You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zstedc.c 32 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle_() continue;
  235. #define myceiling_(w) {ceil(w)}
  236. #define myhuge_(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow = _Cmulcc(pow, x);
  305. if(u >>= 1) x = _Cmulcc(x, x);
  306. else break;
  307. }
  308. }
  309. return pow;
  310. }
  311. #else
  312. static _Complex double zpow_ui(_Complex double x, integer n) {
  313. _Complex double pow=1.0; unsigned long int u;
  314. if(n != 0) {
  315. if(n < 0) n = -n, x = 1/x;
  316. for(u = n; ; ) {
  317. if(u & 01) pow *= x;
  318. if(u >>= 1) x *= x;
  319. else break;
  320. }
  321. }
  322. return pow;
  323. }
  324. #endif
  325. static integer pow_ii(integer x, integer n) {
  326. integer pow; unsigned long int u;
  327. if (n <= 0) {
  328. if (n == 0 || x == 1) pow = 1;
  329. else if (x != -1) pow = x == 0 ? 1/x : 0;
  330. else n = -n;
  331. }
  332. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  333. u = n;
  334. for(pow = 1; ; ) {
  335. if(u & 01) pow *= x;
  336. if(u >>= 1) x *= x;
  337. else break;
  338. }
  339. }
  340. return pow;
  341. }
  342. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  343. {
  344. double m; integer i, mi;
  345. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  346. if (w[i-1]>m) mi=i ,m=w[i-1];
  347. return mi-s+1;
  348. }
  349. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  350. {
  351. float m; integer i, mi;
  352. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  353. if (w[i-1]>m) mi=i ,m=w[i-1];
  354. return mi-s+1;
  355. }
  356. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  357. integer n = *n_, incx = *incx_, incy = *incy_, i;
  358. #ifdef _MSC_VER
  359. _Fcomplex zdotc = {0.0, 0.0};
  360. if (incx == 1 && incy == 1) {
  361. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  362. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  363. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  364. }
  365. } else {
  366. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  367. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  368. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  369. }
  370. }
  371. pCf(z) = zdotc;
  372. }
  373. #else
  374. _Complex float zdotc = 0.0;
  375. if (incx == 1 && incy == 1) {
  376. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  377. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  378. }
  379. } else {
  380. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  381. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  382. }
  383. }
  384. pCf(z) = zdotc;
  385. }
  386. #endif
  387. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  388. integer n = *n_, incx = *incx_, incy = *incy_, i;
  389. #ifdef _MSC_VER
  390. _Dcomplex zdotc = {0.0, 0.0};
  391. if (incx == 1 && incy == 1) {
  392. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  393. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  394. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  395. }
  396. } else {
  397. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  398. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  399. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  400. }
  401. }
  402. pCd(z) = zdotc;
  403. }
  404. #else
  405. _Complex double zdotc = 0.0;
  406. if (incx == 1 && incy == 1) {
  407. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  408. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  409. }
  410. } else {
  411. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  412. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  413. }
  414. }
  415. pCd(z) = zdotc;
  416. }
  417. #endif
  418. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  419. integer n = *n_, incx = *incx_, incy = *incy_, i;
  420. #ifdef _MSC_VER
  421. _Fcomplex zdotc = {0.0, 0.0};
  422. if (incx == 1 && incy == 1) {
  423. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  424. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  425. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  426. }
  427. } else {
  428. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  429. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  430. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  431. }
  432. }
  433. pCf(z) = zdotc;
  434. }
  435. #else
  436. _Complex float zdotc = 0.0;
  437. if (incx == 1 && incy == 1) {
  438. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  439. zdotc += Cf(&x[i]) * Cf(&y[i]);
  440. }
  441. } else {
  442. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  443. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  444. }
  445. }
  446. pCf(z) = zdotc;
  447. }
  448. #endif
  449. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  450. integer n = *n_, incx = *incx_, incy = *incy_, i;
  451. #ifdef _MSC_VER
  452. _Dcomplex zdotc = {0.0, 0.0};
  453. if (incx == 1 && incy == 1) {
  454. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  455. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  456. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  457. }
  458. } else {
  459. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  460. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  461. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  462. }
  463. }
  464. pCd(z) = zdotc;
  465. }
  466. #else
  467. _Complex double zdotc = 0.0;
  468. if (incx == 1 && incy == 1) {
  469. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  470. zdotc += Cd(&x[i]) * Cd(&y[i]);
  471. }
  472. } else {
  473. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  474. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  475. }
  476. }
  477. pCd(z) = zdotc;
  478. }
  479. #endif
  480. /* -- translated by f2c (version 20000121).
  481. You must link the resulting object file with the libraries:
  482. -lf2c -lm (in that order)
  483. */
  484. /* Table of constant values */
  485. static integer c__9 = 9;
  486. static integer c__0 = 0;
  487. static integer c__2 = 2;
  488. static doublereal c_b17 = 0.;
  489. static doublereal c_b18 = 1.;
  490. static integer c__1 = 1;
  491. /* > \brief \b ZSTEDC */
  492. /* =========== DOCUMENTATION =========== */
  493. /* Online html documentation available at */
  494. /* http://www.netlib.org/lapack/explore-html/ */
  495. /* > \htmlonly */
  496. /* > Download ZSTEDC + dependencies */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zstedc.
  498. f"> */
  499. /* > [TGZ]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zstedc.
  501. f"> */
  502. /* > [ZIP]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zstedc.
  504. f"> */
  505. /* > [TXT]</a> */
  506. /* > \endhtmlonly */
  507. /* Definition: */
  508. /* =========== */
  509. /* SUBROUTINE ZSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, RWORK, */
  510. /* LRWORK, IWORK, LIWORK, INFO ) */
  511. /* CHARACTER COMPZ */
  512. /* INTEGER INFO, LDZ, LIWORK, LRWORK, LWORK, N */
  513. /* INTEGER IWORK( * ) */
  514. /* DOUBLE PRECISION D( * ), E( * ), RWORK( * ) */
  515. /* COMPLEX*16 WORK( * ), Z( LDZ, * ) */
  516. /* > \par Purpose: */
  517. /* ============= */
  518. /* > */
  519. /* > \verbatim */
  520. /* > */
  521. /* > ZSTEDC computes all eigenvalues and, optionally, eigenvectors of a */
  522. /* > symmetric tridiagonal matrix using the divide and conquer method. */
  523. /* > The eigenvectors of a full or band complex Hermitian matrix can also */
  524. /* > be found if ZHETRD or ZHPTRD or ZHBTRD has been used to reduce this */
  525. /* > matrix to tridiagonal form. */
  526. /* > */
  527. /* > This code makes very mild assumptions about floating point */
  528. /* > arithmetic. It will work on machines with a guard digit in */
  529. /* > add/subtract, or on those binary machines without guard digits */
  530. /* > which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. */
  531. /* > It could conceivably fail on hexadecimal or decimal machines */
  532. /* > without guard digits, but we know of none. See DLAED3 for details. */
  533. /* > \endverbatim */
  534. /* Arguments: */
  535. /* ========== */
  536. /* > \param[in] COMPZ */
  537. /* > \verbatim */
  538. /* > COMPZ is CHARACTER*1 */
  539. /* > = 'N': Compute eigenvalues only. */
  540. /* > = 'I': Compute eigenvectors of tridiagonal matrix also. */
  541. /* > = 'V': Compute eigenvectors of original Hermitian matrix */
  542. /* > also. On entry, Z contains the unitary matrix used */
  543. /* > to reduce the original matrix to tridiagonal form. */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in] N */
  547. /* > \verbatim */
  548. /* > N is INTEGER */
  549. /* > The dimension of the symmetric tridiagonal matrix. N >= 0. */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in,out] D */
  553. /* > \verbatim */
  554. /* > D is DOUBLE PRECISION array, dimension (N) */
  555. /* > On entry, the diagonal elements of the tridiagonal matrix. */
  556. /* > On exit, if INFO = 0, the eigenvalues in ascending order. */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in,out] E */
  560. /* > \verbatim */
  561. /* > E is DOUBLE PRECISION array, dimension (N-1) */
  562. /* > On entry, the subdiagonal elements of the tridiagonal matrix. */
  563. /* > On exit, E has been destroyed. */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in,out] Z */
  567. /* > \verbatim */
  568. /* > Z is COMPLEX*16 array, dimension (LDZ,N) */
  569. /* > On entry, if COMPZ = 'V', then Z contains the unitary */
  570. /* > matrix used in the reduction to tridiagonal form. */
  571. /* > On exit, if INFO = 0, then if COMPZ = 'V', Z contains the */
  572. /* > orthonormal eigenvectors of the original Hermitian matrix, */
  573. /* > and if COMPZ = 'I', Z contains the orthonormal eigenvectors */
  574. /* > of the symmetric tridiagonal matrix. */
  575. /* > If COMPZ = 'N', then Z is not referenced. */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[in] LDZ */
  579. /* > \verbatim */
  580. /* > LDZ is INTEGER */
  581. /* > The leading dimension of the array Z. LDZ >= 1. */
  582. /* > If eigenvectors are desired, then LDZ >= f2cmax(1,N). */
  583. /* > \endverbatim */
  584. /* > */
  585. /* > \param[out] WORK */
  586. /* > \verbatim */
  587. /* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
  588. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[in] LWORK */
  592. /* > \verbatim */
  593. /* > LWORK is INTEGER */
  594. /* > The dimension of the array WORK. */
  595. /* > If COMPZ = 'N' or 'I', or N <= 1, LWORK must be at least 1. */
  596. /* > If COMPZ = 'V' and N > 1, LWORK must be at least N*N. */
  597. /* > Note that for COMPZ = 'V', then if N is less than or */
  598. /* > equal to the minimum divide size, usually 25, then LWORK need */
  599. /* > only be 1. */
  600. /* > */
  601. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  602. /* > only calculates the optimal sizes of the WORK, RWORK and */
  603. /* > IWORK arrays, returns these values as the first entries of */
  604. /* > the WORK, RWORK and IWORK arrays, and no error message */
  605. /* > related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[out] RWORK */
  609. /* > \verbatim */
  610. /* > RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK)) */
  611. /* > On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[in] LRWORK */
  615. /* > \verbatim */
  616. /* > LRWORK is INTEGER */
  617. /* > The dimension of the array RWORK. */
  618. /* > If COMPZ = 'N' or N <= 1, LRWORK must be at least 1. */
  619. /* > If COMPZ = 'V' and N > 1, LRWORK must be at least */
  620. /* > 1 + 3*N + 2*N*lg N + 4*N**2 , */
  621. /* > where lg( N ) = smallest integer k such */
  622. /* > that 2**k >= N. */
  623. /* > If COMPZ = 'I' and N > 1, LRWORK must be at least */
  624. /* > 1 + 4*N + 2*N**2 . */
  625. /* > Note that for COMPZ = 'I' or 'V', then if N is less than or */
  626. /* > equal to the minimum divide size, usually 25, then LRWORK */
  627. /* > need only be f2cmax(1,2*(N-1)). */
  628. /* > */
  629. /* > If LRWORK = -1, then a workspace query is assumed; the */
  630. /* > routine only calculates the optimal sizes of the WORK, RWORK */
  631. /* > and IWORK arrays, returns these values as the first entries */
  632. /* > of the WORK, RWORK and IWORK arrays, and no error message */
  633. /* > related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
  634. /* > \endverbatim */
  635. /* > */
  636. /* > \param[out] IWORK */
  637. /* > \verbatim */
  638. /* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
  639. /* > On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
  640. /* > \endverbatim */
  641. /* > */
  642. /* > \param[in] LIWORK */
  643. /* > \verbatim */
  644. /* > LIWORK is INTEGER */
  645. /* > The dimension of the array IWORK. */
  646. /* > If COMPZ = 'N' or N <= 1, LIWORK must be at least 1. */
  647. /* > If COMPZ = 'V' or N > 1, LIWORK must be at least */
  648. /* > 6 + 6*N + 5*N*lg N. */
  649. /* > If COMPZ = 'I' or N > 1, LIWORK must be at least */
  650. /* > 3 + 5*N . */
  651. /* > Note that for COMPZ = 'I' or 'V', then if N is less than or */
  652. /* > equal to the minimum divide size, usually 25, then LIWORK */
  653. /* > need only be 1. */
  654. /* > */
  655. /* > If LIWORK = -1, then a workspace query is assumed; the */
  656. /* > routine only calculates the optimal sizes of the WORK, RWORK */
  657. /* > and IWORK arrays, returns these values as the first entries */
  658. /* > of the WORK, RWORK and IWORK arrays, and no error message */
  659. /* > related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
  660. /* > \endverbatim */
  661. /* > */
  662. /* > \param[out] INFO */
  663. /* > \verbatim */
  664. /* > INFO is INTEGER */
  665. /* > = 0: successful exit. */
  666. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  667. /* > > 0: The algorithm failed to compute an eigenvalue while */
  668. /* > working on the submatrix lying in rows and columns */
  669. /* > INFO/(N+1) through mod(INFO,N+1). */
  670. /* > \endverbatim */
  671. /* Authors: */
  672. /* ======== */
  673. /* > \author Univ. of Tennessee */
  674. /* > \author Univ. of California Berkeley */
  675. /* > \author Univ. of Colorado Denver */
  676. /* > \author NAG Ltd. */
  677. /* > \date June 2017 */
  678. /* > \ingroup complex16OTHERcomputational */
  679. /* > \par Contributors: */
  680. /* ================== */
  681. /* > */
  682. /* > Jeff Rutter, Computer Science Division, University of California */
  683. /* > at Berkeley, USA */
  684. /* ===================================================================== */
  685. /* Subroutine */ void zstedc_(char *compz, integer *n, doublereal *d__,
  686. doublereal *e, doublecomplex *z__, integer *ldz, doublecomplex *work,
  687. integer *lwork, doublereal *rwork, integer *lrwork, integer *iwork,
  688. integer *liwork, integer *info)
  689. {
  690. /* System generated locals */
  691. integer z_dim1, z_offset, i__1, i__2, i__3, i__4;
  692. doublereal d__1, d__2;
  693. /* Local variables */
  694. doublereal tiny;
  695. integer i__, j, k, m;
  696. doublereal p;
  697. extern logical lsame_(char *, char *);
  698. integer lwmin, start;
  699. extern /* Subroutine */ void zswap_(integer *, doublecomplex *, integer *,
  700. doublecomplex *, integer *), zlaed0_(integer *, integer *,
  701. doublereal *, doublereal *, doublecomplex *, integer *,
  702. doublecomplex *, integer *, doublereal *, integer *, integer *);
  703. integer ii, ll;
  704. extern doublereal dlamch_(char *);
  705. extern /* Subroutine */ void dlascl_(char *, integer *, integer *,
  706. doublereal *, doublereal *, integer *, integer *, doublereal *,
  707. integer *, integer *), dstedc_(char *, integer *,
  708. doublereal *, doublereal *, doublereal *, integer *, doublereal *,
  709. integer *, integer *, integer *, integer *), dlaset_(
  710. char *, integer *, integer *, doublereal *, doublereal *,
  711. doublereal *, integer *);
  712. extern int xerbla_(char *, integer *, ftnlen);
  713. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  714. integer *, integer *, ftnlen, ftnlen);
  715. integer finish;
  716. extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
  717. extern /* Subroutine */ void dsterf_(integer *, doublereal *, doublereal *,
  718. integer *), zlacrm_(integer *, integer *, doublecomplex *,
  719. integer *, doublereal *, integer *, doublecomplex *, integer *,
  720. doublereal *);
  721. integer liwmin, icompz;
  722. extern /* Subroutine */ void dsteqr_(char *, integer *, doublereal *,
  723. doublereal *, doublereal *, integer *, doublereal *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *,
  724. integer *, doublecomplex *, integer *);
  725. doublereal orgnrm;
  726. integer lrwmin;
  727. logical lquery;
  728. integer smlsiz;
  729. extern /* Subroutine */ void zsteqr_(char *, integer *, doublereal *,
  730. doublereal *, doublecomplex *, integer *, doublereal *, integer *);
  731. integer lgn;
  732. doublereal eps;
  733. /* -- LAPACK computational routine (version 3.7.1) -- */
  734. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  735. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  736. /* June 2017 */
  737. /* ===================================================================== */
  738. /* Test the input parameters. */
  739. /* Parameter adjustments */
  740. --d__;
  741. --e;
  742. z_dim1 = *ldz;
  743. z_offset = 1 + z_dim1 * 1;
  744. z__ -= z_offset;
  745. --work;
  746. --rwork;
  747. --iwork;
  748. /* Function Body */
  749. *info = 0;
  750. lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1;
  751. if (lsame_(compz, "N")) {
  752. icompz = 0;
  753. } else if (lsame_(compz, "V")) {
  754. icompz = 1;
  755. } else if (lsame_(compz, "I")) {
  756. icompz = 2;
  757. } else {
  758. icompz = -1;
  759. }
  760. if (icompz < 0) {
  761. *info = -1;
  762. } else if (*n < 0) {
  763. *info = -2;
  764. } else if (*ldz < 1 || icompz > 0 && *ldz < f2cmax(1,*n)) {
  765. *info = -6;
  766. }
  767. if (*info == 0) {
  768. /* Compute the workspace requirements */
  769. smlsiz = ilaenv_(&c__9, "ZSTEDC", " ", &c__0, &c__0, &c__0, &c__0, (
  770. ftnlen)6, (ftnlen)1);
  771. if (*n <= 1 || icompz == 0) {
  772. lwmin = 1;
  773. liwmin = 1;
  774. lrwmin = 1;
  775. } else if (*n <= smlsiz) {
  776. lwmin = 1;
  777. liwmin = 1;
  778. lrwmin = *n - 1 << 1;
  779. } else if (icompz == 1) {
  780. lgn = (integer) (log((doublereal) (*n)) / log(2.));
  781. if (pow_ii(c__2, lgn) < *n) {
  782. ++lgn;
  783. }
  784. if (pow_ii(c__2, lgn) < *n) {
  785. ++lgn;
  786. }
  787. lwmin = *n * *n;
  788. /* Computing 2nd power */
  789. i__1 = *n;
  790. lrwmin = *n * 3 + 1 + (*n << 1) * lgn + (i__1 * i__1 << 2);
  791. liwmin = *n * 6 + 6 + *n * 5 * lgn;
  792. } else if (icompz == 2) {
  793. lwmin = 1;
  794. /* Computing 2nd power */
  795. i__1 = *n;
  796. lrwmin = (*n << 2) + 1 + (i__1 * i__1 << 1);
  797. liwmin = *n * 5 + 3;
  798. }
  799. work[1].r = (doublereal) lwmin, work[1].i = 0.;
  800. rwork[1] = (doublereal) lrwmin;
  801. iwork[1] = liwmin;
  802. if (*lwork < lwmin && ! lquery) {
  803. *info = -8;
  804. } else if (*lrwork < lrwmin && ! lquery) {
  805. *info = -10;
  806. } else if (*liwork < liwmin && ! lquery) {
  807. *info = -12;
  808. }
  809. }
  810. if (*info != 0) {
  811. i__1 = -(*info);
  812. xerbla_("ZSTEDC", &i__1, (ftnlen)6);
  813. return;
  814. } else if (lquery) {
  815. return;
  816. }
  817. /* Quick return if possible */
  818. if (*n == 0) {
  819. return;
  820. }
  821. if (*n == 1) {
  822. if (icompz != 0) {
  823. i__1 = z_dim1 + 1;
  824. z__[i__1].r = 1., z__[i__1].i = 0.;
  825. }
  826. return;
  827. }
  828. /* If the following conditional clause is removed, then the routine */
  829. /* will use the Divide and Conquer routine to compute only the */
  830. /* eigenvalues, which requires (3N + 3N**2) real workspace and */
  831. /* (2 + 5N + 2N lg(N)) integer workspace. */
  832. /* Since on many architectures DSTERF is much faster than any other */
  833. /* algorithm for finding eigenvalues only, it is used here */
  834. /* as the default. If the conditional clause is removed, then */
  835. /* information on the size of workspace needs to be changed. */
  836. /* If COMPZ = 'N', use DSTERF to compute the eigenvalues. */
  837. if (icompz == 0) {
  838. dsterf_(n, &d__[1], &e[1], info);
  839. goto L70;
  840. }
  841. /* If N is smaller than the minimum divide size (SMLSIZ+1), then */
  842. /* solve the problem with another solver. */
  843. if (*n <= smlsiz) {
  844. zsteqr_(compz, n, &d__[1], &e[1], &z__[z_offset], ldz, &rwork[1],
  845. info);
  846. } else {
  847. /* If COMPZ = 'I', we simply call DSTEDC instead. */
  848. if (icompz == 2) {
  849. dlaset_("Full", n, n, &c_b17, &c_b18, &rwork[1], n);
  850. ll = *n * *n + 1;
  851. i__1 = *lrwork - ll + 1;
  852. dstedc_("I", n, &d__[1], &e[1], &rwork[1], n, &rwork[ll], &i__1, &
  853. iwork[1], liwork, info);
  854. i__1 = *n;
  855. for (j = 1; j <= i__1; ++j) {
  856. i__2 = *n;
  857. for (i__ = 1; i__ <= i__2; ++i__) {
  858. i__3 = i__ + j * z_dim1;
  859. i__4 = (j - 1) * *n + i__;
  860. z__[i__3].r = rwork[i__4], z__[i__3].i = 0.;
  861. /* L10: */
  862. }
  863. /* L20: */
  864. }
  865. goto L70;
  866. }
  867. /* From now on, only option left to be handled is COMPZ = 'V', */
  868. /* i.e. ICOMPZ = 1. */
  869. /* Scale. */
  870. orgnrm = dlanst_("M", n, &d__[1], &e[1]);
  871. if (orgnrm == 0.) {
  872. goto L70;
  873. }
  874. eps = dlamch_("Epsilon");
  875. start = 1;
  876. /* while ( START <= N ) */
  877. L30:
  878. if (start <= *n) {
  879. /* Let FINISH be the position of the next subdiagonal entry */
  880. /* such that E( FINISH ) <= TINY or FINISH = N if no such */
  881. /* subdiagonal exists. The matrix identified by the elements */
  882. /* between START and FINISH constitutes an independent */
  883. /* sub-problem. */
  884. finish = start;
  885. L40:
  886. if (finish < *n) {
  887. tiny = eps * sqrt((d__1 = d__[finish], abs(d__1))) * sqrt((
  888. d__2 = d__[finish + 1], abs(d__2)));
  889. if ((d__1 = e[finish], abs(d__1)) > tiny) {
  890. ++finish;
  891. goto L40;
  892. }
  893. }
  894. /* (Sub) Problem determined. Compute its size and solve it. */
  895. m = finish - start + 1;
  896. if (m > smlsiz) {
  897. /* Scale. */
  898. orgnrm = dlanst_("M", &m, &d__[start], &e[start]);
  899. dlascl_("G", &c__0, &c__0, &orgnrm, &c_b18, &m, &c__1, &d__[
  900. start], &m, info);
  901. i__1 = m - 1;
  902. i__2 = m - 1;
  903. dlascl_("G", &c__0, &c__0, &orgnrm, &c_b18, &i__1, &c__1, &e[
  904. start], &i__2, info);
  905. zlaed0_(n, &m, &d__[start], &e[start], &z__[start * z_dim1 +
  906. 1], ldz, &work[1], n, &rwork[1], &iwork[1], info);
  907. if (*info > 0) {
  908. *info = (*info / (m + 1) + start - 1) * (*n + 1) + *info %
  909. (m + 1) + start - 1;
  910. goto L70;
  911. }
  912. /* Scale back. */
  913. dlascl_("G", &c__0, &c__0, &c_b18, &orgnrm, &m, &c__1, &d__[
  914. start], &m, info);
  915. } else {
  916. dsteqr_("I", &m, &d__[start], &e[start], &rwork[1], &m, &
  917. rwork[m * m + 1], info);
  918. zlacrm_(n, &m, &z__[start * z_dim1 + 1], ldz, &rwork[1], &m, &
  919. work[1], n, &rwork[m * m + 1]);
  920. zlacpy_("A", n, &m, &work[1], n, &z__[start * z_dim1 + 1],
  921. ldz);
  922. if (*info > 0) {
  923. *info = start * (*n + 1) + finish;
  924. goto L70;
  925. }
  926. }
  927. start = finish + 1;
  928. goto L30;
  929. }
  930. /* endwhile */
  931. /* Use Selection Sort to minimize swaps of eigenvectors */
  932. i__1 = *n;
  933. for (ii = 2; ii <= i__1; ++ii) {
  934. i__ = ii - 1;
  935. k = i__;
  936. p = d__[i__];
  937. i__2 = *n;
  938. for (j = ii; j <= i__2; ++j) {
  939. if (d__[j] < p) {
  940. k = j;
  941. p = d__[j];
  942. }
  943. /* L50: */
  944. }
  945. if (k != i__) {
  946. d__[k] = d__[i__];
  947. d__[i__] = p;
  948. zswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * z_dim1 + 1],
  949. &c__1);
  950. }
  951. /* L60: */
  952. }
  953. }
  954. L70:
  955. work[1].r = (doublereal) lwmin, work[1].i = 0.;
  956. rwork[1] = (doublereal) lrwmin;
  957. iwork[1] = liwmin;
  958. return;
  959. /* End of ZSTEDC */
  960. } /* zstedc_ */