|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860 |
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle_() continue;
- #define myceiling_(w) {ceil(w)}
- #define myhuge_(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
-
-
- /* Table of constant values */
-
- static integer c__0 = 0;
- static integer c__1 = 1;
-
- /* > \brief \b ZLATMR */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE ZLATMR( M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, */
- /* RSIGN, GRADE, DL, MODEL, CONDL, DR, MODER, */
- /* CONDR, PIVTNG, IPIVOT, KL, KU, SPARSE, ANORM, */
- /* PACK, A, LDA, IWORK, INFO ) */
-
- /* CHARACTER DIST, GRADE, PACK, PIVTNG, RSIGN, SYM */
- /* INTEGER INFO, KL, KU, LDA, M, MODE, MODEL, MODER, N */
- /* DOUBLE PRECISION ANORM, COND, CONDL, CONDR, SPARSE */
- /* COMPLEX*16 DMAX */
- /* INTEGER IPIVOT( * ), ISEED( 4 ), IWORK( * ) */
- /* COMPLEX*16 A( LDA, * ), D( * ), DL( * ), DR( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > ZLATMR generates random matrices of various types for testing */
- /* > LAPACK programs. */
- /* > */
- /* > ZLATMR operates by applying the following sequence of */
- /* > operations: */
- /* > */
- /* > Generate a matrix A with random entries of distribution DIST */
- /* > which is symmetric if SYM='S', Hermitian if SYM='H', and */
- /* > nonsymmetric if SYM='N'. */
- /* > */
- /* > Set the diagonal to D, where D may be input or */
- /* > computed according to MODE, COND, DMAX and RSIGN */
- /* > as described below. */
- /* > */
- /* > Grade the matrix, if desired, from the left and/or right */
- /* > as specified by GRADE. The inputs DL, MODEL, CONDL, DR, */
- /* > MODER and CONDR also determine the grading as described */
- /* > below. */
- /* > */
- /* > Permute, if desired, the rows and/or columns as specified by */
- /* > PIVTNG and IPIVOT. */
- /* > */
- /* > Set random entries to zero, if desired, to get a random sparse */
- /* > matrix as specified by SPARSE. */
- /* > */
- /* > Make A a band matrix, if desired, by zeroing out the matrix */
- /* > outside a band of lower bandwidth KL and upper bandwidth KU. */
- /* > */
- /* > Scale A, if desired, to have maximum entry ANORM. */
- /* > */
- /* > Pack the matrix if desired. Options specified by PACK are: */
- /* > no packing */
- /* > zero out upper half (if symmetric or Hermitian) */
- /* > zero out lower half (if symmetric or Hermitian) */
- /* > store the upper half columnwise (if symmetric or Hermitian */
- /* > or square upper triangular) */
- /* > store the lower half columnwise (if symmetric or Hermitian */
- /* > or square lower triangular) */
- /* > same as upper half rowwise if symmetric */
- /* > same as conjugate upper half rowwise if Hermitian */
- /* > store the lower triangle in banded format */
- /* > (if symmetric or Hermitian) */
- /* > store the upper triangle in banded format */
- /* > (if symmetric or Hermitian) */
- /* > store the entire matrix in banded format */
- /* > */
- /* > Note: If two calls to ZLATMR differ only in the PACK parameter, */
- /* > they will generate mathematically equivalent matrices. */
- /* > */
- /* > If two calls to ZLATMR both have full bandwidth (KL = M-1 */
- /* > and KU = N-1), and differ only in the PIVTNG and PACK */
- /* > parameters, then the matrices generated will differ only */
- /* > in the order of the rows and/or columns, and otherwise */
- /* > contain the same data. This consistency cannot be and */
- /* > is not maintained with less than full bandwidth. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > Number of rows of A. Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > Number of columns of A. Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] DIST */
- /* > \verbatim */
- /* > DIST is CHARACTER*1 */
- /* > On entry, DIST specifies the type of distribution to be used */
- /* > to generate a random matrix . */
- /* > 'U' => real and imaginary parts are independent */
- /* > UNIFORM( 0, 1 ) ( 'U' for uniform ) */
- /* > 'S' => real and imaginary parts are independent */
- /* > UNIFORM( -1, 1 ) ( 'S' for symmetric ) */
- /* > 'N' => real and imaginary parts are independent */
- /* > NORMAL( 0, 1 ) ( 'N' for normal ) */
- /* > 'D' => uniform on interior of unit disk ( 'D' for disk ) */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] ISEED */
- /* > \verbatim */
- /* > ISEED is INTEGER array, dimension (4) */
- /* > On entry ISEED specifies the seed of the random number */
- /* > generator. They should lie between 0 and 4095 inclusive, */
- /* > and ISEED(4) should be odd. The random number generator */
- /* > uses a linear congruential sequence limited to small */
- /* > integers, and so should produce machine independent */
- /* > random numbers. The values of ISEED are changed on */
- /* > exit, and can be used in the next call to ZLATMR */
- /* > to continue the same random number sequence. */
- /* > Changed on exit. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] SYM */
- /* > \verbatim */
- /* > SYM is CHARACTER*1 */
- /* > If SYM='S', generated matrix is symmetric. */
- /* > If SYM='H', generated matrix is Hermitian. */
- /* > If SYM='N', generated matrix is nonsymmetric. */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] D */
- /* > \verbatim */
- /* > D is COMPLEX*16 array, dimension (f2cmin(M,N)) */
- /* > On entry this array specifies the diagonal entries */
- /* > of the diagonal of A. D may either be specified */
- /* > on entry, or set according to MODE and COND as described */
- /* > below. If the matrix is Hermitian, the real part of D */
- /* > will be taken. May be changed on exit if MODE is nonzero. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] MODE */
- /* > \verbatim */
- /* > MODE is INTEGER */
- /* > On entry describes how D is to be used: */
- /* > MODE = 0 means use D as input */
- /* > MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND */
- /* > MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND */
- /* > MODE = 3 sets D(I)=COND**(-(I-1)/(N-1)) */
- /* > MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND) */
- /* > MODE = 5 sets D to random numbers in the range */
- /* > ( 1/COND , 1 ) such that their logarithms */
- /* > are uniformly distributed. */
- /* > MODE = 6 set D to random numbers from same distribution */
- /* > as the rest of the matrix. */
- /* > MODE < 0 has the same meaning as ABS(MODE), except that */
- /* > the order of the elements of D is reversed. */
- /* > Thus if MODE is positive, D has entries ranging from */
- /* > 1 to 1/COND, if negative, from 1/COND to 1, */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] COND */
- /* > \verbatim */
- /* > COND is DOUBLE PRECISION */
- /* > On entry, used as described under MODE above. */
- /* > If used, it must be >= 1. Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] DMAX */
- /* > \verbatim */
- /* > DMAX is COMPLEX*16 */
- /* > If MODE neither -6, 0 nor 6, the diagonal is scaled by */
- /* > DMAX / f2cmax(abs(D(i))), so that maximum absolute entry */
- /* > of diagonal is abs(DMAX). If DMAX is complex (or zero), */
- /* > diagonal will be scaled by a complex number (or zero). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] RSIGN */
- /* > \verbatim */
- /* > RSIGN is CHARACTER*1 */
- /* > If MODE neither -6, 0 nor 6, specifies sign of diagonal */
- /* > as follows: */
- /* > 'T' => diagonal entries are multiplied by a random complex */
- /* > number uniformly distributed with absolute value 1 */
- /* > 'F' => diagonal unchanged */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] GRADE */
- /* > \verbatim */
- /* > GRADE is CHARACTER*1 */
- /* > Specifies grading of matrix as follows: */
- /* > 'N' => no grading */
- /* > 'L' => matrix premultiplied by diag( DL ) */
- /* > (only if matrix nonsymmetric) */
- /* > 'R' => matrix postmultiplied by diag( DR ) */
- /* > (only if matrix nonsymmetric) */
- /* > 'B' => matrix premultiplied by diag( DL ) and */
- /* > postmultiplied by diag( DR ) */
- /* > (only if matrix nonsymmetric) */
- /* > 'H' => matrix premultiplied by diag( DL ) and */
- /* > postmultiplied by diag( CONJG(DL) ) */
- /* > (only if matrix Hermitian or nonsymmetric) */
- /* > 'S' => matrix premultiplied by diag( DL ) and */
- /* > postmultiplied by diag( DL ) */
- /* > (only if matrix symmetric or nonsymmetric) */
- /* > 'E' => matrix premultiplied by diag( DL ) and */
- /* > postmultiplied by inv( diag( DL ) ) */
- /* > ( 'S' for similarity ) */
- /* > (only if matrix nonsymmetric) */
- /* > Note: if GRADE='S', then M must equal N. */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] DL */
- /* > \verbatim */
- /* > DL is COMPLEX*16 array, dimension (M) */
- /* > If MODEL=0, then on entry this array specifies the diagonal */
- /* > entries of a diagonal matrix used as described under GRADE */
- /* > above. If MODEL is not zero, then DL will be set according */
- /* > to MODEL and CONDL, analogous to the way D is set according */
- /* > to MODE and COND (except there is no DMAX parameter for DL). */
- /* > If GRADE='E', then DL cannot have zero entries. */
- /* > Not referenced if GRADE = 'N' or 'R'. Changed on exit. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] MODEL */
- /* > \verbatim */
- /* > MODEL is INTEGER */
- /* > This specifies how the diagonal array DL is to be computed, */
- /* > just as MODE specifies how D is to be computed. */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] CONDL */
- /* > \verbatim */
- /* > CONDL is DOUBLE PRECISION */
- /* > When MODEL is not zero, this specifies the condition number */
- /* > of the computed DL. Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] DR */
- /* > \verbatim */
- /* > DR is COMPLEX*16 array, dimension (N) */
- /* > If MODER=0, then on entry this array specifies the diagonal */
- /* > entries of a diagonal matrix used as described under GRADE */
- /* > above. If MODER is not zero, then DR will be set according */
- /* > to MODER and CONDR, analogous to the way D is set according */
- /* > to MODE and COND (except there is no DMAX parameter for DR). */
- /* > Not referenced if GRADE = 'N', 'L', 'H' or 'S'. */
- /* > Changed on exit. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] MODER */
- /* > \verbatim */
- /* > MODER is INTEGER */
- /* > This specifies how the diagonal array DR is to be computed, */
- /* > just as MODE specifies how D is to be computed. */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] CONDR */
- /* > \verbatim */
- /* > CONDR is DOUBLE PRECISION */
- /* > When MODER is not zero, this specifies the condition number */
- /* > of the computed DR. Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] PIVTNG */
- /* > \verbatim */
- /* > PIVTNG is CHARACTER*1 */
- /* > On entry specifies pivoting permutations as follows: */
- /* > 'N' or ' ' => none. */
- /* > 'L' => left or row pivoting (matrix must be nonsymmetric). */
- /* > 'R' => right or column pivoting (matrix must be */
- /* > nonsymmetric). */
- /* > 'B' or 'F' => both or full pivoting, i.e., on both sides. */
- /* > In this case, M must equal N */
- /* > */
- /* > If two calls to ZLATMR both have full bandwidth (KL = M-1 */
- /* > and KU = N-1), and differ only in the PIVTNG and PACK */
- /* > parameters, then the matrices generated will differ only */
- /* > in the order of the rows and/or columns, and otherwise */
- /* > contain the same data. This consistency cannot be */
- /* > maintained with less than full bandwidth. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] IPIVOT */
- /* > \verbatim */
- /* > IPIVOT is INTEGER array, dimension (N or M) */
- /* > This array specifies the permutation used. After the */
- /* > basic matrix is generated, the rows, columns, or both */
- /* > are permuted. If, say, row pivoting is selected, ZLATMR */
- /* > starts with the *last* row and interchanges the M-th and */
- /* > IPIVOT(M)-th rows, then moves to the next-to-last row, */
- /* > interchanging the (M-1)-th and the IPIVOT(M-1)-th rows, */
- /* > and so on. In terms of "2-cycles", the permutation is */
- /* > (1 IPIVOT(1)) (2 IPIVOT(2)) ... (M IPIVOT(M)) */
- /* > where the rightmost cycle is applied first. This is the */
- /* > *inverse* of the effect of pivoting in LINPACK. The idea */
- /* > is that factoring (with pivoting) an identity matrix */
- /* > which has been inverse-pivoted in this way should */
- /* > result in a pivot vector identical to IPIVOT. */
- /* > Not referenced if PIVTNG = 'N'. Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] KL */
- /* > \verbatim */
- /* > KL is INTEGER */
- /* > On entry specifies the lower bandwidth of the matrix. For */
- /* > example, KL=0 implies upper triangular, KL=1 implies upper */
- /* > Hessenberg, and KL at least M-1 implies the matrix is not */
- /* > banded. Must equal KU if matrix is symmetric or Hermitian. */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] KU */
- /* > \verbatim */
- /* > KU is INTEGER */
- /* > On entry specifies the upper bandwidth of the matrix. For */
- /* > example, KU=0 implies lower triangular, KU=1 implies lower */
- /* > Hessenberg, and KU at least N-1 implies the matrix is not */
- /* > banded. Must equal KL if matrix is symmetric or Hermitian. */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] SPARSE */
- /* > \verbatim */
- /* > SPARSE is DOUBLE PRECISION */
- /* > On entry specifies the sparsity of the matrix if a sparse */
- /* > matrix is to be generated. SPARSE should lie between */
- /* > 0 and 1. To generate a sparse matrix, for each matrix entry */
- /* > a uniform ( 0, 1 ) random number x is generated and */
- /* > compared to SPARSE; if x is larger the matrix entry */
- /* > is unchanged and if x is smaller the entry is set */
- /* > to zero. Thus on the average a fraction SPARSE of the */
- /* > entries will be set to zero. */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] ANORM */
- /* > \verbatim */
- /* > ANORM is DOUBLE PRECISION */
- /* > On entry specifies maximum entry of output matrix */
- /* > (output matrix will by multiplied by a constant so that */
- /* > its largest absolute entry equal ANORM) */
- /* > if ANORM is nonnegative. If ANORM is negative no scaling */
- /* > is done. Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] PACK */
- /* > \verbatim */
- /* > PACK is CHARACTER*1 */
- /* > On entry specifies packing of matrix as follows: */
- /* > 'N' => no packing */
- /* > 'U' => zero out all subdiagonal entries */
- /* > (if symmetric or Hermitian) */
- /* > 'L' => zero out all superdiagonal entries */
- /* > (if symmetric or Hermitian) */
- /* > 'C' => store the upper triangle columnwise */
- /* > (only if matrix symmetric or Hermitian or */
- /* > square upper triangular) */
- /* > 'R' => store the lower triangle columnwise */
- /* > (only if matrix symmetric or Hermitian or */
- /* > square lower triangular) */
- /* > (same as upper half rowwise if symmetric) */
- /* > (same as conjugate upper half rowwise if Hermitian) */
- /* > 'B' => store the lower triangle in band storage scheme */
- /* > (only if matrix symmetric or Hermitian) */
- /* > 'Q' => store the upper triangle in band storage scheme */
- /* > (only if matrix symmetric or Hermitian) */
- /* > 'Z' => store the entire matrix in band storage scheme */
- /* > (pivoting can be provided for by using this */
- /* > option to store A in the trailing rows of */
- /* > the allocated storage) */
- /* > */
- /* > Using these options, the various LAPACK packed and banded */
- /* > storage schemes can be obtained: */
- /* > GB - use 'Z' */
- /* > PB, HB or TB - use 'B' or 'Q' */
- /* > PP, HP or TP - use 'C' or 'R' */
- /* > */
- /* > If two calls to ZLATMR differ only in the PACK parameter, */
- /* > they will generate mathematically equivalent matrices. */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is COMPLEX*16 array, dimension (LDA,N) */
- /* > On exit A is the desired test matrix. Only those */
- /* > entries of A which are significant on output */
- /* > will be referenced (even if A is in packed or band */
- /* > storage format). The 'unoccupied corners' of A in */
- /* > band format will be zeroed out. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > on entry LDA specifies the first dimension of A as */
- /* > declared in the calling program. */
- /* > If PACK='N', 'U' or 'L', LDA must be at least f2cmax ( 1, M ). */
- /* > If PACK='C' or 'R', LDA must be at least 1. */
- /* > If PACK='B', or 'Q', LDA must be MIN ( KU+1, N ) */
- /* > If PACK='Z', LDA must be at least KUU+KLL+1, where */
- /* > KUU = MIN ( KU, N-1 ) and KLL = MIN ( KL, M-1 ) */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IWORK */
- /* > \verbatim */
- /* > IWORK is INTEGER array, dimension (N or M) */
- /* > Workspace. Not referenced if PIVTNG = 'N'. Changed on exit. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > Error parameter on exit: */
- /* > 0 => normal return */
- /* > -1 => M negative or unequal to N and SYM='S' or 'H' */
- /* > -2 => N negative */
- /* > -3 => DIST illegal string */
- /* > -5 => SYM illegal string */
- /* > -7 => MODE not in range -6 to 6 */
- /* > -8 => COND less than 1.0, and MODE neither -6, 0 nor 6 */
- /* > -10 => MODE neither -6, 0 nor 6 and RSIGN illegal string */
- /* > -11 => GRADE illegal string, or GRADE='E' and */
- /* > M not equal to N, or GRADE='L', 'R', 'B', 'S' or 'E' */
- /* > and SYM = 'H', or GRADE='L', 'R', 'B', 'H' or 'E' */
- /* > and SYM = 'S' */
- /* > -12 => GRADE = 'E' and DL contains zero */
- /* > -13 => MODEL not in range -6 to 6 and GRADE= 'L', 'B', 'H', */
- /* > 'S' or 'E' */
- /* > -14 => CONDL less than 1.0, GRADE='L', 'B', 'H', 'S' or 'E', */
- /* > and MODEL neither -6, 0 nor 6 */
- /* > -16 => MODER not in range -6 to 6 and GRADE= 'R' or 'B' */
- /* > -17 => CONDR less than 1.0, GRADE='R' or 'B', and */
- /* > MODER neither -6, 0 nor 6 */
- /* > -18 => PIVTNG illegal string, or PIVTNG='B' or 'F' and */
- /* > M not equal to N, or PIVTNG='L' or 'R' and SYM='S' */
- /* > or 'H' */
- /* > -19 => IPIVOT contains out of range number and */
- /* > PIVTNG not equal to 'N' */
- /* > -20 => KL negative */
- /* > -21 => KU negative, or SYM='S' or 'H' and KU not equal to KL */
- /* > -22 => SPARSE not in range 0. to 1. */
- /* > -24 => PACK illegal string, or PACK='U', 'L', 'B' or 'Q' */
- /* > and SYM='N', or PACK='C' and SYM='N' and either KL */
- /* > not equal to 0 or N not equal to M, or PACK='R' and */
- /* > SYM='N', and either KU not equal to 0 or N not equal */
- /* > to M */
- /* > -26 => LDA too small */
- /* > 1 => Error return from ZLATM1 (computing D) */
- /* > 2 => Cannot scale diagonal to DMAX (f2cmax. entry is 0) */
- /* > 3 => Error return from ZLATM1 (computing DL) */
- /* > 4 => Error return from ZLATM1 (computing DR) */
- /* > 5 => ANORM is positive, but matrix constructed prior to */
- /* > attempting to scale it to have norm ANORM, is zero */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup complex16_matgen */
-
- /* ===================================================================== */
- /* Subroutine */ void zlatmr_(integer *m, integer *n, char *dist, integer *
- iseed, char *sym, doublecomplex *d__, integer *mode, doublereal *cond,
- doublecomplex *dmax__, char *rsign, char *grade, doublecomplex *dl,
- integer *model, doublereal *condl, doublecomplex *dr, integer *moder,
- doublereal *condr, char *pivtng, integer *ipivot, integer *kl,
- integer *ku, doublereal *sparse, doublereal *anorm, char *pack,
- doublecomplex *a, integer *lda, integer *iwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
- doublereal d__1, d__2;
- doublecomplex z__1, z__2;
-
- /* Local variables */
- integer isub, jsub;
- doublereal temp;
- integer isym, i__, j, k, ipack;
- extern logical lsame_(char *, char *);
- doublereal tempa[1];
- doublecomplex ctemp;
- integer iisub, idist, jjsub, mnmin;
- logical dzero;
- integer mnsub;
- doublereal onorm;
- integer mxsub, npvts;
- extern /* Subroutine */ void zlatm1_(integer *, doublereal *, integer *,
- integer *, integer *, doublecomplex *, integer *, integer *);
- extern /* Double Complex */ VOID zlatm2_(doublecomplex *, integer *,
- integer *, integer *, integer *, integer *, integer *, integer *,
- integer *, doublecomplex *, integer *, doublecomplex *,
- doublecomplex *, integer *, integer *, doublereal *), zlatm3_(
- doublecomplex *, integer *, integer *, integer *, integer *,
- integer *, integer *, integer *, integer *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *, integer *, doublereal *);
- doublecomplex calpha;
- integer igrade;
- logical fulbnd;
- extern doublereal zlangb_(char *, integer *, integer *, integer *,
- doublecomplex *, integer *, doublereal *);
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- logical badpvt;
- extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
- integer *, doublereal *);
- extern /* Subroutine */ void zdscal_(integer *, doublereal *,
- doublecomplex *, integer *);
- extern doublereal zlansb_(char *, char *, integer *, integer *,
- doublecomplex *, integer *, doublereal *);
- integer irsign, ipvtng;
- extern doublereal zlansp_(char *, char *, integer *, doublecomplex *,
- doublereal *), zlansy_(char *, char *, integer *,
- doublecomplex *, integer *, doublereal *);
- integer kll, kuu;
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* 1) Decode and Test the input parameters. */
- /* Initialize flags & seed. */
-
- /* Parameter adjustments */
- --iseed;
- --d__;
- --dl;
- --dr;
- --ipivot;
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --iwork;
-
- /* Function Body */
- *info = 0;
-
- /* Quick return if possible */
-
- if (*m == 0 || *n == 0) {
- return;
- }
-
- /* Decode DIST */
-
- if (lsame_(dist, "U")) {
- idist = 1;
- } else if (lsame_(dist, "S")) {
- idist = 2;
- } else if (lsame_(dist, "N")) {
- idist = 3;
- } else if (lsame_(dist, "D")) {
- idist = 4;
- } else {
- idist = -1;
- }
-
- /* Decode SYM */
-
- if (lsame_(sym, "H")) {
- isym = 0;
- } else if (lsame_(sym, "N")) {
- isym = 1;
- } else if (lsame_(sym, "S")) {
- isym = 2;
- } else {
- isym = -1;
- }
-
- /* Decode RSIGN */
-
- if (lsame_(rsign, "F")) {
- irsign = 0;
- } else if (lsame_(rsign, "T")) {
- irsign = 1;
- } else {
- irsign = -1;
- }
-
- /* Decode PIVTNG */
-
- if (lsame_(pivtng, "N")) {
- ipvtng = 0;
- } else if (lsame_(pivtng, " ")) {
- ipvtng = 0;
- } else if (lsame_(pivtng, "L")) {
- ipvtng = 1;
- npvts = *m;
- } else if (lsame_(pivtng, "R")) {
- ipvtng = 2;
- npvts = *n;
- } else if (lsame_(pivtng, "B")) {
- ipvtng = 3;
- npvts = f2cmin(*n,*m);
- } else if (lsame_(pivtng, "F")) {
- ipvtng = 3;
- npvts = f2cmin(*n,*m);
- } else {
- ipvtng = -1;
- }
-
- /* Decode GRADE */
-
- if (lsame_(grade, "N")) {
- igrade = 0;
- } else if (lsame_(grade, "L")) {
- igrade = 1;
- } else if (lsame_(grade, "R")) {
- igrade = 2;
- } else if (lsame_(grade, "B")) {
- igrade = 3;
- } else if (lsame_(grade, "E")) {
- igrade = 4;
- } else if (lsame_(grade, "H")) {
- igrade = 5;
- } else if (lsame_(grade, "S")) {
- igrade = 6;
- } else {
- igrade = -1;
- }
-
- /* Decode PACK */
-
- if (lsame_(pack, "N")) {
- ipack = 0;
- } else if (lsame_(pack, "U")) {
- ipack = 1;
- } else if (lsame_(pack, "L")) {
- ipack = 2;
- } else if (lsame_(pack, "C")) {
- ipack = 3;
- } else if (lsame_(pack, "R")) {
- ipack = 4;
- } else if (lsame_(pack, "B")) {
- ipack = 5;
- } else if (lsame_(pack, "Q")) {
- ipack = 6;
- } else if (lsame_(pack, "Z")) {
- ipack = 7;
- } else {
- ipack = -1;
- }
-
- /* Set certain internal parameters */
-
- mnmin = f2cmin(*m,*n);
- /* Computing MIN */
- i__1 = *kl, i__2 = *m - 1;
- kll = f2cmin(i__1,i__2);
- /* Computing MIN */
- i__1 = *ku, i__2 = *n - 1;
- kuu = f2cmin(i__1,i__2);
-
- /* If inv(DL) is used, check to see if DL has a zero entry. */
-
- dzero = FALSE_;
- if (igrade == 4 && *model == 0) {
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__;
- if (dl[i__2].r == 0. && dl[i__2].i == 0.) {
- dzero = TRUE_;
- }
- /* L10: */
- }
- }
-
- /* Check values in IPIVOT */
-
- badpvt = FALSE_;
- if (ipvtng > 0) {
- i__1 = npvts;
- for (j = 1; j <= i__1; ++j) {
- if (ipivot[j] <= 0 || ipivot[j] > npvts) {
- badpvt = TRUE_;
- }
- /* L20: */
- }
- }
-
- /* Set INFO if an error */
-
- if (*m < 0) {
- *info = -1;
- } else if (*m != *n && (isym == 0 || isym == 2)) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (idist == -1) {
- *info = -3;
- } else if (isym == -1) {
- *info = -5;
- } else if (*mode < -6 || *mode > 6) {
- *info = -7;
- } else if (*mode != -6 && *mode != 0 && *mode != 6 && *cond < 1.) {
- *info = -8;
- } else if (*mode != -6 && *mode != 0 && *mode != 6 && irsign == -1) {
- *info = -10;
- } else if (igrade == -1 || igrade == 4 && *m != *n || (igrade == 1 ||
- igrade == 2 || igrade == 3 || igrade == 4 || igrade == 6) && isym
- == 0 || (igrade == 1 || igrade == 2 || igrade == 3 || igrade == 4
- || igrade == 5) && isym == 2) {
- *info = -11;
- } else if (igrade == 4 && dzero) {
- *info = -12;
- } else if ((igrade == 1 || igrade == 3 || igrade == 4 || igrade == 5 ||
- igrade == 6) && (*model < -6 || *model > 6)) {
- *info = -13;
- } else if ((igrade == 1 || igrade == 3 || igrade == 4 || igrade == 5 ||
- igrade == 6) && (*model != -6 && *model != 0 && *model != 6) && *
- condl < 1.) {
- *info = -14;
- } else if ((igrade == 2 || igrade == 3) && (*moder < -6 || *moder > 6)) {
- *info = -16;
- } else if ((igrade == 2 || igrade == 3) && (*moder != -6 && *moder != 0 &&
- *moder != 6) && *condr < 1.) {
- *info = -17;
- } else if (ipvtng == -1 || ipvtng == 3 && *m != *n || (ipvtng == 1 ||
- ipvtng == 2) && (isym == 0 || isym == 2)) {
- *info = -18;
- } else if (ipvtng != 0 && badpvt) {
- *info = -19;
- } else if (*kl < 0) {
- *info = -20;
- } else if (*ku < 0 || (isym == 0 || isym == 2) && *kl != *ku) {
- *info = -21;
- } else if (*sparse < 0. || *sparse > 1.) {
- *info = -22;
- } else if (ipack == -1 || (ipack == 1 || ipack == 2 || ipack == 5 ||
- ipack == 6) && isym == 1 || ipack == 3 && isym == 1 && (*kl != 0
- || *m != *n) || ipack == 4 && isym == 1 && (*ku != 0 || *m != *n))
- {
- *info = -24;
- } else if ((ipack == 0 || ipack == 1 || ipack == 2) && *lda < f2cmax(1,*m) ||
- (ipack == 3 || ipack == 4) && *lda < 1 || (ipack == 5 || ipack ==
- 6) && *lda < kuu + 1 || ipack == 7 && *lda < kll + kuu + 1) {
- *info = -26;
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZLATMR", &i__1, 6);
- return;
- }
-
- /* Decide if we can pivot consistently */
-
- fulbnd = FALSE_;
- if (kuu == *n - 1 && kll == *m - 1) {
- fulbnd = TRUE_;
- }
-
- /* Initialize random number generator */
-
- for (i__ = 1; i__ <= 4; ++i__) {
- iseed[i__] = (i__1 = iseed[i__], abs(i__1)) % 4096;
- /* L30: */
- }
-
- iseed[4] = (iseed[4] / 2 << 1) + 1;
-
- /* 2) Set up D, DL, and DR, if indicated. */
-
- /* Compute D according to COND and MODE */
-
- zlatm1_(mode, cond, &irsign, &idist, &iseed[1], &d__[1], &mnmin, info);
- if (*info != 0) {
- *info = 1;
- return;
- }
- if (*mode != 0 && *mode != -6 && *mode != 6) {
-
- /* Scale by DMAX */
-
- temp = z_abs(&d__[1]);
- i__1 = mnmin;
- for (i__ = 2; i__ <= i__1; ++i__) {
- /* Computing MAX */
- d__1 = temp, d__2 = z_abs(&d__[i__]);
- temp = f2cmax(d__1,d__2);
- /* L40: */
- }
- if (temp == 0. && (dmax__->r != 0. || dmax__->i != 0.)) {
- *info = 2;
- return;
- }
- if (temp != 0.) {
- z__1.r = dmax__->r / temp, z__1.i = dmax__->i / temp;
- calpha.r = z__1.r, calpha.i = z__1.i;
- } else {
- calpha.r = 1., calpha.i = 0.;
- }
- i__1 = mnmin;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__;
- i__3 = i__;
- z__1.r = calpha.r * d__[i__3].r - calpha.i * d__[i__3].i, z__1.i =
- calpha.r * d__[i__3].i + calpha.i * d__[i__3].r;
- d__[i__2].r = z__1.r, d__[i__2].i = z__1.i;
- /* L50: */
- }
-
- }
-
- /* If matrix Hermitian, make D real */
-
- if (isym == 0) {
- i__1 = mnmin;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__;
- i__3 = i__;
- d__1 = d__[i__3].r;
- d__[i__2].r = d__1, d__[i__2].i = 0.;
- /* L60: */
- }
- }
-
- /* Compute DL if grading set */
-
- if (igrade == 1 || igrade == 3 || igrade == 4 || igrade == 5 || igrade ==
- 6) {
- zlatm1_(model, condl, &c__0, &idist, &iseed[1], &dl[1], m, info);
- if (*info != 0) {
- *info = 3;
- return;
- }
- }
-
- /* Compute DR if grading set */
-
- if (igrade == 2 || igrade == 3) {
- zlatm1_(moder, condr, &c__0, &idist, &iseed[1], &dr[1], n, info);
- if (*info != 0) {
- *info = 4;
- return;
- }
- }
-
- /* 3) Generate IWORK if pivoting */
-
- if (ipvtng > 0) {
- i__1 = npvts;
- for (i__ = 1; i__ <= i__1; ++i__) {
- iwork[i__] = i__;
- /* L70: */
- }
- if (fulbnd) {
- i__1 = npvts;
- for (i__ = 1; i__ <= i__1; ++i__) {
- k = ipivot[i__];
- j = iwork[i__];
- iwork[i__] = iwork[k];
- iwork[k] = j;
- /* L80: */
- }
- } else {
- for (i__ = npvts; i__ >= 1; --i__) {
- k = ipivot[i__];
- j = iwork[i__];
- iwork[i__] = iwork[k];
- iwork[k] = j;
- /* L90: */
- }
- }
- }
-
- /* 4) Generate matrices for each kind of PACKing */
- /* Always sweep matrix columnwise (if symmetric, upper */
- /* half only) so that matrix generated does not depend */
- /* on PACK */
-
- if (fulbnd) {
-
- /* Use ZLATM3 so matrices generated with differing PIVOTing only */
- /* differ only in the order of their rows and/or columns. */
-
- if (ipack == 0) {
- if (isym == 0) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- zlatm3_(&z__1, m, n, &i__, &j, &isub, &jsub, kl, ku, &
- idist, &iseed[1], &d__[1], &igrade, &dl[1], &
- dr[1], &ipvtng, &iwork[1], sparse);
- ctemp.r = z__1.r, ctemp.i = z__1.i;
- i__3 = isub + jsub * a_dim1;
- a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
- i__3 = jsub + isub * a_dim1;
- d_cnjg(&z__1, &ctemp);
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- /* L100: */
- }
- /* L110: */
- }
- } else if (isym == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- zlatm3_(&z__1, m, n, &i__, &j, &isub, &jsub, kl, ku, &
- idist, &iseed[1], &d__[1], &igrade, &dl[1], &
- dr[1], &ipvtng, &iwork[1], sparse);
- ctemp.r = z__1.r, ctemp.i = z__1.i;
- i__3 = isub + jsub * a_dim1;
- a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
- /* L120: */
- }
- /* L130: */
- }
- } else if (isym == 2) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- zlatm3_(&z__1, m, n, &i__, &j, &isub, &jsub, kl, ku, &
- idist, &iseed[1], &d__[1], &igrade, &dl[1], &
- dr[1], &ipvtng, &iwork[1], sparse);
- ctemp.r = z__1.r, ctemp.i = z__1.i;
- i__3 = isub + jsub * a_dim1;
- a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
- i__3 = jsub + isub * a_dim1;
- a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
- /* L140: */
- }
- /* L150: */
- }
- }
-
- } else if (ipack == 1) {
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- zlatm3_(&z__1, m, n, &i__, &j, &isub, &jsub, kl, ku, &
- idist, &iseed[1], &d__[1], &igrade, &dl[1], &dr[1]
- , &ipvtng, &iwork[1], sparse);
- ctemp.r = z__1.r, ctemp.i = z__1.i;
- mnsub = f2cmin(isub,jsub);
- mxsub = f2cmax(isub,jsub);
- if (mxsub == isub && isym == 0) {
- i__3 = mnsub + mxsub * a_dim1;
- d_cnjg(&z__1, &ctemp);
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- } else {
- i__3 = mnsub + mxsub * a_dim1;
- a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
- }
- if (mnsub != mxsub) {
- i__3 = mxsub + mnsub * a_dim1;
- a[i__3].r = 0., a[i__3].i = 0.;
- }
- /* L160: */
- }
- /* L170: */
- }
-
- } else if (ipack == 2) {
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- zlatm3_(&z__1, m, n, &i__, &j, &isub, &jsub, kl, ku, &
- idist, &iseed[1], &d__[1], &igrade, &dl[1], &dr[1]
- , &ipvtng, &iwork[1], sparse);
- ctemp.r = z__1.r, ctemp.i = z__1.i;
- mnsub = f2cmin(isub,jsub);
- mxsub = f2cmax(isub,jsub);
- if (mxsub == jsub && isym == 0) {
- i__3 = mxsub + mnsub * a_dim1;
- d_cnjg(&z__1, &ctemp);
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- } else {
- i__3 = mxsub + mnsub * a_dim1;
- a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
- }
- if (mnsub != mxsub) {
- i__3 = mnsub + mxsub * a_dim1;
- a[i__3].r = 0., a[i__3].i = 0.;
- }
- /* L180: */
- }
- /* L190: */
- }
-
- } else if (ipack == 3) {
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- zlatm3_(&z__1, m, n, &i__, &j, &isub, &jsub, kl, ku, &
- idist, &iseed[1], &d__[1], &igrade, &dl[1], &dr[1]
- , &ipvtng, &iwork[1], sparse);
- ctemp.r = z__1.r, ctemp.i = z__1.i;
-
- /* Compute K = location of (ISUB,JSUB) entry in packed */
- /* array */
-
- mnsub = f2cmin(isub,jsub);
- mxsub = f2cmax(isub,jsub);
- k = mxsub * (mxsub - 1) / 2 + mnsub;
-
- /* Convert K to (IISUB,JJSUB) location */
-
- jjsub = (k - 1) / *lda + 1;
- iisub = k - *lda * (jjsub - 1);
-
- if (mxsub == isub && isym == 0) {
- i__3 = iisub + jjsub * a_dim1;
- d_cnjg(&z__1, &ctemp);
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- } else {
- i__3 = iisub + jjsub * a_dim1;
- a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
- }
- /* L200: */
- }
- /* L210: */
- }
-
- } else if (ipack == 4) {
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- zlatm3_(&z__1, m, n, &i__, &j, &isub, &jsub, kl, ku, &
- idist, &iseed[1], &d__[1], &igrade, &dl[1], &dr[1]
- , &ipvtng, &iwork[1], sparse);
- ctemp.r = z__1.r, ctemp.i = z__1.i;
-
- /* Compute K = location of (I,J) entry in packed array */
-
- mnsub = f2cmin(isub,jsub);
- mxsub = f2cmax(isub,jsub);
- if (mnsub == 1) {
- k = mxsub;
- } else {
- k = *n * (*n + 1) / 2 - (*n - mnsub + 1) * (*n -
- mnsub + 2) / 2 + mxsub - mnsub + 1;
- }
-
- /* Convert K to (IISUB,JJSUB) location */
-
- jjsub = (k - 1) / *lda + 1;
- iisub = k - *lda * (jjsub - 1);
-
- if (mxsub == jsub && isym == 0) {
- i__3 = iisub + jjsub * a_dim1;
- d_cnjg(&z__1, &ctemp);
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- } else {
- i__3 = iisub + jjsub * a_dim1;
- a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
- }
- /* L220: */
- }
- /* L230: */
- }
-
- } else if (ipack == 5) {
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = j - kuu; i__ <= i__2; ++i__) {
- if (i__ < 1) {
- i__3 = j - i__ + 1 + (i__ + *n) * a_dim1;
- a[i__3].r = 0., a[i__3].i = 0.;
- } else {
- zlatm3_(&z__1, m, n, &i__, &j, &isub, &jsub, kl, ku, &
- idist, &iseed[1], &d__[1], &igrade, &dl[1], &
- dr[1], &ipvtng, &iwork[1], sparse);
- ctemp.r = z__1.r, ctemp.i = z__1.i;
- mnsub = f2cmin(isub,jsub);
- mxsub = f2cmax(isub,jsub);
- if (mxsub == jsub && isym == 0) {
- i__3 = mxsub - mnsub + 1 + mnsub * a_dim1;
- d_cnjg(&z__1, &ctemp);
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- } else {
- i__3 = mxsub - mnsub + 1 + mnsub * a_dim1;
- a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
- }
- }
- /* L240: */
- }
- /* L250: */
- }
-
- } else if (ipack == 6) {
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = j - kuu; i__ <= i__2; ++i__) {
- zlatm3_(&z__1, m, n, &i__, &j, &isub, &jsub, kl, ku, &
- idist, &iseed[1], &d__[1], &igrade, &dl[1], &dr[1]
- , &ipvtng, &iwork[1], sparse);
- ctemp.r = z__1.r, ctemp.i = z__1.i;
- mnsub = f2cmin(isub,jsub);
- mxsub = f2cmax(isub,jsub);
- if (mxsub == isub && isym == 0) {
- i__3 = mnsub - mxsub + kuu + 1 + mxsub * a_dim1;
- d_cnjg(&z__1, &ctemp);
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- } else {
- i__3 = mnsub - mxsub + kuu + 1 + mxsub * a_dim1;
- a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
- }
- /* L260: */
- }
- /* L270: */
- }
-
- } else if (ipack == 7) {
-
- if (isym != 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = j - kuu; i__ <= i__2; ++i__) {
- zlatm3_(&z__1, m, n, &i__, &j, &isub, &jsub, kl, ku, &
- idist, &iseed[1], &d__[1], &igrade, &dl[1], &
- dr[1], &ipvtng, &iwork[1], sparse);
- ctemp.r = z__1.r, ctemp.i = z__1.i;
- mnsub = f2cmin(isub,jsub);
- mxsub = f2cmax(isub,jsub);
- if (i__ < 1) {
- i__3 = j - i__ + 1 + kuu + (i__ + *n) * a_dim1;
- a[i__3].r = 0., a[i__3].i = 0.;
- }
- if (mxsub == isub && isym == 0) {
- i__3 = mnsub - mxsub + kuu + 1 + mxsub * a_dim1;
- d_cnjg(&z__1, &ctemp);
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- } else {
- i__3 = mnsub - mxsub + kuu + 1 + mxsub * a_dim1;
- a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
- }
- if (i__ >= 1 && mnsub != mxsub) {
- if (mnsub == isub && isym == 0) {
- i__3 = mxsub - mnsub + 1 + kuu + mnsub *
- a_dim1;
- d_cnjg(&z__1, &ctemp);
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- } else {
- i__3 = mxsub - mnsub + 1 + kuu + mnsub *
- a_dim1;
- a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
- }
- }
- /* L280: */
- }
- /* L290: */
- }
- } else if (isym == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j + kll;
- for (i__ = j - kuu; i__ <= i__2; ++i__) {
- zlatm3_(&z__1, m, n, &i__, &j, &isub, &jsub, kl, ku, &
- idist, &iseed[1], &d__[1], &igrade, &dl[1], &
- dr[1], &ipvtng, &iwork[1], sparse);
- ctemp.r = z__1.r, ctemp.i = z__1.i;
- i__3 = isub - jsub + kuu + 1 + jsub * a_dim1;
- a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
- /* L300: */
- }
- /* L310: */
- }
- }
-
- }
-
- } else {
-
- /* Use ZLATM2 */
-
- if (ipack == 0) {
- if (isym == 0) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &iseed[
- 1], &d__[1], &igrade, &dl[1], &dr[1], &ipvtng,
- &iwork[1], sparse);
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- i__3 = j + i__ * a_dim1;
- d_cnjg(&z__1, &a[i__ + j * a_dim1]);
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- /* L320: */
- }
- /* L330: */
- }
- } else if (isym == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &iseed[
- 1], &d__[1], &igrade, &dl[1], &dr[1], &ipvtng,
- &iwork[1], sparse);
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- /* L340: */
- }
- /* L350: */
- }
- } else if (isym == 2) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &iseed[
- 1], &d__[1], &igrade, &dl[1], &dr[1], &ipvtng,
- &iwork[1], sparse);
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- i__3 = j + i__ * a_dim1;
- i__4 = i__ + j * a_dim1;
- a[i__3].r = a[i__4].r, a[i__3].i = a[i__4].i;
- /* L360: */
- }
- /* L370: */
- }
- }
-
- } else if (ipack == 1) {
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &iseed[1],
- &d__[1], &igrade, &dl[1], &dr[1], &ipvtng, &iwork[
- 1], sparse);
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- if (i__ != j) {
- i__3 = j + i__ * a_dim1;
- a[i__3].r = 0., a[i__3].i = 0.;
- }
- /* L380: */
- }
- /* L390: */
- }
-
- } else if (ipack == 2) {
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- if (isym == 0) {
- i__3 = j + i__ * a_dim1;
- zlatm2_(&z__2, m, n, &i__, &j, kl, ku, &idist, &iseed[
- 1], &d__[1], &igrade, &dl[1], &dr[1], &ipvtng,
- &iwork[1], sparse);
- d_cnjg(&z__1, &z__2);
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- } else {
- i__3 = j + i__ * a_dim1;
- zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &iseed[
- 1], &d__[1], &igrade, &dl[1], &dr[1], &ipvtng,
- &iwork[1], sparse);
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- }
- if (i__ != j) {
- i__3 = i__ + j * a_dim1;
- a[i__3].r = 0., a[i__3].i = 0.;
- }
- /* L400: */
- }
- /* L410: */
- }
-
- } else if (ipack == 3) {
-
- isub = 0;
- jsub = 1;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- ++isub;
- if (isub > *lda) {
- isub = 1;
- ++jsub;
- }
- i__3 = isub + jsub * a_dim1;
- zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &iseed[1],
- &d__[1], &igrade, &dl[1], &dr[1], &ipvtng, &iwork[
- 1], sparse);
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- /* L420: */
- }
- /* L430: */
- }
-
- } else if (ipack == 4) {
-
- if (isym == 0 || isym == 2) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
-
- /* Compute K = location of (I,J) entry in packed array */
-
- if (i__ == 1) {
- k = j;
- } else {
- k = *n * (*n + 1) / 2 - (*n - i__ + 1) * (*n -
- i__ + 2) / 2 + j - i__ + 1;
- }
-
- /* Convert K to (ISUB,JSUB) location */
-
- jsub = (k - 1) / *lda + 1;
- isub = k - *lda * (jsub - 1);
-
- i__3 = isub + jsub * a_dim1;
- zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &iseed[
- 1], &d__[1], &igrade, &dl[1], &dr[1], &ipvtng,
- &iwork[1], sparse);
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- if (isym == 0) {
- i__3 = isub + jsub * a_dim1;
- d_cnjg(&z__1, &a[isub + jsub * a_dim1]);
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- }
- /* L440: */
- }
- /* L450: */
- }
- } else {
- isub = 0;
- jsub = 1;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = j; i__ <= i__2; ++i__) {
- ++isub;
- if (isub > *lda) {
- isub = 1;
- ++jsub;
- }
- i__3 = isub + jsub * a_dim1;
- zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &iseed[
- 1], &d__[1], &igrade, &dl[1], &dr[1], &ipvtng,
- &iwork[1], sparse);
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- /* L460: */
- }
- /* L470: */
- }
- }
-
- } else if (ipack == 5) {
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = j - kuu; i__ <= i__2; ++i__) {
- if (i__ < 1) {
- i__3 = j - i__ + 1 + (i__ + *n) * a_dim1;
- a[i__3].r = 0., a[i__3].i = 0.;
- } else {
- if (isym == 0) {
- i__3 = j - i__ + 1 + i__ * a_dim1;
- zlatm2_(&z__2, m, n, &i__, &j, kl, ku, &idist, &
- iseed[1], &d__[1], &igrade, &dl[1], &dr[1]
- , &ipvtng, &iwork[1], sparse);
- d_cnjg(&z__1, &z__2);
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- } else {
- i__3 = j - i__ + 1 + i__ * a_dim1;
- zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &
- iseed[1], &d__[1], &igrade, &dl[1], &dr[1]
- , &ipvtng, &iwork[1], sparse);
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- }
- }
- /* L480: */
- }
- /* L490: */
- }
-
- } else if (ipack == 6) {
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = j - kuu; i__ <= i__2; ++i__) {
- i__3 = i__ - j + kuu + 1 + j * a_dim1;
- zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &iseed[1],
- &d__[1], &igrade, &dl[1], &dr[1], &ipvtng, &iwork[
- 1], sparse);
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- /* L500: */
- }
- /* L510: */
- }
-
- } else if (ipack == 7) {
-
- if (isym != 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = j - kuu; i__ <= i__2; ++i__) {
- i__3 = i__ - j + kuu + 1 + j * a_dim1;
- zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &iseed[
- 1], &d__[1], &igrade, &dl[1], &dr[1], &ipvtng,
- &iwork[1], sparse);
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- if (i__ < 1) {
- i__3 = j - i__ + 1 + kuu + (i__ + *n) * a_dim1;
- a[i__3].r = 0., a[i__3].i = 0.;
- }
- if (i__ >= 1 && i__ != j) {
- if (isym == 0) {
- i__3 = j - i__ + 1 + kuu + i__ * a_dim1;
- d_cnjg(&z__1, &a[i__ - j + kuu + 1 + j *
- a_dim1]);
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- } else {
- i__3 = j - i__ + 1 + kuu + i__ * a_dim1;
- i__4 = i__ - j + kuu + 1 + j * a_dim1;
- a[i__3].r = a[i__4].r, a[i__3].i = a[i__4].i;
- }
- }
- /* L520: */
- }
- /* L530: */
- }
- } else if (isym == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j + kll;
- for (i__ = j - kuu; i__ <= i__2; ++i__) {
- i__3 = i__ - j + kuu + 1 + j * a_dim1;
- zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &iseed[
- 1], &d__[1], &igrade, &dl[1], &dr[1], &ipvtng,
- &iwork[1], sparse);
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- /* L540: */
- }
- /* L550: */
- }
- }
-
- }
-
- }
-
- /* 5) Scaling the norm */
-
- if (ipack == 0) {
- onorm = zlange_("M", m, n, &a[a_offset], lda, tempa);
- } else if (ipack == 1) {
- onorm = zlansy_("M", "U", n, &a[a_offset], lda, tempa);
- } else if (ipack == 2) {
- onorm = zlansy_("M", "L", n, &a[a_offset], lda, tempa);
- } else if (ipack == 3) {
- onorm = zlansp_("M", "U", n, &a[a_offset], tempa);
- } else if (ipack == 4) {
- onorm = zlansp_("M", "L", n, &a[a_offset], tempa);
- } else if (ipack == 5) {
- onorm = zlansb_("M", "L", n, &kll, &a[a_offset], lda, tempa);
- } else if (ipack == 6) {
- onorm = zlansb_("M", "U", n, &kuu, &a[a_offset], lda, tempa);
- } else if (ipack == 7) {
- onorm = zlangb_("M", n, &kll, &kuu, &a[a_offset], lda, tempa);
- }
-
- if (*anorm >= 0.) {
-
- if (*anorm > 0. && onorm == 0.) {
-
- /* Desired scaling impossible */
-
- *info = 5;
- return;
-
- } else if (*anorm > 1. && onorm < 1. || *anorm < 1. && onorm > 1.) {
-
- /* Scale carefully to avoid over / underflow */
-
- if (ipack <= 2) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- d__1 = 1. / onorm;
- zdscal_(m, &d__1, &a[j * a_dim1 + 1], &c__1);
- zdscal_(m, anorm, &a[j * a_dim1 + 1], &c__1);
- /* L560: */
- }
-
- } else if (ipack == 3 || ipack == 4) {
-
- i__1 = *n * (*n + 1) / 2;
- d__1 = 1. / onorm;
- zdscal_(&i__1, &d__1, &a[a_offset], &c__1);
- i__1 = *n * (*n + 1) / 2;
- zdscal_(&i__1, anorm, &a[a_offset], &c__1);
-
- } else if (ipack >= 5) {
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = kll + kuu + 1;
- d__1 = 1. / onorm;
- zdscal_(&i__2, &d__1, &a[j * a_dim1 + 1], &c__1);
- i__2 = kll + kuu + 1;
- zdscal_(&i__2, anorm, &a[j * a_dim1 + 1], &c__1);
- /* L570: */
- }
-
- }
-
- } else {
-
- /* Scale straightforwardly */
-
- if (ipack <= 2) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- d__1 = *anorm / onorm;
- zdscal_(m, &d__1, &a[j * a_dim1 + 1], &c__1);
- /* L580: */
- }
-
- } else if (ipack == 3 || ipack == 4) {
-
- i__1 = *n * (*n + 1) / 2;
- d__1 = *anorm / onorm;
- zdscal_(&i__1, &d__1, &a[a_offset], &c__1);
-
- } else if (ipack >= 5) {
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = kll + kuu + 1;
- d__1 = *anorm / onorm;
- zdscal_(&i__2, &d__1, &a[j * a_dim1 + 1], &c__1);
- /* L590: */
- }
- }
-
- }
-
- }
-
- /* End of ZLATMR */
-
- return;
- } /* zlatmr_ */
-
|