You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dhsein.c 32 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static logical c_false = FALSE_;
  487. static logical c_true = TRUE_;
  488. /* > \brief \b DHSEIN */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download DHSEIN + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dhsein.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dhsein.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dhsein.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE DHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, WR, WI, */
  507. /* VL, LDVL, VR, LDVR, MM, M, WORK, IFAILL, */
  508. /* IFAILR, INFO ) */
  509. /* CHARACTER EIGSRC, INITV, SIDE */
  510. /* INTEGER INFO, LDH, LDVL, LDVR, M, MM, N */
  511. /* LOGICAL SELECT( * ) */
  512. /* INTEGER IFAILL( * ), IFAILR( * ) */
  513. /* DOUBLE PRECISION H( LDH, * ), VL( LDVL, * ), VR( LDVR, * ), */
  514. /* $ WI( * ), WORK( * ), WR( * ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > DHSEIN uses inverse iteration to find specified right and/or left */
  521. /* > eigenvectors of a real upper Hessenberg matrix H. */
  522. /* > */
  523. /* > The right eigenvector x and the left eigenvector y of the matrix H */
  524. /* > corresponding to an eigenvalue w are defined by: */
  525. /* > */
  526. /* > H * x = w * x, y**h * H = w * y**h */
  527. /* > */
  528. /* > where y**h denotes the conjugate transpose of the vector y. */
  529. /* > \endverbatim */
  530. /* Arguments: */
  531. /* ========== */
  532. /* > \param[in] SIDE */
  533. /* > \verbatim */
  534. /* > SIDE is CHARACTER*1 */
  535. /* > = 'R': compute right eigenvectors only; */
  536. /* > = 'L': compute left eigenvectors only; */
  537. /* > = 'B': compute both right and left eigenvectors. */
  538. /* > \endverbatim */
  539. /* > */
  540. /* > \param[in] EIGSRC */
  541. /* > \verbatim */
  542. /* > EIGSRC is CHARACTER*1 */
  543. /* > Specifies the source of eigenvalues supplied in (WR,WI): */
  544. /* > = 'Q': the eigenvalues were found using DHSEQR; thus, if */
  545. /* > H has zero subdiagonal elements, and so is */
  546. /* > block-triangular, then the j-th eigenvalue can be */
  547. /* > assumed to be an eigenvalue of the block containing */
  548. /* > the j-th row/column. This property allows DHSEIN to */
  549. /* > perform inverse iteration on just one diagonal block. */
  550. /* > = 'N': no assumptions are made on the correspondence */
  551. /* > between eigenvalues and diagonal blocks. In this */
  552. /* > case, DHSEIN must always perform inverse iteration */
  553. /* > using the whole matrix H. */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in] INITV */
  557. /* > \verbatim */
  558. /* > INITV is CHARACTER*1 */
  559. /* > = 'N': no initial vectors are supplied; */
  560. /* > = 'U': user-supplied initial vectors are stored in the arrays */
  561. /* > VL and/or VR. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in,out] SELECT */
  565. /* > \verbatim */
  566. /* > SELECT is LOGICAL array, dimension (N) */
  567. /* > Specifies the eigenvectors to be computed. To select the */
  568. /* > real eigenvector corresponding to a real eigenvalue WR(j), */
  569. /* > SELECT(j) must be set to .TRUE.. To select the complex */
  570. /* > eigenvector corresponding to a complex eigenvalue */
  571. /* > (WR(j),WI(j)), with complex conjugate (WR(j+1),WI(j+1)), */
  572. /* > either SELECT(j) or SELECT(j+1) or both must be set to */
  573. /* > .TRUE.; then on exit SELECT(j) is .TRUE. and SELECT(j+1) is */
  574. /* > .FALSE.. */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in] N */
  578. /* > \verbatim */
  579. /* > N is INTEGER */
  580. /* > The order of the matrix H. N >= 0. */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[in] H */
  584. /* > \verbatim */
  585. /* > H is DOUBLE PRECISION array, dimension (LDH,N) */
  586. /* > The upper Hessenberg matrix H. */
  587. /* > If a NaN is detected in H, the routine will return with INFO=-6. */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[in] LDH */
  591. /* > \verbatim */
  592. /* > LDH is INTEGER */
  593. /* > The leading dimension of the array H. LDH >= f2cmax(1,N). */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[in,out] WR */
  597. /* > \verbatim */
  598. /* > WR is DOUBLE PRECISION array, dimension (N) */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[in] WI */
  602. /* > \verbatim */
  603. /* > WI is DOUBLE PRECISION array, dimension (N) */
  604. /* > */
  605. /* > On entry, the real and imaginary parts of the eigenvalues of */
  606. /* > H; a complex conjugate pair of eigenvalues must be stored in */
  607. /* > consecutive elements of WR and WI. */
  608. /* > On exit, WR may have been altered since close eigenvalues */
  609. /* > are perturbed slightly in searching for independent */
  610. /* > eigenvectors. */
  611. /* > \endverbatim */
  612. /* > */
  613. /* > \param[in,out] VL */
  614. /* > \verbatim */
  615. /* > VL is DOUBLE PRECISION array, dimension (LDVL,MM) */
  616. /* > On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must */
  617. /* > contain starting vectors for the inverse iteration for the */
  618. /* > left eigenvectors; the starting vector for each eigenvector */
  619. /* > must be in the same column(s) in which the eigenvector will */
  620. /* > be stored. */
  621. /* > On exit, if SIDE = 'L' or 'B', the left eigenvectors */
  622. /* > specified by SELECT will be stored consecutively in the */
  623. /* > columns of VL, in the same order as their eigenvalues. A */
  624. /* > complex eigenvector corresponding to a complex eigenvalue is */
  625. /* > stored in two consecutive columns, the first holding the real */
  626. /* > part and the second the imaginary part. */
  627. /* > If SIDE = 'R', VL is not referenced. */
  628. /* > \endverbatim */
  629. /* > */
  630. /* > \param[in] LDVL */
  631. /* > \verbatim */
  632. /* > LDVL is INTEGER */
  633. /* > The leading dimension of the array VL. */
  634. /* > LDVL >= f2cmax(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise. */
  635. /* > \endverbatim */
  636. /* > */
  637. /* > \param[in,out] VR */
  638. /* > \verbatim */
  639. /* > VR is DOUBLE PRECISION array, dimension (LDVR,MM) */
  640. /* > On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must */
  641. /* > contain starting vectors for the inverse iteration for the */
  642. /* > right eigenvectors; the starting vector for each eigenvector */
  643. /* > must be in the same column(s) in which the eigenvector will */
  644. /* > be stored. */
  645. /* > On exit, if SIDE = 'R' or 'B', the right eigenvectors */
  646. /* > specified by SELECT will be stored consecutively in the */
  647. /* > columns of VR, in the same order as their eigenvalues. A */
  648. /* > complex eigenvector corresponding to a complex eigenvalue is */
  649. /* > stored in two consecutive columns, the first holding the real */
  650. /* > part and the second the imaginary part. */
  651. /* > If SIDE = 'L', VR is not referenced. */
  652. /* > \endverbatim */
  653. /* > */
  654. /* > \param[in] LDVR */
  655. /* > \verbatim */
  656. /* > LDVR is INTEGER */
  657. /* > The leading dimension of the array VR. */
  658. /* > LDVR >= f2cmax(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise. */
  659. /* > \endverbatim */
  660. /* > */
  661. /* > \param[in] MM */
  662. /* > \verbatim */
  663. /* > MM is INTEGER */
  664. /* > The number of columns in the arrays VL and/or VR. MM >= M. */
  665. /* > \endverbatim */
  666. /* > */
  667. /* > \param[out] M */
  668. /* > \verbatim */
  669. /* > M is INTEGER */
  670. /* > The number of columns in the arrays VL and/or VR required to */
  671. /* > store the eigenvectors; each selected real eigenvector */
  672. /* > occupies one column and each selected complex eigenvector */
  673. /* > occupies two columns. */
  674. /* > \endverbatim */
  675. /* > */
  676. /* > \param[out] WORK */
  677. /* > \verbatim */
  678. /* > WORK is DOUBLE PRECISION array, dimension ((N+2)*N) */
  679. /* > \endverbatim */
  680. /* > */
  681. /* > \param[out] IFAILL */
  682. /* > \verbatim */
  683. /* > IFAILL is INTEGER array, dimension (MM) */
  684. /* > If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left */
  685. /* > eigenvector in the i-th column of VL (corresponding to the */
  686. /* > eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the */
  687. /* > eigenvector converged satisfactorily. If the i-th and (i+1)th */
  688. /* > columns of VL hold a complex eigenvector, then IFAILL(i) and */
  689. /* > IFAILL(i+1) are set to the same value. */
  690. /* > If SIDE = 'R', IFAILL is not referenced. */
  691. /* > \endverbatim */
  692. /* > */
  693. /* > \param[out] IFAILR */
  694. /* > \verbatim */
  695. /* > IFAILR is INTEGER array, dimension (MM) */
  696. /* > If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right */
  697. /* > eigenvector in the i-th column of VR (corresponding to the */
  698. /* > eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the */
  699. /* > eigenvector converged satisfactorily. If the i-th and (i+1)th */
  700. /* > columns of VR hold a complex eigenvector, then IFAILR(i) and */
  701. /* > IFAILR(i+1) are set to the same value. */
  702. /* > If SIDE = 'L', IFAILR is not referenced. */
  703. /* > \endverbatim */
  704. /* > */
  705. /* > \param[out] INFO */
  706. /* > \verbatim */
  707. /* > INFO is INTEGER */
  708. /* > = 0: successful exit */
  709. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  710. /* > > 0: if INFO = i, i is the number of eigenvectors which */
  711. /* > failed to converge; see IFAILL and IFAILR for further */
  712. /* > details. */
  713. /* > \endverbatim */
  714. /* Authors: */
  715. /* ======== */
  716. /* > \author Univ. of Tennessee */
  717. /* > \author Univ. of California Berkeley */
  718. /* > \author Univ. of Colorado Denver */
  719. /* > \author NAG Ltd. */
  720. /* > \date December 2016 */
  721. /* > \ingroup doubleOTHERcomputational */
  722. /* > \par Further Details: */
  723. /* ===================== */
  724. /* > */
  725. /* > \verbatim */
  726. /* > */
  727. /* > Each eigenvector is normalized so that the element of largest */
  728. /* > magnitude has magnitude 1; here the magnitude of a complex number */
  729. /* > (x,y) is taken to be |x|+|y|. */
  730. /* > \endverbatim */
  731. /* > */
  732. /* ===================================================================== */
  733. /* Subroutine */ void dhsein_(char *side, char *eigsrc, char *initv, logical *
  734. select, integer *n, doublereal *h__, integer *ldh, doublereal *wr,
  735. doublereal *wi, doublereal *vl, integer *ldvl, doublereal *vr,
  736. integer *ldvr, integer *mm, integer *m, doublereal *work, integer *
  737. ifaill, integer *ifailr, integer *info)
  738. {
  739. /* System generated locals */
  740. integer h_dim1, h_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
  741. i__2;
  742. doublereal d__1, d__2;
  743. /* Local variables */
  744. logical pair;
  745. doublereal unfl;
  746. integer i__, k;
  747. extern logical lsame_(char *, char *);
  748. integer iinfo;
  749. logical leftv, bothv;
  750. doublereal hnorm;
  751. integer kl;
  752. extern doublereal dlamch_(char *);
  753. extern /* Subroutine */ void dlaein_(logical *, logical *, integer *,
  754. doublereal *, integer *, doublereal *, doublereal *, doublereal *,
  755. doublereal *, doublereal *, integer *, doublereal *, doublereal *
  756. , doublereal *, doublereal *, integer *);
  757. integer kr;
  758. extern doublereal dlanhs_(char *, integer *, doublereal *, integer *,
  759. doublereal *);
  760. extern logical disnan_(doublereal *);
  761. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  762. doublereal bignum;
  763. logical noinit;
  764. integer ldwork;
  765. logical rightv, fromqr;
  766. doublereal smlnum;
  767. integer kln, ksi;
  768. doublereal wki;
  769. integer ksr;
  770. doublereal ulp, wkr, eps3;
  771. /* -- LAPACK computational routine (version 3.7.0) -- */
  772. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  773. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  774. /* December 2016 */
  775. /* ===================================================================== */
  776. /* Decode and test the input parameters. */
  777. /* Parameter adjustments */
  778. --select;
  779. h_dim1 = *ldh;
  780. h_offset = 1 + h_dim1 * 1;
  781. h__ -= h_offset;
  782. --wr;
  783. --wi;
  784. vl_dim1 = *ldvl;
  785. vl_offset = 1 + vl_dim1 * 1;
  786. vl -= vl_offset;
  787. vr_dim1 = *ldvr;
  788. vr_offset = 1 + vr_dim1 * 1;
  789. vr -= vr_offset;
  790. --work;
  791. --ifaill;
  792. --ifailr;
  793. /* Function Body */
  794. bothv = lsame_(side, "B");
  795. rightv = lsame_(side, "R") || bothv;
  796. leftv = lsame_(side, "L") || bothv;
  797. fromqr = lsame_(eigsrc, "Q");
  798. noinit = lsame_(initv, "N");
  799. /* Set M to the number of columns required to store the selected */
  800. /* eigenvectors, and standardize the array SELECT. */
  801. *m = 0;
  802. pair = FALSE_;
  803. i__1 = *n;
  804. for (k = 1; k <= i__1; ++k) {
  805. if (pair) {
  806. pair = FALSE_;
  807. select[k] = FALSE_;
  808. } else {
  809. if (wi[k] == 0.) {
  810. if (select[k]) {
  811. ++(*m);
  812. }
  813. } else {
  814. pair = TRUE_;
  815. if (select[k] || select[k + 1]) {
  816. select[k] = TRUE_;
  817. *m += 2;
  818. }
  819. }
  820. }
  821. /* L10: */
  822. }
  823. *info = 0;
  824. if (! rightv && ! leftv) {
  825. *info = -1;
  826. } else if (! fromqr && ! lsame_(eigsrc, "N")) {
  827. *info = -2;
  828. } else if (! noinit && ! lsame_(initv, "U")) {
  829. *info = -3;
  830. } else if (*n < 0) {
  831. *info = -5;
  832. } else if (*ldh < f2cmax(1,*n)) {
  833. *info = -7;
  834. } else if (*ldvl < 1 || leftv && *ldvl < *n) {
  835. *info = -11;
  836. } else if (*ldvr < 1 || rightv && *ldvr < *n) {
  837. *info = -13;
  838. } else if (*mm < *m) {
  839. *info = -14;
  840. }
  841. if (*info != 0) {
  842. i__1 = -(*info);
  843. xerbla_("DHSEIN", &i__1, (ftnlen)6);
  844. return;
  845. }
  846. /* Quick return if possible. */
  847. if (*n == 0) {
  848. return;
  849. }
  850. /* Set machine-dependent constants. */
  851. unfl = dlamch_("Safe minimum");
  852. ulp = dlamch_("Precision");
  853. smlnum = unfl * (*n / ulp);
  854. bignum = (1. - ulp) / smlnum;
  855. ldwork = *n + 1;
  856. kl = 1;
  857. kln = 0;
  858. if (fromqr) {
  859. kr = 0;
  860. } else {
  861. kr = *n;
  862. }
  863. ksr = 1;
  864. i__1 = *n;
  865. for (k = 1; k <= i__1; ++k) {
  866. if (select[k]) {
  867. /* Compute eigenvector(s) corresponding to W(K). */
  868. if (fromqr) {
  869. /* If affiliation of eigenvalues is known, check whether */
  870. /* the matrix splits. */
  871. /* Determine KL and KR such that 1 <= KL <= K <= KR <= N */
  872. /* and H(KL,KL-1) and H(KR+1,KR) are zero (or KL = 1 or */
  873. /* KR = N). */
  874. /* Then inverse iteration can be performed with the */
  875. /* submatrix H(KL:N,KL:N) for a left eigenvector, and with */
  876. /* the submatrix H(1:KR,1:KR) for a right eigenvector. */
  877. i__2 = kl + 1;
  878. for (i__ = k; i__ >= i__2; --i__) {
  879. if (h__[i__ + (i__ - 1) * h_dim1] == 0.) {
  880. goto L30;
  881. }
  882. /* L20: */
  883. }
  884. L30:
  885. kl = i__;
  886. if (k > kr) {
  887. i__2 = *n - 1;
  888. for (i__ = k; i__ <= i__2; ++i__) {
  889. if (h__[i__ + 1 + i__ * h_dim1] == 0.) {
  890. goto L50;
  891. }
  892. /* L40: */
  893. }
  894. L50:
  895. kr = i__;
  896. }
  897. }
  898. if (kl != kln) {
  899. kln = kl;
  900. /* Compute infinity-norm of submatrix H(KL:KR,KL:KR) if it */
  901. /* has not ben computed before. */
  902. i__2 = kr - kl + 1;
  903. hnorm = dlanhs_("I", &i__2, &h__[kl + kl * h_dim1], ldh, &
  904. work[1]);
  905. if (disnan_(&hnorm)) {
  906. *info = -6;
  907. return;
  908. } else if (hnorm > 0.) {
  909. eps3 = hnorm * ulp;
  910. } else {
  911. eps3 = smlnum;
  912. }
  913. }
  914. /* Perturb eigenvalue if it is close to any previous */
  915. /* selected eigenvalues affiliated to the submatrix */
  916. /* H(KL:KR,KL:KR). Close roots are modified by EPS3. */
  917. wkr = wr[k];
  918. wki = wi[k];
  919. L60:
  920. i__2 = kl;
  921. for (i__ = k - 1; i__ >= i__2; --i__) {
  922. if (select[i__] && (d__1 = wr[i__] - wkr, abs(d__1)) + (d__2 =
  923. wi[i__] - wki, abs(d__2)) < eps3) {
  924. wkr += eps3;
  925. goto L60;
  926. }
  927. /* L70: */
  928. }
  929. wr[k] = wkr;
  930. pair = wki != 0.;
  931. if (pair) {
  932. ksi = ksr + 1;
  933. } else {
  934. ksi = ksr;
  935. }
  936. if (leftv) {
  937. /* Compute left eigenvector. */
  938. i__2 = *n - kl + 1;
  939. dlaein_(&c_false, &noinit, &i__2, &h__[kl + kl * h_dim1], ldh,
  940. &wkr, &wki, &vl[kl + ksr * vl_dim1], &vl[kl + ksi *
  941. vl_dim1], &work[1], &ldwork, &work[*n * *n + *n + 1],
  942. &eps3, &smlnum, &bignum, &iinfo);
  943. if (iinfo > 0) {
  944. if (pair) {
  945. *info += 2;
  946. } else {
  947. ++(*info);
  948. }
  949. ifaill[ksr] = k;
  950. ifaill[ksi] = k;
  951. } else {
  952. ifaill[ksr] = 0;
  953. ifaill[ksi] = 0;
  954. }
  955. i__2 = kl - 1;
  956. for (i__ = 1; i__ <= i__2; ++i__) {
  957. vl[i__ + ksr * vl_dim1] = 0.;
  958. /* L80: */
  959. }
  960. if (pair) {
  961. i__2 = kl - 1;
  962. for (i__ = 1; i__ <= i__2; ++i__) {
  963. vl[i__ + ksi * vl_dim1] = 0.;
  964. /* L90: */
  965. }
  966. }
  967. }
  968. if (rightv) {
  969. /* Compute right eigenvector. */
  970. dlaein_(&c_true, &noinit, &kr, &h__[h_offset], ldh, &wkr, &
  971. wki, &vr[ksr * vr_dim1 + 1], &vr[ksi * vr_dim1 + 1], &
  972. work[1], &ldwork, &work[*n * *n + *n + 1], &eps3, &
  973. smlnum, &bignum, &iinfo);
  974. if (iinfo > 0) {
  975. if (pair) {
  976. *info += 2;
  977. } else {
  978. ++(*info);
  979. }
  980. ifailr[ksr] = k;
  981. ifailr[ksi] = k;
  982. } else {
  983. ifailr[ksr] = 0;
  984. ifailr[ksi] = 0;
  985. }
  986. i__2 = *n;
  987. for (i__ = kr + 1; i__ <= i__2; ++i__) {
  988. vr[i__ + ksr * vr_dim1] = 0.;
  989. /* L100: */
  990. }
  991. if (pair) {
  992. i__2 = *n;
  993. for (i__ = kr + 1; i__ <= i__2; ++i__) {
  994. vr[i__ + ksi * vr_dim1] = 0.;
  995. /* L110: */
  996. }
  997. }
  998. }
  999. if (pair) {
  1000. ksr += 2;
  1001. } else {
  1002. ++ksr;
  1003. }
  1004. }
  1005. /* L120: */
  1006. }
  1007. return;
  1008. /* End of DHSEIN */
  1009. } /* dhsein_ */