You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgtts2.c 33 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* > \brief \b CGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization
  486. computed by sgttrf. */
  487. /* =========== DOCUMENTATION =========== */
  488. /* Online html documentation available at */
  489. /* http://www.netlib.org/lapack/explore-html/ */
  490. /* > \htmlonly */
  491. /* > Download CGTTS2 + dependencies */
  492. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgtts2.
  493. f"> */
  494. /* > [TGZ]</a> */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgtts2.
  496. f"> */
  497. /* > [ZIP]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgtts2.
  499. f"> */
  500. /* > [TXT]</a> */
  501. /* > \endhtmlonly */
  502. /* Definition: */
  503. /* =========== */
  504. /* SUBROUTINE CGTTS2( ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB ) */
  505. /* INTEGER ITRANS, LDB, N, NRHS */
  506. /* INTEGER IPIV( * ) */
  507. /* COMPLEX B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * ) */
  508. /* > \par Purpose: */
  509. /* ============= */
  510. /* > */
  511. /* > \verbatim */
  512. /* > */
  513. /* > CGTTS2 solves one of the systems of equations */
  514. /* > A * X = B, A**T * X = B, or A**H * X = B, */
  515. /* > with a tridiagonal matrix A using the LU factorization computed */
  516. /* > by CGTTRF. */
  517. /* > \endverbatim */
  518. /* Arguments: */
  519. /* ========== */
  520. /* > \param[in] ITRANS */
  521. /* > \verbatim */
  522. /* > ITRANS is INTEGER */
  523. /* > Specifies the form of the system of equations. */
  524. /* > = 0: A * X = B (No transpose) */
  525. /* > = 1: A**T * X = B (Transpose) */
  526. /* > = 2: A**H * X = B (Conjugate transpose) */
  527. /* > \endverbatim */
  528. /* > */
  529. /* > \param[in] N */
  530. /* > \verbatim */
  531. /* > N is INTEGER */
  532. /* > The order of the matrix A. */
  533. /* > \endverbatim */
  534. /* > */
  535. /* > \param[in] NRHS */
  536. /* > \verbatim */
  537. /* > NRHS is INTEGER */
  538. /* > The number of right hand sides, i.e., the number of columns */
  539. /* > of the matrix B. NRHS >= 0. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] DL */
  543. /* > \verbatim */
  544. /* > DL is COMPLEX array, dimension (N-1) */
  545. /* > The (n-1) multipliers that define the matrix L from the */
  546. /* > LU factorization of A. */
  547. /* > \endverbatim */
  548. /* > */
  549. /* > \param[in] D */
  550. /* > \verbatim */
  551. /* > D is COMPLEX array, dimension (N) */
  552. /* > The n diagonal elements of the upper triangular matrix U from */
  553. /* > the LU factorization of A. */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in] DU */
  557. /* > \verbatim */
  558. /* > DU is COMPLEX array, dimension (N-1) */
  559. /* > The (n-1) elements of the first super-diagonal of U. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in] DU2 */
  563. /* > \verbatim */
  564. /* > DU2 is COMPLEX array, dimension (N-2) */
  565. /* > The (n-2) elements of the second super-diagonal of U. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] IPIV */
  569. /* > \verbatim */
  570. /* > IPIV is INTEGER array, dimension (N) */
  571. /* > The pivot indices; for 1 <= i <= n, row i of the matrix was */
  572. /* > interchanged with row IPIV(i). IPIV(i) will always be either */
  573. /* > i or i+1; IPIV(i) = i indicates a row interchange was not */
  574. /* > required. */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in,out] B */
  578. /* > \verbatim */
  579. /* > B is COMPLEX array, dimension (LDB,NRHS) */
  580. /* > On entry, the matrix of right hand side vectors B. */
  581. /* > On exit, B is overwritten by the solution vectors X. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in] LDB */
  585. /* > \verbatim */
  586. /* > LDB is INTEGER */
  587. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  588. /* > \endverbatim */
  589. /* Authors: */
  590. /* ======== */
  591. /* > \author Univ. of Tennessee */
  592. /* > \author Univ. of California Berkeley */
  593. /* > \author Univ. of Colorado Denver */
  594. /* > \author NAG Ltd. */
  595. /* > \date December 2016 */
  596. /* > \ingroup complexGTcomputational */
  597. /* ===================================================================== */
  598. /* Subroutine */ void cgtts2_(integer *itrans, integer *n, integer *nrhs,
  599. complex *dl, complex *d__, complex *du, complex *du2, integer *ipiv,
  600. complex *b, integer *ldb)
  601. {
  602. /* System generated locals */
  603. integer b_dim1, b_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7, i__8;
  604. complex q__1, q__2, q__3, q__4, q__5, q__6, q__7, q__8;
  605. /* Local variables */
  606. complex temp;
  607. integer i__, j;
  608. /* -- LAPACK computational routine (version 3.7.0) -- */
  609. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  610. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  611. /* December 2016 */
  612. /* ===================================================================== */
  613. /* Quick return if possible */
  614. /* Parameter adjustments */
  615. --dl;
  616. --d__;
  617. --du;
  618. --du2;
  619. --ipiv;
  620. b_dim1 = *ldb;
  621. b_offset = 1 + b_dim1 * 1;
  622. b -= b_offset;
  623. /* Function Body */
  624. if (*n == 0 || *nrhs == 0) {
  625. return;
  626. }
  627. if (*itrans == 0) {
  628. /* Solve A*X = B using the LU factorization of A, */
  629. /* overwriting each right hand side vector with its solution. */
  630. if (*nrhs <= 1) {
  631. j = 1;
  632. L10:
  633. /* Solve L*x = b. */
  634. i__1 = *n - 1;
  635. for (i__ = 1; i__ <= i__1; ++i__) {
  636. if (ipiv[i__] == i__) {
  637. i__2 = i__ + 1 + j * b_dim1;
  638. i__3 = i__ + 1 + j * b_dim1;
  639. i__4 = i__;
  640. i__5 = i__ + j * b_dim1;
  641. q__2.r = dl[i__4].r * b[i__5].r - dl[i__4].i * b[i__5].i,
  642. q__2.i = dl[i__4].r * b[i__5].i + dl[i__4].i * b[
  643. i__5].r;
  644. q__1.r = b[i__3].r - q__2.r, q__1.i = b[i__3].i - q__2.i;
  645. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  646. } else {
  647. i__2 = i__ + j * b_dim1;
  648. temp.r = b[i__2].r, temp.i = b[i__2].i;
  649. i__2 = i__ + j * b_dim1;
  650. i__3 = i__ + 1 + j * b_dim1;
  651. b[i__2].r = b[i__3].r, b[i__2].i = b[i__3].i;
  652. i__2 = i__ + 1 + j * b_dim1;
  653. i__3 = i__;
  654. i__4 = i__ + j * b_dim1;
  655. q__2.r = dl[i__3].r * b[i__4].r - dl[i__3].i * b[i__4].i,
  656. q__2.i = dl[i__3].r * b[i__4].i + dl[i__3].i * b[
  657. i__4].r;
  658. q__1.r = temp.r - q__2.r, q__1.i = temp.i - q__2.i;
  659. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  660. }
  661. /* L20: */
  662. }
  663. /* Solve U*x = b. */
  664. i__1 = *n + j * b_dim1;
  665. c_div(&q__1, &b[*n + j * b_dim1], &d__[*n]);
  666. b[i__1].r = q__1.r, b[i__1].i = q__1.i;
  667. if (*n > 1) {
  668. i__1 = *n - 1 + j * b_dim1;
  669. i__2 = *n - 1 + j * b_dim1;
  670. i__3 = *n - 1;
  671. i__4 = *n + j * b_dim1;
  672. q__3.r = du[i__3].r * b[i__4].r - du[i__3].i * b[i__4].i,
  673. q__3.i = du[i__3].r * b[i__4].i + du[i__3].i * b[i__4]
  674. .r;
  675. q__2.r = b[i__2].r - q__3.r, q__2.i = b[i__2].i - q__3.i;
  676. c_div(&q__1, &q__2, &d__[*n - 1]);
  677. b[i__1].r = q__1.r, b[i__1].i = q__1.i;
  678. }
  679. for (i__ = *n - 2; i__ >= 1; --i__) {
  680. i__1 = i__ + j * b_dim1;
  681. i__2 = i__ + j * b_dim1;
  682. i__3 = i__;
  683. i__4 = i__ + 1 + j * b_dim1;
  684. q__4.r = du[i__3].r * b[i__4].r - du[i__3].i * b[i__4].i,
  685. q__4.i = du[i__3].r * b[i__4].i + du[i__3].i * b[i__4]
  686. .r;
  687. q__3.r = b[i__2].r - q__4.r, q__3.i = b[i__2].i - q__4.i;
  688. i__5 = i__;
  689. i__6 = i__ + 2 + j * b_dim1;
  690. q__5.r = du2[i__5].r * b[i__6].r - du2[i__5].i * b[i__6].i,
  691. q__5.i = du2[i__5].r * b[i__6].i + du2[i__5].i * b[
  692. i__6].r;
  693. q__2.r = q__3.r - q__5.r, q__2.i = q__3.i - q__5.i;
  694. c_div(&q__1, &q__2, &d__[i__]);
  695. b[i__1].r = q__1.r, b[i__1].i = q__1.i;
  696. /* L30: */
  697. }
  698. if (j < *nrhs) {
  699. ++j;
  700. goto L10;
  701. }
  702. } else {
  703. i__1 = *nrhs;
  704. for (j = 1; j <= i__1; ++j) {
  705. /* Solve L*x = b. */
  706. i__2 = *n - 1;
  707. for (i__ = 1; i__ <= i__2; ++i__) {
  708. if (ipiv[i__] == i__) {
  709. i__3 = i__ + 1 + j * b_dim1;
  710. i__4 = i__ + 1 + j * b_dim1;
  711. i__5 = i__;
  712. i__6 = i__ + j * b_dim1;
  713. q__2.r = dl[i__5].r * b[i__6].r - dl[i__5].i * b[i__6]
  714. .i, q__2.i = dl[i__5].r * b[i__6].i + dl[i__5]
  715. .i * b[i__6].r;
  716. q__1.r = b[i__4].r - q__2.r, q__1.i = b[i__4].i -
  717. q__2.i;
  718. b[i__3].r = q__1.r, b[i__3].i = q__1.i;
  719. } else {
  720. i__3 = i__ + j * b_dim1;
  721. temp.r = b[i__3].r, temp.i = b[i__3].i;
  722. i__3 = i__ + j * b_dim1;
  723. i__4 = i__ + 1 + j * b_dim1;
  724. b[i__3].r = b[i__4].r, b[i__3].i = b[i__4].i;
  725. i__3 = i__ + 1 + j * b_dim1;
  726. i__4 = i__;
  727. i__5 = i__ + j * b_dim1;
  728. q__2.r = dl[i__4].r * b[i__5].r - dl[i__4].i * b[i__5]
  729. .i, q__2.i = dl[i__4].r * b[i__5].i + dl[i__4]
  730. .i * b[i__5].r;
  731. q__1.r = temp.r - q__2.r, q__1.i = temp.i - q__2.i;
  732. b[i__3].r = q__1.r, b[i__3].i = q__1.i;
  733. }
  734. /* L40: */
  735. }
  736. /* Solve U*x = b. */
  737. i__2 = *n + j * b_dim1;
  738. c_div(&q__1, &b[*n + j * b_dim1], &d__[*n]);
  739. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  740. if (*n > 1) {
  741. i__2 = *n - 1 + j * b_dim1;
  742. i__3 = *n - 1 + j * b_dim1;
  743. i__4 = *n - 1;
  744. i__5 = *n + j * b_dim1;
  745. q__3.r = du[i__4].r * b[i__5].r - du[i__4].i * b[i__5].i,
  746. q__3.i = du[i__4].r * b[i__5].i + du[i__4].i * b[
  747. i__5].r;
  748. q__2.r = b[i__3].r - q__3.r, q__2.i = b[i__3].i - q__3.i;
  749. c_div(&q__1, &q__2, &d__[*n - 1]);
  750. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  751. }
  752. for (i__ = *n - 2; i__ >= 1; --i__) {
  753. i__2 = i__ + j * b_dim1;
  754. i__3 = i__ + j * b_dim1;
  755. i__4 = i__;
  756. i__5 = i__ + 1 + j * b_dim1;
  757. q__4.r = du[i__4].r * b[i__5].r - du[i__4].i * b[i__5].i,
  758. q__4.i = du[i__4].r * b[i__5].i + du[i__4].i * b[
  759. i__5].r;
  760. q__3.r = b[i__3].r - q__4.r, q__3.i = b[i__3].i - q__4.i;
  761. i__6 = i__;
  762. i__7 = i__ + 2 + j * b_dim1;
  763. q__5.r = du2[i__6].r * b[i__7].r - du2[i__6].i * b[i__7]
  764. .i, q__5.i = du2[i__6].r * b[i__7].i + du2[i__6]
  765. .i * b[i__7].r;
  766. q__2.r = q__3.r - q__5.r, q__2.i = q__3.i - q__5.i;
  767. c_div(&q__1, &q__2, &d__[i__]);
  768. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  769. /* L50: */
  770. }
  771. /* L60: */
  772. }
  773. }
  774. } else if (*itrans == 1) {
  775. /* Solve A**T * X = B. */
  776. if (*nrhs <= 1) {
  777. j = 1;
  778. L70:
  779. /* Solve U**T * x = b. */
  780. i__1 = j * b_dim1 + 1;
  781. c_div(&q__1, &b[j * b_dim1 + 1], &d__[1]);
  782. b[i__1].r = q__1.r, b[i__1].i = q__1.i;
  783. if (*n > 1) {
  784. i__1 = j * b_dim1 + 2;
  785. i__2 = j * b_dim1 + 2;
  786. i__3 = j * b_dim1 + 1;
  787. q__3.r = du[1].r * b[i__3].r - du[1].i * b[i__3].i, q__3.i =
  788. du[1].r * b[i__3].i + du[1].i * b[i__3].r;
  789. q__2.r = b[i__2].r - q__3.r, q__2.i = b[i__2].i - q__3.i;
  790. c_div(&q__1, &q__2, &d__[2]);
  791. b[i__1].r = q__1.r, b[i__1].i = q__1.i;
  792. }
  793. i__1 = *n;
  794. for (i__ = 3; i__ <= i__1; ++i__) {
  795. i__2 = i__ + j * b_dim1;
  796. i__3 = i__ + j * b_dim1;
  797. i__4 = i__ - 1;
  798. i__5 = i__ - 1 + j * b_dim1;
  799. q__4.r = du[i__4].r * b[i__5].r - du[i__4].i * b[i__5].i,
  800. q__4.i = du[i__4].r * b[i__5].i + du[i__4].i * b[i__5]
  801. .r;
  802. q__3.r = b[i__3].r - q__4.r, q__3.i = b[i__3].i - q__4.i;
  803. i__6 = i__ - 2;
  804. i__7 = i__ - 2 + j * b_dim1;
  805. q__5.r = du2[i__6].r * b[i__7].r - du2[i__6].i * b[i__7].i,
  806. q__5.i = du2[i__6].r * b[i__7].i + du2[i__6].i * b[
  807. i__7].r;
  808. q__2.r = q__3.r - q__5.r, q__2.i = q__3.i - q__5.i;
  809. c_div(&q__1, &q__2, &d__[i__]);
  810. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  811. /* L80: */
  812. }
  813. /* Solve L**T * x = b. */
  814. for (i__ = *n - 1; i__ >= 1; --i__) {
  815. if (ipiv[i__] == i__) {
  816. i__1 = i__ + j * b_dim1;
  817. i__2 = i__ + j * b_dim1;
  818. i__3 = i__;
  819. i__4 = i__ + 1 + j * b_dim1;
  820. q__2.r = dl[i__3].r * b[i__4].r - dl[i__3].i * b[i__4].i,
  821. q__2.i = dl[i__3].r * b[i__4].i + dl[i__3].i * b[
  822. i__4].r;
  823. q__1.r = b[i__2].r - q__2.r, q__1.i = b[i__2].i - q__2.i;
  824. b[i__1].r = q__1.r, b[i__1].i = q__1.i;
  825. } else {
  826. i__1 = i__ + 1 + j * b_dim1;
  827. temp.r = b[i__1].r, temp.i = b[i__1].i;
  828. i__1 = i__ + 1 + j * b_dim1;
  829. i__2 = i__ + j * b_dim1;
  830. i__3 = i__;
  831. q__2.r = dl[i__3].r * temp.r - dl[i__3].i * temp.i,
  832. q__2.i = dl[i__3].r * temp.i + dl[i__3].i *
  833. temp.r;
  834. q__1.r = b[i__2].r - q__2.r, q__1.i = b[i__2].i - q__2.i;
  835. b[i__1].r = q__1.r, b[i__1].i = q__1.i;
  836. i__1 = i__ + j * b_dim1;
  837. b[i__1].r = temp.r, b[i__1].i = temp.i;
  838. }
  839. /* L90: */
  840. }
  841. if (j < *nrhs) {
  842. ++j;
  843. goto L70;
  844. }
  845. } else {
  846. i__1 = *nrhs;
  847. for (j = 1; j <= i__1; ++j) {
  848. /* Solve U**T * x = b. */
  849. i__2 = j * b_dim1 + 1;
  850. c_div(&q__1, &b[j * b_dim1 + 1], &d__[1]);
  851. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  852. if (*n > 1) {
  853. i__2 = j * b_dim1 + 2;
  854. i__3 = j * b_dim1 + 2;
  855. i__4 = j * b_dim1 + 1;
  856. q__3.r = du[1].r * b[i__4].r - du[1].i * b[i__4].i,
  857. q__3.i = du[1].r * b[i__4].i + du[1].i * b[i__4]
  858. .r;
  859. q__2.r = b[i__3].r - q__3.r, q__2.i = b[i__3].i - q__3.i;
  860. c_div(&q__1, &q__2, &d__[2]);
  861. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  862. }
  863. i__2 = *n;
  864. for (i__ = 3; i__ <= i__2; ++i__) {
  865. i__3 = i__ + j * b_dim1;
  866. i__4 = i__ + j * b_dim1;
  867. i__5 = i__ - 1;
  868. i__6 = i__ - 1 + j * b_dim1;
  869. q__4.r = du[i__5].r * b[i__6].r - du[i__5].i * b[i__6].i,
  870. q__4.i = du[i__5].r * b[i__6].i + du[i__5].i * b[
  871. i__6].r;
  872. q__3.r = b[i__4].r - q__4.r, q__3.i = b[i__4].i - q__4.i;
  873. i__7 = i__ - 2;
  874. i__8 = i__ - 2 + j * b_dim1;
  875. q__5.r = du2[i__7].r * b[i__8].r - du2[i__7].i * b[i__8]
  876. .i, q__5.i = du2[i__7].r * b[i__8].i + du2[i__7]
  877. .i * b[i__8].r;
  878. q__2.r = q__3.r - q__5.r, q__2.i = q__3.i - q__5.i;
  879. c_div(&q__1, &q__2, &d__[i__]);
  880. b[i__3].r = q__1.r, b[i__3].i = q__1.i;
  881. /* L100: */
  882. }
  883. /* Solve L**T * x = b. */
  884. for (i__ = *n - 1; i__ >= 1; --i__) {
  885. if (ipiv[i__] == i__) {
  886. i__2 = i__ + j * b_dim1;
  887. i__3 = i__ + j * b_dim1;
  888. i__4 = i__;
  889. i__5 = i__ + 1 + j * b_dim1;
  890. q__2.r = dl[i__4].r * b[i__5].r - dl[i__4].i * b[i__5]
  891. .i, q__2.i = dl[i__4].r * b[i__5].i + dl[i__4]
  892. .i * b[i__5].r;
  893. q__1.r = b[i__3].r - q__2.r, q__1.i = b[i__3].i -
  894. q__2.i;
  895. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  896. } else {
  897. i__2 = i__ + 1 + j * b_dim1;
  898. temp.r = b[i__2].r, temp.i = b[i__2].i;
  899. i__2 = i__ + 1 + j * b_dim1;
  900. i__3 = i__ + j * b_dim1;
  901. i__4 = i__;
  902. q__2.r = dl[i__4].r * temp.r - dl[i__4].i * temp.i,
  903. q__2.i = dl[i__4].r * temp.i + dl[i__4].i *
  904. temp.r;
  905. q__1.r = b[i__3].r - q__2.r, q__1.i = b[i__3].i -
  906. q__2.i;
  907. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  908. i__2 = i__ + j * b_dim1;
  909. b[i__2].r = temp.r, b[i__2].i = temp.i;
  910. }
  911. /* L110: */
  912. }
  913. /* L120: */
  914. }
  915. }
  916. } else {
  917. /* Solve A**H * X = B. */
  918. if (*nrhs <= 1) {
  919. j = 1;
  920. L130:
  921. /* Solve U**H * x = b. */
  922. i__1 = j * b_dim1 + 1;
  923. r_cnjg(&q__2, &d__[1]);
  924. c_div(&q__1, &b[j * b_dim1 + 1], &q__2);
  925. b[i__1].r = q__1.r, b[i__1].i = q__1.i;
  926. if (*n > 1) {
  927. i__1 = j * b_dim1 + 2;
  928. i__2 = j * b_dim1 + 2;
  929. r_cnjg(&q__4, &du[1]);
  930. i__3 = j * b_dim1 + 1;
  931. q__3.r = q__4.r * b[i__3].r - q__4.i * b[i__3].i, q__3.i =
  932. q__4.r * b[i__3].i + q__4.i * b[i__3].r;
  933. q__2.r = b[i__2].r - q__3.r, q__2.i = b[i__2].i - q__3.i;
  934. r_cnjg(&q__5, &d__[2]);
  935. c_div(&q__1, &q__2, &q__5);
  936. b[i__1].r = q__1.r, b[i__1].i = q__1.i;
  937. }
  938. i__1 = *n;
  939. for (i__ = 3; i__ <= i__1; ++i__) {
  940. i__2 = i__ + j * b_dim1;
  941. i__3 = i__ + j * b_dim1;
  942. r_cnjg(&q__5, &du[i__ - 1]);
  943. i__4 = i__ - 1 + j * b_dim1;
  944. q__4.r = q__5.r * b[i__4].r - q__5.i * b[i__4].i, q__4.i =
  945. q__5.r * b[i__4].i + q__5.i * b[i__4].r;
  946. q__3.r = b[i__3].r - q__4.r, q__3.i = b[i__3].i - q__4.i;
  947. r_cnjg(&q__7, &du2[i__ - 2]);
  948. i__5 = i__ - 2 + j * b_dim1;
  949. q__6.r = q__7.r * b[i__5].r - q__7.i * b[i__5].i, q__6.i =
  950. q__7.r * b[i__5].i + q__7.i * b[i__5].r;
  951. q__2.r = q__3.r - q__6.r, q__2.i = q__3.i - q__6.i;
  952. r_cnjg(&q__8, &d__[i__]);
  953. c_div(&q__1, &q__2, &q__8);
  954. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  955. /* L140: */
  956. }
  957. /* Solve L**H * x = b. */
  958. for (i__ = *n - 1; i__ >= 1; --i__) {
  959. if (ipiv[i__] == i__) {
  960. i__1 = i__ + j * b_dim1;
  961. i__2 = i__ + j * b_dim1;
  962. r_cnjg(&q__3, &dl[i__]);
  963. i__3 = i__ + 1 + j * b_dim1;
  964. q__2.r = q__3.r * b[i__3].r - q__3.i * b[i__3].i, q__2.i =
  965. q__3.r * b[i__3].i + q__3.i * b[i__3].r;
  966. q__1.r = b[i__2].r - q__2.r, q__1.i = b[i__2].i - q__2.i;
  967. b[i__1].r = q__1.r, b[i__1].i = q__1.i;
  968. } else {
  969. i__1 = i__ + 1 + j * b_dim1;
  970. temp.r = b[i__1].r, temp.i = b[i__1].i;
  971. i__1 = i__ + 1 + j * b_dim1;
  972. i__2 = i__ + j * b_dim1;
  973. r_cnjg(&q__3, &dl[i__]);
  974. q__2.r = q__3.r * temp.r - q__3.i * temp.i, q__2.i =
  975. q__3.r * temp.i + q__3.i * temp.r;
  976. q__1.r = b[i__2].r - q__2.r, q__1.i = b[i__2].i - q__2.i;
  977. b[i__1].r = q__1.r, b[i__1].i = q__1.i;
  978. i__1 = i__ + j * b_dim1;
  979. b[i__1].r = temp.r, b[i__1].i = temp.i;
  980. }
  981. /* L150: */
  982. }
  983. if (j < *nrhs) {
  984. ++j;
  985. goto L130;
  986. }
  987. } else {
  988. i__1 = *nrhs;
  989. for (j = 1; j <= i__1; ++j) {
  990. /* Solve U**H * x = b. */
  991. i__2 = j * b_dim1 + 1;
  992. r_cnjg(&q__2, &d__[1]);
  993. c_div(&q__1, &b[j * b_dim1 + 1], &q__2);
  994. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  995. if (*n > 1) {
  996. i__2 = j * b_dim1 + 2;
  997. i__3 = j * b_dim1 + 2;
  998. r_cnjg(&q__4, &du[1]);
  999. i__4 = j * b_dim1 + 1;
  1000. q__3.r = q__4.r * b[i__4].r - q__4.i * b[i__4].i, q__3.i =
  1001. q__4.r * b[i__4].i + q__4.i * b[i__4].r;
  1002. q__2.r = b[i__3].r - q__3.r, q__2.i = b[i__3].i - q__3.i;
  1003. r_cnjg(&q__5, &d__[2]);
  1004. c_div(&q__1, &q__2, &q__5);
  1005. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  1006. }
  1007. i__2 = *n;
  1008. for (i__ = 3; i__ <= i__2; ++i__) {
  1009. i__3 = i__ + j * b_dim1;
  1010. i__4 = i__ + j * b_dim1;
  1011. r_cnjg(&q__5, &du[i__ - 1]);
  1012. i__5 = i__ - 1 + j * b_dim1;
  1013. q__4.r = q__5.r * b[i__5].r - q__5.i * b[i__5].i, q__4.i =
  1014. q__5.r * b[i__5].i + q__5.i * b[i__5].r;
  1015. q__3.r = b[i__4].r - q__4.r, q__3.i = b[i__4].i - q__4.i;
  1016. r_cnjg(&q__7, &du2[i__ - 2]);
  1017. i__6 = i__ - 2 + j * b_dim1;
  1018. q__6.r = q__7.r * b[i__6].r - q__7.i * b[i__6].i, q__6.i =
  1019. q__7.r * b[i__6].i + q__7.i * b[i__6].r;
  1020. q__2.r = q__3.r - q__6.r, q__2.i = q__3.i - q__6.i;
  1021. r_cnjg(&q__8, &d__[i__]);
  1022. c_div(&q__1, &q__2, &q__8);
  1023. b[i__3].r = q__1.r, b[i__3].i = q__1.i;
  1024. /* L160: */
  1025. }
  1026. /* Solve L**H * x = b. */
  1027. for (i__ = *n - 1; i__ >= 1; --i__) {
  1028. if (ipiv[i__] == i__) {
  1029. i__2 = i__ + j * b_dim1;
  1030. i__3 = i__ + j * b_dim1;
  1031. r_cnjg(&q__3, &dl[i__]);
  1032. i__4 = i__ + 1 + j * b_dim1;
  1033. q__2.r = q__3.r * b[i__4].r - q__3.i * b[i__4].i,
  1034. q__2.i = q__3.r * b[i__4].i + q__3.i * b[i__4]
  1035. .r;
  1036. q__1.r = b[i__3].r - q__2.r, q__1.i = b[i__3].i -
  1037. q__2.i;
  1038. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  1039. } else {
  1040. i__2 = i__ + 1 + j * b_dim1;
  1041. temp.r = b[i__2].r, temp.i = b[i__2].i;
  1042. i__2 = i__ + 1 + j * b_dim1;
  1043. i__3 = i__ + j * b_dim1;
  1044. r_cnjg(&q__3, &dl[i__]);
  1045. q__2.r = q__3.r * temp.r - q__3.i * temp.i, q__2.i =
  1046. q__3.r * temp.i + q__3.i * temp.r;
  1047. q__1.r = b[i__3].r - q__2.r, q__1.i = b[i__3].i -
  1048. q__2.i;
  1049. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  1050. i__2 = i__ + j * b_dim1;
  1051. b[i__2].r = temp.r, b[i__2].i = temp.i;
  1052. }
  1053. /* L170: */
  1054. }
  1055. /* L180: */
  1056. }
  1057. }
  1058. }
  1059. /* End of CGTTS2 */
  1060. return;
  1061. } /* cgtts2_ */