You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clatm1.c 17 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef char integer1;
  52. #define TRUE_ (1)
  53. #define FALSE_ (0)
  54. /* Extern is for use with -E */
  55. #ifndef Extern
  56. #define Extern extern
  57. #endif
  58. /* I/O stuff */
  59. typedef int flag;
  60. typedef int ftnlen;
  61. typedef int ftnint;
  62. /*external read, write*/
  63. typedef struct
  64. { flag cierr;
  65. ftnint ciunit;
  66. flag ciend;
  67. char *cifmt;
  68. ftnint cirec;
  69. } cilist;
  70. /*internal read, write*/
  71. typedef struct
  72. { flag icierr;
  73. char *iciunit;
  74. flag iciend;
  75. char *icifmt;
  76. ftnint icirlen;
  77. ftnint icirnum;
  78. } icilist;
  79. /*open*/
  80. typedef struct
  81. { flag oerr;
  82. ftnint ounit;
  83. char *ofnm;
  84. ftnlen ofnmlen;
  85. char *osta;
  86. char *oacc;
  87. char *ofm;
  88. ftnint orl;
  89. char *oblnk;
  90. } olist;
  91. /*close*/
  92. typedef struct
  93. { flag cerr;
  94. ftnint cunit;
  95. char *csta;
  96. } cllist;
  97. /*rewind, backspace, endfile*/
  98. typedef struct
  99. { flag aerr;
  100. ftnint aunit;
  101. } alist;
  102. /* inquire */
  103. typedef struct
  104. { flag inerr;
  105. ftnint inunit;
  106. char *infile;
  107. ftnlen infilen;
  108. ftnint *inex; /*parameters in standard's order*/
  109. ftnint *inopen;
  110. ftnint *innum;
  111. ftnint *innamed;
  112. char *inname;
  113. ftnlen innamlen;
  114. char *inacc;
  115. ftnlen inacclen;
  116. char *inseq;
  117. ftnlen inseqlen;
  118. char *indir;
  119. ftnlen indirlen;
  120. char *infmt;
  121. ftnlen infmtlen;
  122. char *inform;
  123. ftnint informlen;
  124. char *inunf;
  125. ftnlen inunflen;
  126. ftnint *inrecl;
  127. ftnint *innrec;
  128. char *inblank;
  129. ftnlen inblanklen;
  130. } inlist;
  131. #define VOID void
  132. union Multitype { /* for multiple entry points */
  133. integer1 g;
  134. shortint h;
  135. integer i;
  136. /* longint j; */
  137. real r;
  138. doublereal d;
  139. complex c;
  140. doublecomplex z;
  141. };
  142. typedef union Multitype Multitype;
  143. struct Vardesc { /* for Namelist */
  144. char *name;
  145. char *addr;
  146. ftnlen *dims;
  147. int type;
  148. };
  149. typedef struct Vardesc Vardesc;
  150. struct Namelist {
  151. char *name;
  152. Vardesc **vars;
  153. int nvars;
  154. };
  155. typedef struct Namelist Namelist;
  156. #define abs(x) ((x) >= 0 ? (x) : -(x))
  157. #define dabs(x) (fabs(x))
  158. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  159. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  160. #define dmin(a,b) (f2cmin(a,b))
  161. #define dmax(a,b) (f2cmax(a,b))
  162. #define bit_test(a,b) ((a) >> (b) & 1)
  163. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  164. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  165. #define abort_() { sig_die("Fortran abort routine called", 1); }
  166. #define c_abs(z) (cabsf(Cf(z)))
  167. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  168. #ifdef _MSC_VER
  169. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  170. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  171. #else
  172. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  173. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  174. #endif
  175. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  176. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  177. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  178. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  179. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  180. #define d_abs(x) (fabs(*(x)))
  181. #define d_acos(x) (acos(*(x)))
  182. #define d_asin(x) (asin(*(x)))
  183. #define d_atan(x) (atan(*(x)))
  184. #define d_atn2(x, y) (atan2(*(x),*(y)))
  185. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  186. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  187. #define d_cos(x) (cos(*(x)))
  188. #define d_cosh(x) (cosh(*(x)))
  189. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  190. #define d_exp(x) (exp(*(x)))
  191. #define d_imag(z) (cimag(Cd(z)))
  192. #define r_imag(z) (cimagf(Cf(z)))
  193. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  194. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  195. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  196. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  197. #define d_log(x) (log(*(x)))
  198. #define d_mod(x, y) (fmod(*(x), *(y)))
  199. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  200. #define d_nint(x) u_nint(*(x))
  201. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  202. #define d_sign(a,b) u_sign(*(a),*(b))
  203. #define r_sign(a,b) u_sign(*(a),*(b))
  204. #define d_sin(x) (sin(*(x)))
  205. #define d_sinh(x) (sinh(*(x)))
  206. #define d_sqrt(x) (sqrt(*(x)))
  207. #define d_tan(x) (tan(*(x)))
  208. #define d_tanh(x) (tanh(*(x)))
  209. #define i_abs(x) abs(*(x))
  210. #define i_dnnt(x) ((integer)u_nint(*(x)))
  211. #define i_len(s, n) (n)
  212. #define i_nint(x) ((integer)u_nint(*(x)))
  213. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  214. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  215. #define pow_si(B,E) spow_ui(*(B),*(E))
  216. #define pow_ri(B,E) spow_ui(*(B),*(E))
  217. #define pow_di(B,E) dpow_ui(*(B),*(E))
  218. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  219. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  220. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  221. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  222. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  223. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  224. #define sig_die(s, kill) { exit(1); }
  225. #define s_stop(s, n) {exit(0);}
  226. #define z_abs(z) (cabs(Cd(z)))
  227. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  228. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  229. #define myexit_() break;
  230. #define mycycle() continue;
  231. #define myceiling(w) {ceil(w)}
  232. #define myhuge(w) {HUGE_VAL}
  233. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  234. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  235. /* procedure parameter types for -A and -C++ */
  236. static float spow_ui(float x, integer n) {
  237. float pow=1.0; unsigned long int u;
  238. if(n != 0) {
  239. if(n < 0) n = -n, x = 1/x;
  240. for(u = n; ; ) {
  241. if(u & 01) pow *= x;
  242. if(u >>= 1) x *= x;
  243. else break;
  244. }
  245. }
  246. return pow;
  247. }
  248. /* Table of constant values */
  249. static integer c__3 = 3;
  250. /* > \brief \b CLATM1 */
  251. /* =========== DOCUMENTATION =========== */
  252. /* Online html documentation available at */
  253. /* http://www.netlib.org/lapack/explore-html/ */
  254. /* Definition: */
  255. /* =========== */
  256. /* SUBROUTINE CLATM1( MODE, COND, IRSIGN, IDIST, ISEED, D, N, INFO ) */
  257. /* INTEGER IDIST, INFO, IRSIGN, MODE, N */
  258. /* REAL COND */
  259. /* INTEGER ISEED( 4 ) */
  260. /* COMPLEX D( * ) */
  261. /* > \par Purpose: */
  262. /* ============= */
  263. /* > */
  264. /* > \verbatim */
  265. /* > */
  266. /* > CLATM1 computes the entries of D(1..N) as specified by */
  267. /* > MODE, COND and IRSIGN. IDIST and ISEED determine the generation */
  268. /* > of random numbers. CLATM1 is called by CLATMR to generate */
  269. /* > random test matrices for LAPACK programs. */
  270. /* > \endverbatim */
  271. /* Arguments: */
  272. /* ========== */
  273. /* > \param[in] MODE */
  274. /* > \verbatim */
  275. /* > MODE is INTEGER */
  276. /* > On entry describes how D is to be computed: */
  277. /* > MODE = 0 means do not change D. */
  278. /* > MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND */
  279. /* > MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND */
  280. /* > MODE = 3 sets D(I)=COND**(-(I-1)/(N-1)) */
  281. /* > MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND) */
  282. /* > MODE = 5 sets D to random numbers in the range */
  283. /* > ( 1/COND , 1 ) such that their logarithms */
  284. /* > are uniformly distributed. */
  285. /* > MODE = 6 set D to random numbers from same distribution */
  286. /* > as the rest of the matrix. */
  287. /* > MODE < 0 has the same meaning as ABS(MODE), except that */
  288. /* > the order of the elements of D is reversed. */
  289. /* > Thus if MODE is positive, D has entries ranging from */
  290. /* > 1 to 1/COND, if negative, from 1/COND to 1, */
  291. /* > Not modified. */
  292. /* > \endverbatim */
  293. /* > */
  294. /* > \param[in] COND */
  295. /* > \verbatim */
  296. /* > COND is REAL */
  297. /* > On entry, used as described under MODE above. */
  298. /* > If used, it must be >= 1. Not modified. */
  299. /* > \endverbatim */
  300. /* > */
  301. /* > \param[in] IRSIGN */
  302. /* > \verbatim */
  303. /* > IRSIGN is INTEGER */
  304. /* > On entry, if MODE neither -6, 0 nor 6, determines sign of */
  305. /* > entries of D */
  306. /* > 0 => leave entries of D unchanged */
  307. /* > 1 => multiply each entry of D by random complex number */
  308. /* > uniformly distributed with absolute value 1 */
  309. /* > \endverbatim */
  310. /* > */
  311. /* > \param[in] IDIST */
  312. /* > \verbatim */
  313. /* > IDIST is INTEGER */
  314. /* > On entry, IDIST specifies the type of distribution to be */
  315. /* > used to generate a random matrix . */
  316. /* > 1 => real and imaginary parts each UNIFORM( 0, 1 ) */
  317. /* > 2 => real and imaginary parts each UNIFORM( -1, 1 ) */
  318. /* > 3 => real and imaginary parts each NORMAL( 0, 1 ) */
  319. /* > 4 => complex number uniform in DISK( 0, 1 ) */
  320. /* > Not modified. */
  321. /* > \endverbatim */
  322. /* > */
  323. /* > \param[in,out] ISEED */
  324. /* > \verbatim */
  325. /* > ISEED is INTEGER array, dimension ( 4 ) */
  326. /* > On entry ISEED specifies the seed of the random number */
  327. /* > generator. The random number generator uses a */
  328. /* > linear congruential sequence limited to small */
  329. /* > integers, and so should produce machine independent */
  330. /* > random numbers. The values of ISEED are changed on */
  331. /* > exit, and can be used in the next call to CLATM1 */
  332. /* > to continue the same random number sequence. */
  333. /* > Changed on exit. */
  334. /* > \endverbatim */
  335. /* > */
  336. /* > \param[in,out] D */
  337. /* > \verbatim */
  338. /* > D is COMPLEX array, dimension ( N ) */
  339. /* > Array to be computed according to MODE, COND and IRSIGN. */
  340. /* > May be changed on exit if MODE is nonzero. */
  341. /* > \endverbatim */
  342. /* > */
  343. /* > \param[in] N */
  344. /* > \verbatim */
  345. /* > N is INTEGER */
  346. /* > Number of entries of D. Not modified. */
  347. /* > \endverbatim */
  348. /* > */
  349. /* > \param[out] INFO */
  350. /* > \verbatim */
  351. /* > INFO is INTEGER */
  352. /* > 0 => normal termination */
  353. /* > -1 => if MODE not in range -6 to 6 */
  354. /* > -2 => if MODE neither -6, 0 nor 6, and */
  355. /* > IRSIGN neither 0 nor 1 */
  356. /* > -3 => if MODE neither -6, 0 nor 6 and COND less than 1 */
  357. /* > -4 => if MODE equals 6 or -6 and IDIST not in range 1 to 4 */
  358. /* > -7 => if N negative */
  359. /* > \endverbatim */
  360. /* Authors: */
  361. /* ======== */
  362. /* > \author Univ. of Tennessee */
  363. /* > \author Univ. of California Berkeley */
  364. /* > \author Univ. of Colorado Denver */
  365. /* > \author NAG Ltd. */
  366. /* > \date December 2016 */
  367. /* > \ingroup complex_matgen */
  368. /* ===================================================================== */
  369. /* Subroutine */ void clatm1_(integer *mode, real *cond, integer *irsign,
  370. integer *idist, integer *iseed, complex *d__, integer *n, integer *
  371. info)
  372. {
  373. /* System generated locals */
  374. integer i__1, i__2, i__3;
  375. real r__1;
  376. doublereal d__1, d__2;
  377. complex q__1, q__2;
  378. /* Local variables */
  379. real temp;
  380. integer i__;
  381. real alpha;
  382. complex ctemp;
  383. //extern /* Complex */ VOID clarnd_(complex *, integer *, integer *);
  384. extern complex clarnd_(integer *, integer *);
  385. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  386. extern real slaran_(integer *);
  387. extern /* Subroutine */ void clarnv_(integer *, integer *, integer *,
  388. complex *);
  389. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  390. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  391. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  392. /* December 2016 */
  393. /* ===================================================================== */
  394. /* Decode and Test the input parameters. Initialize flags & seed. */
  395. /* Parameter adjustments */
  396. --d__;
  397. --iseed;
  398. /* Function Body */
  399. *info = 0;
  400. /* Quick return if possible */
  401. if (*n == 0) {
  402. return;
  403. }
  404. /* Set INFO if an error */
  405. if (*mode < -6 || *mode > 6) {
  406. *info = -1;
  407. } else if (*mode != -6 && *mode != 0 && *mode != 6 && (*irsign != 0 && *
  408. irsign != 1)) {
  409. *info = -2;
  410. } else if (*mode != -6 && *mode != 0 && *mode != 6 && *cond < 1.f) {
  411. *info = -3;
  412. } else if ((*mode == 6 || *mode == -6) && (*idist < 1 || *idist > 4)) {
  413. *info = -4;
  414. } else if (*n < 0) {
  415. *info = -7;
  416. }
  417. if (*info != 0) {
  418. i__1 = -(*info);
  419. xerbla_("CLATM1", &i__1, 6);
  420. return;
  421. }
  422. /* Compute D according to COND and MODE */
  423. if (*mode != 0) {
  424. switch (abs(*mode)) {
  425. case 1: goto L10;
  426. case 2: goto L30;
  427. case 3: goto L50;
  428. case 4: goto L70;
  429. case 5: goto L90;
  430. case 6: goto L110;
  431. }
  432. /* One large D value: */
  433. L10:
  434. i__1 = *n;
  435. for (i__ = 1; i__ <= i__1; ++i__) {
  436. i__2 = i__;
  437. r__1 = 1.f / *cond;
  438. d__[i__2].r = r__1, d__[i__2].i = 0.f;
  439. /* L20: */
  440. }
  441. d__[1].r = 1.f, d__[1].i = 0.f;
  442. goto L120;
  443. /* One small D value: */
  444. L30:
  445. i__1 = *n;
  446. for (i__ = 1; i__ <= i__1; ++i__) {
  447. i__2 = i__;
  448. d__[i__2].r = 1.f, d__[i__2].i = 0.f;
  449. /* L40: */
  450. }
  451. i__1 = *n;
  452. r__1 = 1.f / *cond;
  453. d__[i__1].r = r__1, d__[i__1].i = 0.f;
  454. goto L120;
  455. /* Exponentially distributed D values: */
  456. L50:
  457. d__[1].r = 1.f, d__[1].i = 0.f;
  458. if (*n > 1) {
  459. d__1 = (doublereal) (*cond);
  460. d__2 = (doublereal) (-1.f / (real) (*n - 1));
  461. alpha = pow_dd(&d__1, &d__2);
  462. i__1 = *n;
  463. for (i__ = 2; i__ <= i__1; ++i__) {
  464. i__2 = i__;
  465. i__3 = i__ - 1;
  466. r__1 = pow_ri(&alpha, &i__3);
  467. d__[i__2].r = r__1, d__[i__2].i = 0.f;
  468. /* L60: */
  469. }
  470. }
  471. goto L120;
  472. /* Arithmetically distributed D values: */
  473. L70:
  474. d__[1].r = 1.f, d__[1].i = 0.f;
  475. if (*n > 1) {
  476. temp = 1.f / *cond;
  477. alpha = (1.f - temp) / (real) (*n - 1);
  478. i__1 = *n;
  479. for (i__ = 2; i__ <= i__1; ++i__) {
  480. i__2 = i__;
  481. r__1 = (real) (*n - i__) * alpha + temp;
  482. d__[i__2].r = r__1, d__[i__2].i = 0.f;
  483. /* L80: */
  484. }
  485. }
  486. goto L120;
  487. /* Randomly distributed D values on ( 1/COND , 1): */
  488. L90:
  489. alpha = log(1.f / *cond);
  490. i__1 = *n;
  491. for (i__ = 1; i__ <= i__1; ++i__) {
  492. i__2 = i__;
  493. r__1 = exp(alpha * slaran_(&iseed[1]));
  494. d__[i__2].r = r__1, d__[i__2].i = 0.f;
  495. /* L100: */
  496. }
  497. goto L120;
  498. /* Randomly distributed D values from IDIST */
  499. L110:
  500. clarnv_(idist, &iseed[1], n, &d__[1]);
  501. L120:
  502. /* If MODE neither -6 nor 0 nor 6, and IRSIGN = 1, assign */
  503. /* random signs to D */
  504. if (*mode != -6 && *mode != 0 && *mode != 6 && *irsign == 1) {
  505. i__1 = *n;
  506. for (i__ = 1; i__ <= i__1; ++i__) {
  507. //clarnd_(&q__1, &c__3, &iseed[1]);
  508. q__1=clarnd_(&c__3, &iseed[1]);
  509. ctemp.r = q__1.r, ctemp.i = q__1.i;
  510. i__2 = i__;
  511. i__3 = i__;
  512. r__1 = c_abs(&ctemp);
  513. q__2.r = ctemp.r / r__1, q__2.i = ctemp.i / r__1;
  514. q__1.r = d__[i__3].r * q__2.r - d__[i__3].i * q__2.i, q__1.i =
  515. d__[i__3].r * q__2.i + d__[i__3].i * q__2.r;
  516. d__[i__2].r = q__1.r, d__[i__2].i = q__1.i;
  517. /* L130: */
  518. }
  519. }
  520. /* Reverse if MODE < 0 */
  521. if (*mode < 0) {
  522. i__1 = *n / 2;
  523. for (i__ = 1; i__ <= i__1; ++i__) {
  524. i__2 = i__;
  525. ctemp.r = d__[i__2].r, ctemp.i = d__[i__2].i;
  526. i__2 = i__;
  527. i__3 = *n + 1 - i__;
  528. d__[i__2].r = d__[i__3].r, d__[i__2].i = d__[i__3].i;
  529. i__2 = *n + 1 - i__;
  530. d__[i__2].r = ctemp.r, d__[i__2].i = ctemp.i;
  531. /* L140: */
  532. }
  533. }
  534. }
  535. return;
  536. /* End of CLATM1 */
  537. } /* clatm1_ */