You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cheevx.c 34 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c_n1 = -1;
  488. /* > \brief <b> CHEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE mat
  489. rices</b> */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download CHEEVX + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cheevx.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cheevx.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cheevx.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE CHEEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, */
  508. /* ABSTOL, M, W, Z, LDZ, WORK, LWORK, RWORK, */
  509. /* IWORK, IFAIL, INFO ) */
  510. /* CHARACTER JOBZ, RANGE, UPLO */
  511. /* INTEGER IL, INFO, IU, LDA, LDZ, LWORK, M, N */
  512. /* REAL ABSTOL, VL, VU */
  513. /* INTEGER IFAIL( * ), IWORK( * ) */
  514. /* REAL RWORK( * ), W( * ) */
  515. /* COMPLEX A( LDA, * ), WORK( * ), Z( LDZ, * ) */
  516. /* > \par Purpose: */
  517. /* ============= */
  518. /* > */
  519. /* > \verbatim */
  520. /* > */
  521. /* > CHEEVX computes selected eigenvalues and, optionally, eigenvectors */
  522. /* > of a complex Hermitian matrix A. Eigenvalues and eigenvectors can */
  523. /* > be selected by specifying either a range of values or a range of */
  524. /* > indices for the desired eigenvalues. */
  525. /* > \endverbatim */
  526. /* Arguments: */
  527. /* ========== */
  528. /* > \param[in] JOBZ */
  529. /* > \verbatim */
  530. /* > JOBZ is CHARACTER*1 */
  531. /* > = 'N': Compute eigenvalues only; */
  532. /* > = 'V': Compute eigenvalues and eigenvectors. */
  533. /* > \endverbatim */
  534. /* > */
  535. /* > \param[in] RANGE */
  536. /* > \verbatim */
  537. /* > RANGE is CHARACTER*1 */
  538. /* > = 'A': all eigenvalues will be found. */
  539. /* > = 'V': all eigenvalues in the half-open interval (VL,VU] */
  540. /* > will be found. */
  541. /* > = 'I': the IL-th through IU-th eigenvalues will be found. */
  542. /* > \endverbatim */
  543. /* > */
  544. /* > \param[in] UPLO */
  545. /* > \verbatim */
  546. /* > UPLO is CHARACTER*1 */
  547. /* > = 'U': Upper triangle of A is stored; */
  548. /* > = 'L': Lower triangle of A is stored. */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[in] N */
  552. /* > \verbatim */
  553. /* > N is INTEGER */
  554. /* > The order of the matrix A. N >= 0. */
  555. /* > \endverbatim */
  556. /* > */
  557. /* > \param[in,out] A */
  558. /* > \verbatim */
  559. /* > A is COMPLEX array, dimension (LDA, N) */
  560. /* > On entry, the Hermitian matrix A. If UPLO = 'U', the */
  561. /* > leading N-by-N upper triangular part of A contains the */
  562. /* > upper triangular part of the matrix A. If UPLO = 'L', */
  563. /* > the leading N-by-N lower triangular part of A contains */
  564. /* > the lower triangular part of the matrix A. */
  565. /* > On exit, the lower triangle (if UPLO='L') or the upper */
  566. /* > triangle (if UPLO='U') of A, including the diagonal, is */
  567. /* > destroyed. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] LDA */
  571. /* > \verbatim */
  572. /* > LDA is INTEGER */
  573. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[in] VL */
  577. /* > \verbatim */
  578. /* > VL is REAL */
  579. /* > If RANGE='V', the lower bound of the interval to */
  580. /* > be searched for eigenvalues. VL < VU. */
  581. /* > Not referenced if RANGE = 'A' or 'I'. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in] VU */
  585. /* > \verbatim */
  586. /* > VU is REAL */
  587. /* > If RANGE='V', the upper bound of the interval to */
  588. /* > be searched for eigenvalues. VL < VU. */
  589. /* > Not referenced if RANGE = 'A' or 'I'. */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[in] IL */
  593. /* > \verbatim */
  594. /* > IL is INTEGER */
  595. /* > If RANGE='I', the index of the */
  596. /* > smallest eigenvalue to be returned. */
  597. /* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
  598. /* > Not referenced if RANGE = 'A' or 'V'. */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[in] IU */
  602. /* > \verbatim */
  603. /* > IU is INTEGER */
  604. /* > If RANGE='I', the index of the */
  605. /* > largest eigenvalue to be returned. */
  606. /* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
  607. /* > Not referenced if RANGE = 'A' or 'V'. */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[in] ABSTOL */
  611. /* > \verbatim */
  612. /* > ABSTOL is REAL */
  613. /* > The absolute error tolerance for the eigenvalues. */
  614. /* > An approximate eigenvalue is accepted as converged */
  615. /* > when it is determined to lie in an interval [a,b] */
  616. /* > of width less than or equal to */
  617. /* > */
  618. /* > ABSTOL + EPS * f2cmax( |a|,|b| ) , */
  619. /* > */
  620. /* > where EPS is the machine precision. If ABSTOL is less than */
  621. /* > or equal to zero, then EPS*|T| will be used in its place, */
  622. /* > where |T| is the 1-norm of the tridiagonal matrix obtained */
  623. /* > by reducing A to tridiagonal form. */
  624. /* > */
  625. /* > Eigenvalues will be computed most accurately when ABSTOL is */
  626. /* > set to twice the underflow threshold 2*SLAMCH('S'), not zero. */
  627. /* > If this routine returns with INFO>0, indicating that some */
  628. /* > eigenvectors did not converge, try setting ABSTOL to */
  629. /* > 2*SLAMCH('S'). */
  630. /* > */
  631. /* > See "Computing Small Singular Values of Bidiagonal Matrices */
  632. /* > with Guaranteed High Relative Accuracy," by Demmel and */
  633. /* > Kahan, LAPACK Working Note #3. */
  634. /* > \endverbatim */
  635. /* > */
  636. /* > \param[out] M */
  637. /* > \verbatim */
  638. /* > M is INTEGER */
  639. /* > The total number of eigenvalues found. 0 <= M <= N. */
  640. /* > If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
  641. /* > \endverbatim */
  642. /* > */
  643. /* > \param[out] W */
  644. /* > \verbatim */
  645. /* > W is REAL array, dimension (N) */
  646. /* > On normal exit, the first M elements contain the selected */
  647. /* > eigenvalues in ascending order. */
  648. /* > \endverbatim */
  649. /* > */
  650. /* > \param[out] Z */
  651. /* > \verbatim */
  652. /* > Z is COMPLEX array, dimension (LDZ, f2cmax(1,M)) */
  653. /* > If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
  654. /* > contain the orthonormal eigenvectors of the matrix A */
  655. /* > corresponding to the selected eigenvalues, with the i-th */
  656. /* > column of Z holding the eigenvector associated with W(i). */
  657. /* > If an eigenvector fails to converge, then that column of Z */
  658. /* > contains the latest approximation to the eigenvector, and the */
  659. /* > index of the eigenvector is returned in IFAIL. */
  660. /* > If JOBZ = 'N', then Z is not referenced. */
  661. /* > Note: the user must ensure that at least f2cmax(1,M) columns are */
  662. /* > supplied in the array Z; if RANGE = 'V', the exact value of M */
  663. /* > is not known in advance and an upper bound must be used. */
  664. /* > \endverbatim */
  665. /* > */
  666. /* > \param[in] LDZ */
  667. /* > \verbatim */
  668. /* > LDZ is INTEGER */
  669. /* > The leading dimension of the array Z. LDZ >= 1, and if */
  670. /* > JOBZ = 'V', LDZ >= f2cmax(1,N). */
  671. /* > \endverbatim */
  672. /* > */
  673. /* > \param[out] WORK */
  674. /* > \verbatim */
  675. /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
  676. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  677. /* > \endverbatim */
  678. /* > */
  679. /* > \param[in] LWORK */
  680. /* > \verbatim */
  681. /* > LWORK is INTEGER */
  682. /* > The length of the array WORK. LWORK >= 1, when N <= 1; */
  683. /* > otherwise 2*N. */
  684. /* > For optimal efficiency, LWORK >= (NB+1)*N, */
  685. /* > where NB is the f2cmax of the blocksize for CHETRD and for */
  686. /* > CUNMTR as returned by ILAENV. */
  687. /* > */
  688. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  689. /* > only calculates the optimal size of the WORK array, returns */
  690. /* > this value as the first entry of the WORK array, and no error */
  691. /* > message related to LWORK is issued by XERBLA. */
  692. /* > \endverbatim */
  693. /* > */
  694. /* > \param[out] RWORK */
  695. /* > \verbatim */
  696. /* > RWORK is REAL array, dimension (7*N) */
  697. /* > \endverbatim */
  698. /* > */
  699. /* > \param[out] IWORK */
  700. /* > \verbatim */
  701. /* > IWORK is INTEGER array, dimension (5*N) */
  702. /* > \endverbatim */
  703. /* > */
  704. /* > \param[out] IFAIL */
  705. /* > \verbatim */
  706. /* > IFAIL is INTEGER array, dimension (N) */
  707. /* > If JOBZ = 'V', then if INFO = 0, the first M elements of */
  708. /* > IFAIL are zero. If INFO > 0, then IFAIL contains the */
  709. /* > indices of the eigenvectors that failed to converge. */
  710. /* > If JOBZ = 'N', then IFAIL is not referenced. */
  711. /* > \endverbatim */
  712. /* > */
  713. /* > \param[out] INFO */
  714. /* > \verbatim */
  715. /* > INFO is INTEGER */
  716. /* > = 0: successful exit */
  717. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  718. /* > > 0: if INFO = i, then i eigenvectors failed to converge. */
  719. /* > Their indices are stored in array IFAIL. */
  720. /* > \endverbatim */
  721. /* Authors: */
  722. /* ======== */
  723. /* > \author Univ. of Tennessee */
  724. /* > \author Univ. of California Berkeley */
  725. /* > \author Univ. of Colorado Denver */
  726. /* > \author NAG Ltd. */
  727. /* > \date June 2016 */
  728. /* > \ingroup complexHEeigen */
  729. /* ===================================================================== */
  730. /* Subroutine */ void cheevx_(char *jobz, char *range, char *uplo, integer *n,
  731. complex *a, integer *lda, real *vl, real *vu, integer *il, integer *
  732. iu, real *abstol, integer *m, real *w, complex *z__, integer *ldz,
  733. complex *work, integer *lwork, real *rwork, integer *iwork, integer *
  734. ifail, integer *info)
  735. {
  736. /* System generated locals */
  737. integer a_dim1, a_offset, z_dim1, z_offset, i__1, i__2;
  738. real r__1, r__2;
  739. /* Local variables */
  740. integer indd, inde;
  741. real anrm;
  742. integer imax;
  743. real rmin, rmax;
  744. logical test;
  745. integer itmp1, i__, j, indee;
  746. real sigma;
  747. extern logical lsame_(char *, char *);
  748. integer iinfo;
  749. extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
  750. char order[1];
  751. extern /* Subroutine */ void cswap_(integer *, complex *, integer *,
  752. complex *, integer *);
  753. logical lower;
  754. extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
  755. integer *);
  756. logical wantz;
  757. integer nb, jj;
  758. extern real clanhe_(char *, char *, integer *, complex *, integer *, real
  759. *);
  760. logical alleig, indeig;
  761. integer iscale, indibl;
  762. logical valeig;
  763. extern real slamch_(char *);
  764. extern /* Subroutine */ void csscal_(integer *, real *, complex *, integer
  765. *), chetrd_(char *, integer *, complex *, integer *, real *, real
  766. *, complex *, complex *, integer *, integer *), clacpy_(
  767. char *, integer *, integer *, complex *, integer *, complex *,
  768. integer *);
  769. real safmin;
  770. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  771. integer *, integer *, ftnlen, ftnlen);
  772. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  773. real abstll, bignum;
  774. integer indiwk, indisp, indtau;
  775. extern /* Subroutine */ void cstein_(integer *, real *, real *, integer *,
  776. real *, integer *, integer *, complex *, integer *, real *,
  777. integer *, integer *, integer *);
  778. integer indrwk, indwrk, lwkmin;
  779. extern /* Subroutine */ void csteqr_(char *, integer *, real *, real *,
  780. complex *, integer *, real *, integer *), cungtr_(char *,
  781. integer *, complex *, integer *, complex *, complex *, integer *,
  782. integer *), ssterf_(integer *, real *, real *, integer *),
  783. cunmtr_(char *, char *, char *, integer *, integer *, complex *,
  784. integer *, complex *, complex *, integer *, complex *, integer *,
  785. integer *);
  786. integer nsplit, llwork;
  787. real smlnum;
  788. extern /* Subroutine */ void sstebz_(char *, char *, integer *, real *,
  789. real *, integer *, integer *, real *, real *, real *, integer *,
  790. integer *, real *, integer *, integer *, real *, integer *,
  791. integer *);
  792. integer lwkopt;
  793. logical lquery;
  794. real eps, vll, vuu, tmp1;
  795. /* -- LAPACK driver routine (version 3.7.0) -- */
  796. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  797. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  798. /* June 2016 */
  799. /* ===================================================================== */
  800. /* Test the input parameters. */
  801. /* Parameter adjustments */
  802. a_dim1 = *lda;
  803. a_offset = 1 + a_dim1 * 1;
  804. a -= a_offset;
  805. --w;
  806. z_dim1 = *ldz;
  807. z_offset = 1 + z_dim1 * 1;
  808. z__ -= z_offset;
  809. --work;
  810. --rwork;
  811. --iwork;
  812. --ifail;
  813. /* Function Body */
  814. lower = lsame_(uplo, "L");
  815. wantz = lsame_(jobz, "V");
  816. alleig = lsame_(range, "A");
  817. valeig = lsame_(range, "V");
  818. indeig = lsame_(range, "I");
  819. lquery = *lwork == -1;
  820. *info = 0;
  821. if (! (wantz || lsame_(jobz, "N"))) {
  822. *info = -1;
  823. } else if (! (alleig || valeig || indeig)) {
  824. *info = -2;
  825. } else if (! (lower || lsame_(uplo, "U"))) {
  826. *info = -3;
  827. } else if (*n < 0) {
  828. *info = -4;
  829. } else if (*lda < f2cmax(1,*n)) {
  830. *info = -6;
  831. } else {
  832. if (valeig) {
  833. if (*n > 0 && *vu <= *vl) {
  834. *info = -8;
  835. }
  836. } else if (indeig) {
  837. if (*il < 1 || *il > f2cmax(1,*n)) {
  838. *info = -9;
  839. } else if (*iu < f2cmin(*n,*il) || *iu > *n) {
  840. *info = -10;
  841. }
  842. }
  843. }
  844. if (*info == 0) {
  845. if (*ldz < 1 || wantz && *ldz < *n) {
  846. *info = -15;
  847. }
  848. }
  849. if (*info == 0) {
  850. if (*n <= 1) {
  851. lwkmin = 1;
  852. work[1].r = (real) lwkmin, work[1].i = 0.f;
  853. } else {
  854. lwkmin = *n << 1;
  855. nb = ilaenv_(&c__1, "CHETRD", uplo, n, &c_n1, &c_n1, &c_n1, (
  856. ftnlen)6, (ftnlen)1);
  857. /* Computing MAX */
  858. i__1 = nb, i__2 = ilaenv_(&c__1, "CUNMTR", uplo, n, &c_n1, &c_n1,
  859. &c_n1, (ftnlen)6, (ftnlen)1);
  860. nb = f2cmax(i__1,i__2);
  861. /* Computing MAX */
  862. i__1 = 1, i__2 = (nb + 1) * *n;
  863. lwkopt = f2cmax(i__1,i__2);
  864. work[1].r = (real) lwkopt, work[1].i = 0.f;
  865. }
  866. if (*lwork < lwkmin && ! lquery) {
  867. *info = -17;
  868. }
  869. }
  870. if (*info != 0) {
  871. i__1 = -(*info);
  872. xerbla_("CHEEVX", &i__1, (ftnlen)6);
  873. return;
  874. } else if (lquery) {
  875. return;
  876. }
  877. /* Quick return if possible */
  878. *m = 0;
  879. if (*n == 0) {
  880. return;
  881. }
  882. if (*n == 1) {
  883. if (alleig || indeig) {
  884. *m = 1;
  885. i__1 = a_dim1 + 1;
  886. w[1] = a[i__1].r;
  887. } else if (valeig) {
  888. i__1 = a_dim1 + 1;
  889. i__2 = a_dim1 + 1;
  890. if (*vl < a[i__1].r && *vu >= a[i__2].r) {
  891. *m = 1;
  892. i__1 = a_dim1 + 1;
  893. w[1] = a[i__1].r;
  894. }
  895. }
  896. if (wantz) {
  897. i__1 = z_dim1 + 1;
  898. z__[i__1].r = 1.f, z__[i__1].i = 0.f;
  899. }
  900. return;
  901. }
  902. /* Get machine constants. */
  903. safmin = slamch_("Safe minimum");
  904. eps = slamch_("Precision");
  905. smlnum = safmin / eps;
  906. bignum = 1.f / smlnum;
  907. rmin = sqrt(smlnum);
  908. /* Computing MIN */
  909. r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin));
  910. rmax = f2cmin(r__1,r__2);
  911. /* Scale matrix to allowable range, if necessary. */
  912. iscale = 0;
  913. abstll = *abstol;
  914. if (valeig) {
  915. vll = *vl;
  916. vuu = *vu;
  917. }
  918. anrm = clanhe_("M", uplo, n, &a[a_offset], lda, &rwork[1]);
  919. if (anrm > 0.f && anrm < rmin) {
  920. iscale = 1;
  921. sigma = rmin / anrm;
  922. } else if (anrm > rmax) {
  923. iscale = 1;
  924. sigma = rmax / anrm;
  925. }
  926. if (iscale == 1) {
  927. if (lower) {
  928. i__1 = *n;
  929. for (j = 1; j <= i__1; ++j) {
  930. i__2 = *n - j + 1;
  931. csscal_(&i__2, &sigma, &a[j + j * a_dim1], &c__1);
  932. /* L10: */
  933. }
  934. } else {
  935. i__1 = *n;
  936. for (j = 1; j <= i__1; ++j) {
  937. csscal_(&j, &sigma, &a[j * a_dim1 + 1], &c__1);
  938. /* L20: */
  939. }
  940. }
  941. if (*abstol > 0.f) {
  942. abstll = *abstol * sigma;
  943. }
  944. if (valeig) {
  945. vll = *vl * sigma;
  946. vuu = *vu * sigma;
  947. }
  948. }
  949. /* Call CHETRD to reduce Hermitian matrix to tridiagonal form. */
  950. indd = 1;
  951. inde = indd + *n;
  952. indrwk = inde + *n;
  953. indtau = 1;
  954. indwrk = indtau + *n;
  955. llwork = *lwork - indwrk + 1;
  956. chetrd_(uplo, n, &a[a_offset], lda, &rwork[indd], &rwork[inde], &work[
  957. indtau], &work[indwrk], &llwork, &iinfo);
  958. /* If all eigenvalues are desired and ABSTOL is less than or equal to */
  959. /* zero, then call SSTERF or CUNGTR and CSTEQR. If this fails for */
  960. /* some eigenvalue, then try SSTEBZ. */
  961. test = FALSE_;
  962. if (indeig) {
  963. if (*il == 1 && *iu == *n) {
  964. test = TRUE_;
  965. }
  966. }
  967. if ((alleig || test) && *abstol <= 0.f) {
  968. scopy_(n, &rwork[indd], &c__1, &w[1], &c__1);
  969. indee = indrwk + (*n << 1);
  970. if (! wantz) {
  971. i__1 = *n - 1;
  972. scopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1);
  973. ssterf_(n, &w[1], &rwork[indee], info);
  974. } else {
  975. clacpy_("A", n, n, &a[a_offset], lda, &z__[z_offset], ldz);
  976. cungtr_(uplo, n, &z__[z_offset], ldz, &work[indtau], &work[indwrk]
  977. , &llwork, &iinfo);
  978. i__1 = *n - 1;
  979. scopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1);
  980. csteqr_(jobz, n, &w[1], &rwork[indee], &z__[z_offset], ldz, &
  981. rwork[indrwk], info);
  982. if (*info == 0) {
  983. i__1 = *n;
  984. for (i__ = 1; i__ <= i__1; ++i__) {
  985. ifail[i__] = 0;
  986. /* L30: */
  987. }
  988. }
  989. }
  990. if (*info == 0) {
  991. *m = *n;
  992. goto L40;
  993. }
  994. *info = 0;
  995. }
  996. /* Otherwise, call SSTEBZ and, if eigenvectors are desired, CSTEIN. */
  997. if (wantz) {
  998. *(unsigned char *)order = 'B';
  999. } else {
  1000. *(unsigned char *)order = 'E';
  1001. }
  1002. indibl = 1;
  1003. indisp = indibl + *n;
  1004. indiwk = indisp + *n;
  1005. sstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &rwork[indd], &
  1006. rwork[inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &
  1007. rwork[indrwk], &iwork[indiwk], info);
  1008. if (wantz) {
  1009. cstein_(n, &rwork[indd], &rwork[inde], m, &w[1], &iwork[indibl], &
  1010. iwork[indisp], &z__[z_offset], ldz, &rwork[indrwk], &iwork[
  1011. indiwk], &ifail[1], info);
  1012. /* Apply unitary matrix used in reduction to tridiagonal */
  1013. /* form to eigenvectors returned by CSTEIN. */
  1014. cunmtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau], &z__[
  1015. z_offset], ldz, &work[indwrk], &llwork, &iinfo);
  1016. }
  1017. /* If matrix was scaled, then rescale eigenvalues appropriately. */
  1018. L40:
  1019. if (iscale == 1) {
  1020. if (*info == 0) {
  1021. imax = *m;
  1022. } else {
  1023. imax = *info - 1;
  1024. }
  1025. r__1 = 1.f / sigma;
  1026. sscal_(&imax, &r__1, &w[1], &c__1);
  1027. }
  1028. /* If eigenvalues are not in order, then sort them, along with */
  1029. /* eigenvectors. */
  1030. if (wantz) {
  1031. i__1 = *m - 1;
  1032. for (j = 1; j <= i__1; ++j) {
  1033. i__ = 0;
  1034. tmp1 = w[j];
  1035. i__2 = *m;
  1036. for (jj = j + 1; jj <= i__2; ++jj) {
  1037. if (w[jj] < tmp1) {
  1038. i__ = jj;
  1039. tmp1 = w[jj];
  1040. }
  1041. /* L50: */
  1042. }
  1043. if (i__ != 0) {
  1044. itmp1 = iwork[indibl + i__ - 1];
  1045. w[i__] = w[j];
  1046. iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
  1047. w[j] = tmp1;
  1048. iwork[indibl + j - 1] = itmp1;
  1049. cswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1],
  1050. &c__1);
  1051. if (*info != 0) {
  1052. itmp1 = ifail[i__];
  1053. ifail[i__] = ifail[j];
  1054. ifail[j] = itmp1;
  1055. }
  1056. }
  1057. /* L60: */
  1058. }
  1059. }
  1060. /* Set WORK(1) to optimal complex workspace size. */
  1061. work[1].r = (real) lwkopt, work[1].i = 0.f;
  1062. return;
  1063. /* End of CHEEVX */
  1064. } /* cheevx_ */