
  1008. &c_b1, &v[v_offset], ldv, &work[work_offset], ldwork);
  1009. if (*n > *k) {
  1010. /* W := W + C2 * V2**H */
  1011. i__1 = *n - *k;
  1012. cgemm_("No transpose", "Conjugate transpose", m, k, &i__1,
  1013. &c_b1, &c__[(*k + 1) * c_dim1 + 1], ldc, &v[(*k
  1014. + 1) * v_dim1 + 1], ldv, &c_b1, &work[work_offset]
  1015. , ldwork);
  1016. }
  1017. /* W := W * T or W * T**H */
  1018. ctrmm_("Right", "Upper", trans, "Non-unit", m, k, &c_b1, &t[
  1019. t_offset], ldt, &work[work_offset], ldwork);
  1020. /* C := C - W * V */
  1021. if (*n > *k) {
  1022. /* C2 := C2 - W * V2 */
  1023. i__1 = *n - *k;
  1024. q__1.r = -1.f, q__1.i = 0.f;
  1025. cgemm_("No transpose", "No transpose", m, &i__1, k, &q__1,
  1026. &work[work_offset], ldwork, &v[(*k + 1) * v_dim1
  1027. + 1], ldv, &c_b1, &c__[(*k + 1) * c_dim1 + 1],
  1028. ldc);
  1029. }
  1030. /* W := W * V1 */
  1031. ctrmm_("Right", "Upper", "No transpose", "Unit", m, k, &c_b1,
  1032. &v[v_offset], ldv, &work[work_offset], ldwork);
  1033. /* C1 := C1 - W */
  1034. i__1 = *k;
  1035. for (j = 1; j <= i__1; ++j) {
  1036. i__2 = *m;
  1037. for (i__ = 1; i__ <= i__2; ++i__) {
  1038. i__3 = i__ + j * c_dim1;
  1039. i__4 = i__ + j * c_dim1;
  1040. i__5 = i__ + j * work_dim1;
  1041. q__1.r = c__[i__4].r - work[i__5].r, q__1.i = c__[
  1042. i__4].i - work[i__5].i;
  1043. c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
  1044. /* L170: */
  1045. }
  1046. /* L180: */
  1047. }
  1048. }
  1049. } else {
  1050. /* Let V = ( V1 V2 ) (V2: last K columns) */
  1051. /* where V2 is unit lower triangular. */
  1052. if (lsame_(side, "L")) {
  1053. /* Form H * C or H**H * C where C = ( C1 ) */
  1054. /* ( C2 ) */
  1055. /* W := C**H * V**H = (C1**H * V1**H + C2**H * V2**H) (stored in WORK) */
  1056. /* W := C2**H */
  1057. i__1 = *k;
  1058. for (j = 1; j <= i__1; ++j) {
  1059. ccopy_(n, &c__[*m - *k + j + c_dim1], ldc, &work[j *
  1060. work_dim1 + 1], &c__1);
  1061. clacgv_(n, &work[j * work_dim1 + 1], &c__1);
  1062. /* L190: */
  1063. }
  1064. /* W := W * V2**H */
  1065. ctrmm_("Right", "Lower", "Conjugate transpose", "Unit", n, k,
  1066. &c_b1, &v[(*m - *k + 1) * v_dim1 + 1], ldv, &work[
  1067. work_offset], ldwork);
  1068. if (*m > *k) {
  1069. /* W := W + C1**H * V1**H */
  1070. i__1 = *m - *k;
  1071. cgemm_("Conjugate transpose", "Conjugate transpose", n, k,
  1072. &i__1, &c_b1, &c__[c_offset], ldc, &v[v_offset],
  1073. ldv, &c_b1, &work[work_offset], ldwork);
  1074. }
  1075. /* W := W * T**H or W * T */
  1076. ctrmm_("Right", "Lower", transt, "Non-unit", n, k, &c_b1, &t[
  1077. t_offset], ldt, &work[work_offset], ldwork);
  1078. /* C := C - V**H * W**H */
  1079. if (*m > *k) {
  1080. /* C1 := C1 - V1**H * W**H */
  1081. i__1 = *m - *k;
  1082. q__1.r = -1.f, q__1.i = 0.f;
  1083. cgemm_("Conjugate transpose", "Conjugate transpose", &
  1084. i__1, n, k, &q__1, &v[v_offset], ldv, &work[
  1085. work_offset], ldwork, &c_b1, &c__[c_offset], ldc);
  1086. }
  1087. /* W := W * V2 */
  1088. ctrmm_("Right", "Lower", "No transpose", "Unit", n, k, &c_b1,
  1089. &v[(*m - *k + 1) * v_dim1 + 1], ldv, &work[
  1090. work_offset], ldwork);
  1091. /* C2 := C2 - W**H */
  1092. i__1 = *k;
  1093. for (j = 1; j <= i__1; ++j) {
  1094. i__2 = *n;
  1095. for (i__ = 1; i__ <= i__2; ++i__) {
  1096. i__3 = *m - *k + j + i__ * c_dim1;
  1097. i__4 = *m - *k + j + i__ * c_dim1;
  1098. r_cnjg(&q__2, &work[i__ + j * work_dim1]);
  1099. q__1.r = c__[i__4].r - q__2.r, q__1.i = c__[i__4].i -
  1100. q__2.i;
  1101. c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
  1102. /* L200: */
  1103. }
  1104. /* L210: */
  1105. }
  1106. } else if (lsame_(side, "R")) {
  1107. /* Form C * H or C * H**H where C = ( C1 C2 ) */
  1108. /* W := C * V**H = (C1*V1**H + C2*V2**H) (stored in WORK) */
  1109. /* W := C2 */
  1110. i__1 = *k;
  1111. for (j = 1; j <= i__1; ++j) {
  1112. ccopy_(m, &c__[(*n - *k + j) * c_dim1 + 1], &c__1, &work[
  1113. j * work_dim1 + 1], &c__1);
  1114. /* L220: */
  1115. }
  1116. /* W := W * V2**H */
  1117. ctrmm_("Right", "Lower", "Conjugate transpose", "Unit", m, k,
  1118. &c_b1, &v[(*n - *k + 1) * v_dim1 + 1], ldv, &work[
  1119. work_offset], ldwork);
  1120. if (*n > *k) {
  1121. /* W := W + C1 * V1**H */
  1122. i__1 = *n - *k;
  1123. cgemm_("No transpose", "Conjugate transpose", m, k, &i__1,
  1124. &c_b1, &c__[c_offset], ldc, &v[v_offset], ldv, &
  1125. c_b1, &work[work_offset], ldwork);
  1126. }
  1127. /* W := W * T or W * T**H */
  1128. ctrmm_("Right", "Lower", trans, "Non-unit", m, k, &c_b1, &t[
  1129. t_offset], ldt, &work[work_offset], ldwork);
  1130. /* C := C - W * V */
  1131. if (*n > *k) {
  1132. /* C1 := C1 - W * V1 */
  1133. i__1 = *n - *k;
  1134. q__1.r = -1.f, q__1.i = 0.f;
  1135. cgemm_("No transpose", "No transpose", m, &i__1, k, &q__1,
  1136. &work[work_offset], ldwork, &v[v_offset], ldv, &
  1137. c_b1, &c__[c_offset], ldc)
  1138. ;
  1139. }
  1140. /* W := W * V2 */
  1141. ctrmm_("Right", "Lower", "No transpose", "Unit", m, k, &c_b1,
  1142. &v[(*n - *k + 1) * v_dim1 + 1], ldv, &work[
  1143. work_offset], ldwork);
  1144. /* C1 := C1 - W */
  1145. i__1 = *k;
  1146. for (j = 1; j <= i__1; ++j) {
  1147. i__2 = *m;
  1148. for (i__ = 1; i__ <= i__2; ++i__) {
  1149. i__3 = i__ + (*n - *k + j) * c_dim1;
  1150. i__4 = i__ + (*n - *k + j) * c_dim1;
  1151. i__5 = i__ + j * work_dim1;
  1152. q__1.r = c__[i__4].r - work[i__5].r, q__1.i = c__[
  1153. i__4].i - work[i__5].i;
  1154. c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
  1155. /* L230: */
  1156. }
  1157. /* L240: */
  1158. }
  1159. }
  1160. }
  1161. }
  1162. return;
  1163. /* End of CLARFB */
  1164. } /* clarfb_ */