You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

claed7.c 28 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__2 = 2;
  485. static integer c__1 = 1;
  486. static integer c_n1 = -1;
  487. /* > \brief \b CLAED7 used by sstedc. Computes the updated eigensystem of a diagonal matrix after modification
  488. by a rank-one symmetric matrix. Used when the original matrix is dense. */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download CLAED7 + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claed7.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claed7.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claed7.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE CLAED7( N, CUTPNT, QSIZ, TLVLS, CURLVL, CURPBM, D, Q, */
  507. /* LDQ, RHO, INDXQ, QSTORE, QPTR, PRMPTR, PERM, */
  508. /* GIVPTR, GIVCOL, GIVNUM, WORK, RWORK, IWORK, */
  509. /* INFO ) */
  510. /* INTEGER CURLVL, CURPBM, CUTPNT, INFO, LDQ, N, QSIZ, */
  511. /* $ TLVLS */
  512. /* REAL RHO */
  513. /* INTEGER GIVCOL( 2, * ), GIVPTR( * ), INDXQ( * ), */
  514. /* $ IWORK( * ), PERM( * ), PRMPTR( * ), QPTR( * ) */
  515. /* REAL D( * ), GIVNUM( 2, * ), QSTORE( * ), RWORK( * ) */
  516. /* COMPLEX Q( LDQ, * ), WORK( * ) */
  517. /* > \par Purpose: */
  518. /* ============= */
  519. /* > */
  520. /* > \verbatim */
  521. /* > */
  522. /* > CLAED7 computes the updated eigensystem of a diagonal */
  523. /* > matrix after modification by a rank-one symmetric matrix. This */
  524. /* > routine is used only for the eigenproblem which requires all */
  525. /* > eigenvalues and optionally eigenvectors of a dense or banded */
  526. /* > Hermitian matrix that has been reduced to tridiagonal form. */
  527. /* > */
  528. /* > T = Q(in) ( D(in) + RHO * Z*Z**H ) Q**H(in) = Q(out) * D(out) * Q**H(out) */
  529. /* > */
  530. /* > where Z = Q**Hu, u is a vector of length N with ones in the */
  531. /* > CUTPNT and CUTPNT + 1 th elements and zeros elsewhere. */
  532. /* > */
  533. /* > The eigenvectors of the original matrix are stored in Q, and the */
  534. /* > eigenvalues are in D. The algorithm consists of three stages: */
  535. /* > */
  536. /* > The first stage consists of deflating the size of the problem */
  537. /* > when there are multiple eigenvalues or if there is a zero in */
  538. /* > the Z vector. For each such occurrence the dimension of the */
  539. /* > secular equation problem is reduced by one. This stage is */
  540. /* > performed by the routine SLAED2. */
  541. /* > */
  542. /* > The second stage consists of calculating the updated */
  543. /* > eigenvalues. This is done by finding the roots of the secular */
  544. /* > equation via the routine SLAED4 (as called by SLAED3). */
  545. /* > This routine also calculates the eigenvectors of the current */
  546. /* > problem. */
  547. /* > */
  548. /* > The final stage consists of computing the updated eigenvectors */
  549. /* > directly using the updated eigenvalues. The eigenvectors for */
  550. /* > the current problem are multiplied with the eigenvectors from */
  551. /* > the overall problem. */
  552. /* > \endverbatim */
  553. /* Arguments: */
  554. /* ========== */
  555. /* > \param[in] N */
  556. /* > \verbatim */
  557. /* > N is INTEGER */
  558. /* > The dimension of the symmetric tridiagonal matrix. N >= 0. */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[in] CUTPNT */
  562. /* > \verbatim */
  563. /* > CUTPNT is INTEGER */
  564. /* > Contains the location of the last eigenvalue in the leading */
  565. /* > sub-matrix. f2cmin(1,N) <= CUTPNT <= N. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] QSIZ */
  569. /* > \verbatim */
  570. /* > QSIZ is INTEGER */
  571. /* > The dimension of the unitary matrix used to reduce */
  572. /* > the full matrix to tridiagonal form. QSIZ >= N. */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[in] TLVLS */
  576. /* > \verbatim */
  577. /* > TLVLS is INTEGER */
  578. /* > The total number of merging levels in the overall divide and */
  579. /* > conquer tree. */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[in] CURLVL */
  583. /* > \verbatim */
  584. /* > CURLVL is INTEGER */
  585. /* > The current level in the overall merge routine, */
  586. /* > 0 <= curlvl <= tlvls. */
  587. /* > \endverbatim */
  588. /* > */
  589. /* > \param[in] CURPBM */
  590. /* > \verbatim */
  591. /* > CURPBM is INTEGER */
  592. /* > The current problem in the current level in the overall */
  593. /* > merge routine (counting from upper left to lower right). */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[in,out] D */
  597. /* > \verbatim */
  598. /* > D is REAL array, dimension (N) */
  599. /* > On entry, the eigenvalues of the rank-1-perturbed matrix. */
  600. /* > On exit, the eigenvalues of the repaired matrix. */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[in,out] Q */
  604. /* > \verbatim */
  605. /* > Q is COMPLEX array, dimension (LDQ,N) */
  606. /* > On entry, the eigenvectors of the rank-1-perturbed matrix. */
  607. /* > On exit, the eigenvectors of the repaired tridiagonal matrix. */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[in] LDQ */
  611. /* > \verbatim */
  612. /* > LDQ is INTEGER */
  613. /* > The leading dimension of the array Q. LDQ >= f2cmax(1,N). */
  614. /* > \endverbatim */
  615. /* > */
  616. /* > \param[in] RHO */
  617. /* > \verbatim */
  618. /* > RHO is REAL */
  619. /* > Contains the subdiagonal element used to create the rank-1 */
  620. /* > modification. */
  621. /* > \endverbatim */
  622. /* > */
  623. /* > \param[out] INDXQ */
  624. /* > \verbatim */
  625. /* > INDXQ is INTEGER array, dimension (N) */
  626. /* > This contains the permutation which will reintegrate the */
  627. /* > subproblem just solved back into sorted order, */
  628. /* > ie. D( INDXQ( I = 1, N ) ) will be in ascending order. */
  629. /* > \endverbatim */
  630. /* > */
  631. /* > \param[out] IWORK */
  632. /* > \verbatim */
  633. /* > IWORK is INTEGER array, dimension (4*N) */
  634. /* > \endverbatim */
  635. /* > */
  636. /* > \param[out] RWORK */
  637. /* > \verbatim */
  638. /* > RWORK is REAL array, */
  639. /* > dimension (3*N+2*QSIZ*N) */
  640. /* > \endverbatim */
  641. /* > */
  642. /* > \param[out] WORK */
  643. /* > \verbatim */
  644. /* > WORK is COMPLEX array, dimension (QSIZ*N) */
  645. /* > \endverbatim */
  646. /* > */
  647. /* > \param[in,out] QSTORE */
  648. /* > \verbatim */
  649. /* > QSTORE is REAL array, dimension (N**2+1) */
  650. /* > Stores eigenvectors of submatrices encountered during */
  651. /* > divide and conquer, packed together. QPTR points to */
  652. /* > beginning of the submatrices. */
  653. /* > \endverbatim */
  654. /* > */
  655. /* > \param[in,out] QPTR */
  656. /* > \verbatim */
  657. /* > QPTR is INTEGER array, dimension (N+2) */
  658. /* > List of indices pointing to beginning of submatrices stored */
  659. /* > in QSTORE. The submatrices are numbered starting at the */
  660. /* > bottom left of the divide and conquer tree, from left to */
  661. /* > right and bottom to top. */
  662. /* > \endverbatim */
  663. /* > */
  664. /* > \param[in] PRMPTR */
  665. /* > \verbatim */
  666. /* > PRMPTR is INTEGER array, dimension (N lg N) */
  667. /* > Contains a list of pointers which indicate where in PERM a */
  668. /* > level's permutation is stored. PRMPTR(i+1) - PRMPTR(i) */
  669. /* > indicates the size of the permutation and also the size of */
  670. /* > the full, non-deflated problem. */
  671. /* > \endverbatim */
  672. /* > */
  673. /* > \param[in] PERM */
  674. /* > \verbatim */
  675. /* > PERM is INTEGER array, dimension (N lg N) */
  676. /* > Contains the permutations (from deflation and sorting) to be */
  677. /* > applied to each eigenblock. */
  678. /* > \endverbatim */
  679. /* > */
  680. /* > \param[in] GIVPTR */
  681. /* > \verbatim */
  682. /* > GIVPTR is INTEGER array, dimension (N lg N) */
  683. /* > Contains a list of pointers which indicate where in GIVCOL a */
  684. /* > level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i) */
  685. /* > indicates the number of Givens rotations. */
  686. /* > \endverbatim */
  687. /* > */
  688. /* > \param[in] GIVCOL */
  689. /* > \verbatim */
  690. /* > GIVCOL is INTEGER array, dimension (2, N lg N) */
  691. /* > Each pair of numbers indicates a pair of columns to take place */
  692. /* > in a Givens rotation. */
  693. /* > \endverbatim */
  694. /* > */
  695. /* > \param[in] GIVNUM */
  696. /* > \verbatim */
  697. /* > GIVNUM is REAL array, dimension (2, N lg N) */
  698. /* > Each number indicates the S value to be used in the */
  699. /* > corresponding Givens rotation. */
  700. /* > \endverbatim */
  701. /* > */
  702. /* > \param[out] INFO */
  703. /* > \verbatim */
  704. /* > INFO is INTEGER */
  705. /* > = 0: successful exit. */
  706. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  707. /* > > 0: if INFO = 1, an eigenvalue did not converge */
  708. /* > \endverbatim */
  709. /* Authors: */
  710. /* ======== */
  711. /* > \author Univ. of Tennessee */
  712. /* > \author Univ. of California Berkeley */
  713. /* > \author Univ. of Colorado Denver */
  714. /* > \author NAG Ltd. */
  715. /* > \date June 2016 */
  716. /* > \ingroup complexOTHERcomputational */
  717. /* ===================================================================== */
  718. /* Subroutine */ void claed7_(integer *n, integer *cutpnt, integer *qsiz,
  719. integer *tlvls, integer *curlvl, integer *curpbm, real *d__, complex *
  720. q, integer *ldq, real *rho, integer *indxq, real *qstore, integer *
  721. qptr, integer *prmptr, integer *perm, integer *givptr, integer *
  722. givcol, real *givnum, complex *work, real *rwork, integer *iwork,
  723. integer *info)
  724. {
  725. /* System generated locals */
  726. integer q_dim1, q_offset, i__1, i__2;
  727. /* Local variables */
  728. integer indx, curr, i__, k, indxc, indxp, n1, n2;
  729. extern /* Subroutine */ void claed8_(integer *, integer *, integer *,
  730. complex *, integer *, real *, real *, integer *, real *, real *,
  731. complex *, integer *, real *, integer *, integer *, integer *,
  732. integer *, integer *, integer *, real *, integer *), slaed9_(
  733. integer *, integer *, integer *, integer *, real *, real *,
  734. integer *, real *, real *, real *, real *, integer *, integer *),
  735. slaeda_(integer *, integer *, integer *, integer *, integer *,
  736. integer *, integer *, integer *, real *, real *, integer *, real *
  737. , real *, integer *);
  738. integer idlmda, iq, iw;
  739. extern /* Subroutine */ void clacrm_(integer *, integer *, complex *,
  740. integer *, real *, integer *, complex *, integer *, real *);
  741. integer iz;
  742. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  743. extern void slamrg_(
  744. integer *, integer *, real *, integer *, integer *, integer *);
  745. integer coltyp, ptr;
  746. /* -- LAPACK computational routine (version 3.7.0) -- */
  747. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  748. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  749. /* June 2016 */
  750. /* ===================================================================== */
  751. /* Test the input parameters. */
  752. /* Parameter adjustments */
  753. --d__;
  754. q_dim1 = *ldq;
  755. q_offset = 1 + q_dim1 * 1;
  756. q -= q_offset;
  757. --indxq;
  758. --qstore;
  759. --qptr;
  760. --prmptr;
  761. --perm;
  762. --givptr;
  763. givcol -= 3;
  764. givnum -= 3;
  765. --work;
  766. --rwork;
  767. --iwork;
  768. /* Function Body */
  769. *info = 0;
  770. /* IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.1 ) THEN */
  771. /* INFO = -1 */
  772. /* ELSE IF( N.LT.0 ) THEN */
  773. if (*n < 0) {
  774. *info = -1;
  775. } else if (f2cmin(1,*n) > *cutpnt || *n < *cutpnt) {
  776. *info = -2;
  777. } else if (*qsiz < *n) {
  778. *info = -3;
  779. } else if (*ldq < f2cmax(1,*n)) {
  780. *info = -9;
  781. }
  782. if (*info != 0) {
  783. i__1 = -(*info);
  784. xerbla_("CLAED7", &i__1, (ftnlen)6);
  785. return;
  786. }
  787. /* Quick return if possible */
  788. if (*n == 0) {
  789. return;
  790. }
  791. /* The following values are for bookkeeping purposes only. They are */
  792. /* integer pointers which indicate the portion of the workspace */
  793. /* used by a particular array in SLAED2 and SLAED3. */
  794. iz = 1;
  795. idlmda = iz + *n;
  796. iw = idlmda + *n;
  797. iq = iw + *n;
  798. indx = 1;
  799. indxc = indx + *n;
  800. coltyp = indxc + *n;
  801. indxp = coltyp + *n;
  802. /* Form the z-vector which consists of the last row of Q_1 and the */
  803. /* first row of Q_2. */
  804. ptr = pow_ii(c__2, *tlvls) + 1;
  805. i__1 = *curlvl - 1;
  806. for (i__ = 1; i__ <= i__1; ++i__) {
  807. i__2 = *tlvls - i__;
  808. ptr += pow_ii(c__2, i__2);
  809. /* L10: */
  810. }
  811. curr = ptr + *curpbm;
  812. slaeda_(n, tlvls, curlvl, curpbm, &prmptr[1], &perm[1], &givptr[1], &
  813. givcol[3], &givnum[3], &qstore[1], &qptr[1], &rwork[iz], &rwork[
  814. iz + *n], info);
  815. /* When solving the final problem, we no longer need the stored data, */
  816. /* so we will overwrite the data from this level onto the previously */
  817. /* used storage space. */
  818. if (*curlvl == *tlvls) {
  819. qptr[curr] = 1;
  820. prmptr[curr] = 1;
  821. givptr[curr] = 1;
  822. }
  823. /* Sort and Deflate eigenvalues. */
  824. claed8_(&k, n, qsiz, &q[q_offset], ldq, &d__[1], rho, cutpnt, &rwork[iz],
  825. &rwork[idlmda], &work[1], qsiz, &rwork[iw], &iwork[indxp], &iwork[
  826. indx], &indxq[1], &perm[prmptr[curr]], &givptr[curr + 1], &givcol[
  827. (givptr[curr] << 1) + 1], &givnum[(givptr[curr] << 1) + 1], info);
  828. prmptr[curr + 1] = prmptr[curr] + *n;
  829. givptr[curr + 1] += givptr[curr];
  830. /* Solve Secular Equation. */
  831. if (k != 0) {
  832. slaed9_(&k, &c__1, &k, n, &d__[1], &rwork[iq], &k, rho, &rwork[idlmda]
  833. , &rwork[iw], &qstore[qptr[curr]], &k, info);
  834. clacrm_(qsiz, &k, &work[1], qsiz, &qstore[qptr[curr]], &k, &q[
  835. q_offset], ldq, &rwork[iq]);
  836. /* Computing 2nd power */
  837. i__1 = k;
  838. qptr[curr + 1] = qptr[curr] + i__1 * i__1;
  839. if (*info != 0) {
  840. return;
  841. }
  842. /* Prepare the INDXQ sorting premutation. */
  843. n1 = k;
  844. n2 = *n - k;
  845. slamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &indxq[1]);
  846. } else {
  847. qptr[curr + 1] = qptr[curr];
  848. i__1 = *n;
  849. for (i__ = 1; i__ <= i__1; ++i__) {
  850. indxq[i__] = i__;
  851. /* L20: */
  852. }
  853. }
  854. return;
  855. /* End of CLAED7 */
  856. } /* claed7_ */