You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chetrd_hb2st.c 33 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static complex c_b1 = {0.f,0.f};
  485. static integer c__2 = 2;
  486. static integer c_n1 = -1;
  487. static integer c__3 = 3;
  488. static integer c__4 = 4;
  489. /* > \brief \b CHBTRD_HB2ST reduces a complex Hermitian band matrix A to real symmetric tridiagonal form T */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download CHBTRD_HB2ST + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chbtrd_
  496. hb2st.f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chbtrd_
  499. hb2st.f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chbtrd_
  502. hb2st.f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE CHETRD_HB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, */
  508. /* D, E, HOUS, LHOUS, WORK, LWORK, INFO ) */
  509. /* #if defined(_OPENMP) */
  510. /* use omp_lib */
  511. /* #endif */
  512. /* IMPLICIT NONE */
  513. /* CHARACTER STAGE1, UPLO, VECT */
  514. /* INTEGER N, KD, IB, LDAB, LHOUS, LWORK, INFO */
  515. /* REAL D( * ), E( * ) */
  516. /* COMPLEX AB( LDAB, * ), HOUS( * ), WORK( * ) */
  517. /* > \par Purpose: */
  518. /* ============= */
  519. /* > */
  520. /* > \verbatim */
  521. /* > */
  522. /* > CHETRD_HB2ST reduces a complex Hermitian band matrix A to real symmetric */
  523. /* > tridiagonal form T by a unitary similarity transformation: */
  524. /* > Q**H * A * Q = T. */
  525. /* > \endverbatim */
  526. /* Arguments: */
  527. /* ========== */
  528. /* > \param[in] STAGE1 */
  529. /* > \verbatim */
  530. /* > STAGE1 is CHARACTER*1 */
  531. /* > = 'N': "No": to mention that the stage 1 of the reduction */
  532. /* > from dense to band using the chetrd_he2hb routine */
  533. /* > was not called before this routine to reproduce AB. */
  534. /* > In other term this routine is called as standalone. */
  535. /* > = 'Y': "Yes": to mention that the stage 1 of the */
  536. /* > reduction from dense to band using the chetrd_he2hb */
  537. /* > routine has been called to produce AB (e.g., AB is */
  538. /* > the output of chetrd_he2hb. */
  539. /* > \endverbatim */
  540. /* > */
  541. /* > \param[in] VECT */
  542. /* > \verbatim */
  543. /* > VECT is CHARACTER*1 */
  544. /* > = 'N': No need for the Housholder representation, */
  545. /* > and thus LHOUS is of size f2cmax(1, 4*N); */
  546. /* > = 'V': the Householder representation is needed to */
  547. /* > either generate or to apply Q later on, */
  548. /* > then LHOUS is to be queried and computed. */
  549. /* > (NOT AVAILABLE IN THIS RELEASE). */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in] UPLO */
  553. /* > \verbatim */
  554. /* > UPLO is CHARACTER*1 */
  555. /* > = 'U': Upper triangle of A is stored; */
  556. /* > = 'L': Lower triangle of A is stored. */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in] N */
  560. /* > \verbatim */
  561. /* > N is INTEGER */
  562. /* > The order of the matrix A. N >= 0. */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[in] KD */
  566. /* > \verbatim */
  567. /* > KD is INTEGER */
  568. /* > The number of superdiagonals of the matrix A if UPLO = 'U', */
  569. /* > or the number of subdiagonals if UPLO = 'L'. KD >= 0. */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in,out] AB */
  573. /* > \verbatim */
  574. /* > AB is COMPLEX array, dimension (LDAB,N) */
  575. /* > On entry, the upper or lower triangle of the Hermitian band */
  576. /* > matrix A, stored in the first KD+1 rows of the array. The */
  577. /* > j-th column of A is stored in the j-th column of the array AB */
  578. /* > as follows: */
  579. /* > if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for f2cmax(1,j-kd)<=i<=j; */
  580. /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+kd). */
  581. /* > On exit, the diagonal elements of AB are overwritten by the */
  582. /* > diagonal elements of the tridiagonal matrix T; if KD > 0, the */
  583. /* > elements on the first superdiagonal (if UPLO = 'U') or the */
  584. /* > first subdiagonal (if UPLO = 'L') are overwritten by the */
  585. /* > off-diagonal elements of T; the rest of AB is overwritten by */
  586. /* > values generated during the reduction. */
  587. /* > \endverbatim */
  588. /* > */
  589. /* > \param[in] LDAB */
  590. /* > \verbatim */
  591. /* > LDAB is INTEGER */
  592. /* > The leading dimension of the array AB. LDAB >= KD+1. */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[out] D */
  596. /* > \verbatim */
  597. /* > D is REAL array, dimension (N) */
  598. /* > The diagonal elements of the tridiagonal matrix T. */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[out] E */
  602. /* > \verbatim */
  603. /* > E is REAL array, dimension (N-1) */
  604. /* > The off-diagonal elements of the tridiagonal matrix T: */
  605. /* > E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[out] HOUS */
  609. /* > \verbatim */
  610. /* > HOUS is COMPLEX array, dimension LHOUS, that */
  611. /* > store the Householder representation. */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[in] LHOUS */
  615. /* > \verbatim */
  616. /* > LHOUS is INTEGER */
  617. /* > The dimension of the array HOUS. LHOUS = MAX(1, dimension) */
  618. /* > If LWORK = -1, or LHOUS=-1, */
  619. /* > then a query is assumed; the routine */
  620. /* > only calculates the optimal size of the HOUS array, returns */
  621. /* > this value as the first entry of the HOUS array, and no error */
  622. /* > message related to LHOUS is issued by XERBLA. */
  623. /* > LHOUS = MAX(1, dimension) where */
  624. /* > dimension = 4*N if VECT='N' */
  625. /* > not available now if VECT='H' */
  626. /* > \endverbatim */
  627. /* > */
  628. /* > \param[out] WORK */
  629. /* > \verbatim */
  630. /* > WORK is COMPLEX array, dimension LWORK. */
  631. /* > \endverbatim */
  632. /* > */
  633. /* > \param[in] LWORK */
  634. /* > \verbatim */
  635. /* > LWORK is INTEGER */
  636. /* > The dimension of the array WORK. LWORK = MAX(1, dimension) */
  637. /* > If LWORK = -1, or LHOUS=-1, */
  638. /* > then a workspace query is assumed; the routine */
  639. /* > only calculates the optimal size of the WORK array, returns */
  640. /* > this value as the first entry of the WORK array, and no error */
  641. /* > message related to LWORK is issued by XERBLA. */
  642. /* > LWORK = MAX(1, dimension) where */
  643. /* > dimension = (2KD+1)*N + KD*NTHREADS */
  644. /* > where KD is the blocking size of the reduction, */
  645. /* > FACTOPTNB is the blocking used by the QR or LQ */
  646. /* > algorithm, usually FACTOPTNB=128 is a good choice */
  647. /* > NTHREADS is the number of threads used when */
  648. /* > openMP compilation is enabled, otherwise =1. */
  649. /* > \endverbatim */
  650. /* > */
  651. /* > \param[out] INFO */
  652. /* > \verbatim */
  653. /* > INFO is INTEGER */
  654. /* > = 0: successful exit */
  655. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  656. /* > \endverbatim */
  657. /* Authors: */
  658. /* ======== */
  659. /* > \author Univ. of Tennessee */
  660. /* > \author Univ. of California Berkeley */
  661. /* > \author Univ. of Colorado Denver */
  662. /* > \author NAG Ltd. */
  663. /* > \date November 2017 */
  664. /* > \ingroup complexOTHERcomputational */
  665. /* > \par Further Details: */
  666. /* ===================== */
  667. /* > */
  668. /* > \verbatim */
  669. /* > */
  670. /* > Implemented by Azzam Haidar. */
  671. /* > */
  672. /* > All details are available on technical report, SC11, SC13 papers. */
  673. /* > */
  674. /* > Azzam Haidar, Hatem Ltaief, and Jack Dongarra. */
  675. /* > Parallel reduction to condensed forms for symmetric eigenvalue problems */
  676. /* > using aggregated fine-grained and memory-aware kernels. In Proceedings */
  677. /* > of 2011 International Conference for High Performance Computing, */
  678. /* > Networking, Storage and Analysis (SC '11), New York, NY, USA, */
  679. /* > Article 8 , 11 pages. */
  680. /* > http://doi.acm.org/10.1145/2063384.2063394 */
  681. /* > */
  682. /* > A. Haidar, J. Kurzak, P. Luszczek, 2013. */
  683. /* > An improved parallel singular value algorithm and its implementation */
  684. /* > for multicore hardware, In Proceedings of 2013 International Conference */
  685. /* > for High Performance Computing, Networking, Storage and Analysis (SC '13). */
  686. /* > Denver, Colorado, USA, 2013. */
  687. /* > Article 90, 12 pages. */
  688. /* > http://doi.acm.org/10.1145/2503210.2503292 */
  689. /* > */
  690. /* > A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. */
  691. /* > A novel hybrid CPU-GPU generalized eigensolver for electronic structure */
  692. /* > calculations based on fine-grained memory aware tasks. */
  693. /* > International Journal of High Performance Computing Applications. */
  694. /* > Volume 28 Issue 2, Pages 196-209, May 2014. */
  695. /* > http://hpc.sagepub.com/content/28/2/196 */
  696. /* > */
  697. /* > \endverbatim */
  698. /* > */
  699. /* ===================================================================== */
  700. /* Subroutine */ void chetrd_hb2st_(char *stage1, char *vect, char *uplo,
  701. integer *n, integer *kd, complex *ab, integer *ldab, real *d__, real *
  702. e, complex *hous, integer *lhous, complex *work, integer *lwork,
  703. integer *info)
  704. {
  705. /* System generated locals */
  706. integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5;
  707. real r__1;
  708. complex q__1;
  709. /* Local variables */
  710. integer inda;
  711. extern integer ilaenv2stage_(integer *, char *, char *, integer *,
  712. integer *, integer *, integer *);
  713. integer thed, indv, myid, indw, apos, dpos, abofdpos, nthreads, i__, k, m,
  714. edind, debug;
  715. extern logical lsame_(char *, char *);
  716. integer lhmin, sicev, sizea, shift, stind, colpt, lwmin, awpos;
  717. logical wantq, upper;
  718. integer grsiz, ttype, stepercol, ed, ib;
  719. extern /* Subroutine */ void chb2st_kernels_(char *, logical *, integer *,
  720. integer *, integer *, integer *, integer *, integer *, integer *,
  721. complex *, integer *, complex *, complex *, integer *, complex *);
  722. integer st, abdpos;
  723. extern /* Subroutine */ void clacpy_(char *, integer *, integer *, complex
  724. *, integer *, complex *, integer *), claset_(char *,
  725. integer *, integer *, complex *, complex *, complex *, integer *);
  726. extern int xerbla_(char *, integer *, ftnlen);
  727. integer thgrid, thgrnb, indtau;
  728. real abstmp;
  729. integer ofdpos, blklastind;
  730. extern /* Subroutine */ void mecago_();
  731. logical lquery, afters1;
  732. integer lda, tid, ldv;
  733. complex tmp;
  734. integer stt, sweepid, nbtiles, sizetau, thgrsiz;
  735. /* -- LAPACK computational routine (version 3.8.0) -- */
  736. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  737. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  738. /* November 2017 */
  739. /* ===================================================================== */
  740. /* Determine the minimal workspace size required. */
  741. /* Test the input parameters */
  742. /* Parameter adjustments */
  743. ab_dim1 = *ldab;
  744. ab_offset = 1 + ab_dim1 * 1;
  745. ab -= ab_offset;
  746. --d__;
  747. --e;
  748. --hous;
  749. --work;
  750. /* Function Body */
  751. debug = 0;
  752. *info = 0;
  753. afters1 = lsame_(stage1, "Y");
  754. wantq = lsame_(vect, "V");
  755. upper = lsame_(uplo, "U");
  756. lquery = *lwork == -1 || *lhous == -1;
  757. /* Determine the block size, the workspace size and the hous size. */
  758. ib = ilaenv2stage_(&c__2, "CHETRD_HB2ST", vect, n, kd, &c_n1, &c_n1);
  759. lhmin = ilaenv2stage_(&c__3, "CHETRD_HB2ST", vect, n, kd, &ib, &c_n1);
  760. lwmin = ilaenv2stage_(&c__4, "CHETRD_HB2ST", vect, n, kd, &ib, &c_n1);
  761. if (! afters1 && ! lsame_(stage1, "N")) {
  762. *info = -1;
  763. } else if (! lsame_(vect, "N")) {
  764. *info = -2;
  765. } else if (! upper && ! lsame_(uplo, "L")) {
  766. *info = -3;
  767. } else if (*n < 0) {
  768. *info = -4;
  769. } else if (*kd < 0) {
  770. *info = -5;
  771. } else if (*ldab < *kd + 1) {
  772. *info = -7;
  773. } else if (*lhous < lhmin && ! lquery) {
  774. *info = -11;
  775. } else if (*lwork < lwmin && ! lquery) {
  776. *info = -13;
  777. }
  778. if (*info == 0) {
  779. hous[1].r = (real) lhmin, hous[1].i = 0.f;
  780. work[1].r = (real) lwmin, work[1].i = 0.f;
  781. }
  782. if (*info != 0) {
  783. i__1 = -(*info);
  784. xerbla_("CHETRD_HB2ST", &i__1, (ftnlen)12);
  785. return;
  786. } else if (lquery) {
  787. return;
  788. }
  789. /* Quick return if possible */
  790. if (*n == 0) {
  791. hous[1].r = 1.f, hous[1].i = 0.f;
  792. work[1].r = 1.f, work[1].i = 0.f;
  793. return;
  794. }
  795. /* Determine pointer position */
  796. ldv = *kd + ib;
  797. sizetau = *n << 1;
  798. sicev = *n << 1;
  799. indtau = 1;
  800. indv = indtau + sizetau;
  801. lda = (*kd << 1) + 1;
  802. sizea = lda * *n;
  803. inda = 1;
  804. indw = inda + sizea;
  805. nthreads = 1;
  806. tid = 0;
  807. if (upper) {
  808. apos = inda + *kd;
  809. awpos = inda;
  810. dpos = apos + *kd;
  811. ofdpos = dpos - 1;
  812. abdpos = *kd + 1;
  813. abofdpos = *kd;
  814. } else {
  815. apos = inda;
  816. awpos = inda + *kd + 1;
  817. dpos = apos;
  818. ofdpos = dpos + 1;
  819. abdpos = 1;
  820. abofdpos = 2;
  821. }
  822. /* Case KD=0: */
  823. /* The matrix is diagonal. We just copy it (convert to "real" for */
  824. /* complex because D is double and the imaginary part should be 0) */
  825. /* and store it in D. A sequential code here is better or */
  826. /* in a parallel environment it might need two cores for D and E */
  827. if (*kd == 0) {
  828. i__1 = *n;
  829. for (i__ = 1; i__ <= i__1; ++i__) {
  830. i__2 = abdpos + i__ * ab_dim1;
  831. d__[i__] = ab[i__2].r;
  832. /* L30: */
  833. }
  834. i__1 = *n - 1;
  835. for (i__ = 1; i__ <= i__1; ++i__) {
  836. e[i__] = 0.f;
  837. /* L40: */
  838. }
  839. hous[1].r = 1.f, hous[1].i = 0.f;
  840. work[1].r = 1.f, work[1].i = 0.f;
  841. return;
  842. }
  843. /* Case KD=1: */
  844. /* The matrix is already Tridiagonal. We have to make diagonal */
  845. /* and offdiagonal elements real, and store them in D and E. */
  846. /* For that, for real precision just copy the diag and offdiag */
  847. /* to D and E while for the COMPLEX case the bulge chasing is */
  848. /* performed to convert the hermetian tridiagonal to symmetric */
  849. /* tridiagonal. A simpler coversion formula might be used, but then */
  850. /* updating the Q matrix will be required and based if Q is generated */
  851. /* or not this might complicate the story. */
  852. if (*kd == 1) {
  853. i__1 = *n;
  854. for (i__ = 1; i__ <= i__1; ++i__) {
  855. i__2 = abdpos + i__ * ab_dim1;
  856. d__[i__] = ab[i__2].r;
  857. /* L50: */
  858. }
  859. /* make off-diagonal elements real and copy them to E */
  860. if (upper) {
  861. i__1 = *n - 1;
  862. for (i__ = 1; i__ <= i__1; ++i__) {
  863. i__2 = abofdpos + (i__ + 1) * ab_dim1;
  864. tmp.r = ab[i__2].r, tmp.i = ab[i__2].i;
  865. abstmp = c_abs(&tmp);
  866. i__2 = abofdpos + (i__ + 1) * ab_dim1;
  867. ab[i__2].r = abstmp, ab[i__2].i = 0.f;
  868. e[i__] = abstmp;
  869. if (abstmp != 0.f) {
  870. q__1.r = tmp.r / abstmp, q__1.i = tmp.i / abstmp;
  871. tmp.r = q__1.r, tmp.i = q__1.i;
  872. } else {
  873. tmp.r = 1.f, tmp.i = 0.f;
  874. }
  875. if (i__ < *n - 1) {
  876. i__2 = abofdpos + (i__ + 2) * ab_dim1;
  877. i__3 = abofdpos + (i__ + 2) * ab_dim1;
  878. q__1.r = ab[i__3].r * tmp.r - ab[i__3].i * tmp.i, q__1.i =
  879. ab[i__3].r * tmp.i + ab[i__3].i * tmp.r;
  880. ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
  881. }
  882. /* IF( WANTZ ) THEN */
  883. /* CALL CSCAL( N, CONJG( TMP ), Q( 1, I+1 ), 1 ) */
  884. /* END IF */
  885. /* L60: */
  886. }
  887. } else {
  888. i__1 = *n - 1;
  889. for (i__ = 1; i__ <= i__1; ++i__) {
  890. i__2 = abofdpos + i__ * ab_dim1;
  891. tmp.r = ab[i__2].r, tmp.i = ab[i__2].i;
  892. abstmp = c_abs(&tmp);
  893. i__2 = abofdpos + i__ * ab_dim1;
  894. ab[i__2].r = abstmp, ab[i__2].i = 0.f;
  895. e[i__] = abstmp;
  896. if (abstmp != 0.f) {
  897. q__1.r = tmp.r / abstmp, q__1.i = tmp.i / abstmp;
  898. tmp.r = q__1.r, tmp.i = q__1.i;
  899. } else {
  900. tmp.r = 1.f, tmp.i = 0.f;
  901. }
  902. if (i__ < *n - 1) {
  903. i__2 = abofdpos + (i__ + 1) * ab_dim1;
  904. i__3 = abofdpos + (i__ + 1) * ab_dim1;
  905. q__1.r = ab[i__3].r * tmp.r - ab[i__3].i * tmp.i, q__1.i =
  906. ab[i__3].r * tmp.i + ab[i__3].i * tmp.r;
  907. ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
  908. }
  909. /* IF( WANTQ ) THEN */
  910. /* CALL CSCAL( N, TMP, Q( 1, I+1 ), 1 ) */
  911. /* END IF */
  912. /* L70: */
  913. }
  914. }
  915. hous[1].r = 1.f, hous[1].i = 0.f;
  916. work[1].r = 1.f, work[1].i = 0.f;
  917. return;
  918. }
  919. /* Main code start here. */
  920. /* Reduce the hermitian band of A to a tridiagonal matrix. */
  921. thgrsiz = *n;
  922. grsiz = 1;
  923. shift = 3;
  924. r__1 = (real) (*n) / (real) (*kd) + .5f;
  925. nbtiles = r_int(&r__1);
  926. r__1 = (real) shift / (real) grsiz + .5f;
  927. stepercol = r_int(&r__1);
  928. r__1 = (real) (*n - 1) / (real) thgrsiz + .5f;
  929. thgrnb = r_int(&r__1);
  930. i__1 = *kd + 1;
  931. clacpy_("A", &i__1, n, &ab[ab_offset], ldab, &work[apos], &lda)
  932. ;
  933. claset_("A", kd, n, &c_b1, &c_b1, &work[awpos], &lda);
  934. /* openMP parallelisation start here */
  935. /* main bulge chasing loop */
  936. i__1 = thgrnb;
  937. for (thgrid = 1; thgrid <= i__1; ++thgrid) {
  938. stt = (thgrid - 1) * thgrsiz + 1;
  939. /* Computing MIN */
  940. i__2 = stt + thgrsiz - 1, i__3 = *n - 1;
  941. thed = f2cmin(i__2,i__3);
  942. i__2 = *n - 1;
  943. for (i__ = stt; i__ <= i__2; ++i__) {
  944. ed = f2cmin(i__,thed);
  945. if (stt > ed) {
  946. myexit_();
  947. }
  948. i__3 = stepercol;
  949. for (m = 1; m <= i__3; ++m) {
  950. st = stt;
  951. i__4 = ed;
  952. for (sweepid = st; sweepid <= i__4; ++sweepid) {
  953. i__5 = grsiz;
  954. for (k = 1; k <= i__5; ++k) {
  955. myid = (i__ - sweepid) * (stepercol * grsiz) + (m - 1)
  956. * grsiz + k;
  957. if (myid == 1) {
  958. ttype = 1;
  959. } else {
  960. ttype = myid % 2 + 2;
  961. }
  962. if (ttype == 2) {
  963. colpt = myid / 2 * *kd + sweepid;
  964. stind = colpt - *kd + 1;
  965. edind = f2cmin(colpt,*n);
  966. blklastind = colpt;
  967. } else {
  968. colpt = (myid + 1) / 2 * *kd + sweepid;
  969. stind = colpt - *kd + 1;
  970. edind = f2cmin(colpt,*n);
  971. if (stind >= edind - 1 && edind == *n) {
  972. blklastind = *n;
  973. } else {
  974. blklastind = 0;
  975. }
  976. }
  977. /* Call the kernel */
  978. chb2st_kernels_(uplo, &wantq, &ttype, &stind, &edind,
  979. &sweepid, n, kd, &ib, &work[inda], &lda, &
  980. hous[indv], &hous[indtau], &ldv, &work[indw +
  981. tid * *kd]);
  982. if (blklastind >= *n - 1) {
  983. ++stt;
  984. myexit_();
  985. }
  986. /* L140: */
  987. }
  988. /* L130: */
  989. }
  990. /* L120: */
  991. }
  992. /* L110: */
  993. }
  994. /* L100: */
  995. }
  996. /* Copy the diagonal from A to D. Note that D is REAL thus only */
  997. /* the Real part is needed, the imaginary part should be zero. */
  998. i__1 = *n;
  999. for (i__ = 1; i__ <= i__1; ++i__) {
  1000. i__2 = dpos + (i__ - 1) * lda;
  1001. d__[i__] = work[i__2].r;
  1002. /* L150: */
  1003. }
  1004. /* Copy the off diagonal from A to E. Note that E is REAL thus only */
  1005. /* the Real part is needed, the imaginary part should be zero. */
  1006. if (upper) {
  1007. i__1 = *n - 1;
  1008. for (i__ = 1; i__ <= i__1; ++i__) {
  1009. i__2 = ofdpos + i__ * lda;
  1010. e[i__] = work[i__2].r;
  1011. /* L160: */
  1012. }
  1013. } else {
  1014. i__1 = *n - 1;
  1015. for (i__ = 1; i__ <= i__1; ++i__) {
  1016. i__2 = ofdpos + (i__ - 1) * lda;
  1017. e[i__] = work[i__2].r;
  1018. /* L170: */
  1019. }
  1020. }
  1021. hous[1].r = (real) lhmin, hous[1].i = 0.f;
  1022. work[1].r = (real) lwmin, work[1].i = 0.f;
  1023. return;
  1024. /* End of CHETRD_HB2ST */
  1025. } /* chetrd_hb2st__ */