|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722 |
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static real c_b36 = .5f;
-
- /* > \brief \b CLATPS solves a triangular system of equations with the matrix held in packed storage. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download CLATPS + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clatps.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clatps.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clatps.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE CLATPS( UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE, */
- /* CNORM, INFO ) */
-
- /* CHARACTER DIAG, NORMIN, TRANS, UPLO */
- /* INTEGER INFO, N */
- /* REAL SCALE */
- /* REAL CNORM( * ) */
- /* COMPLEX AP( * ), X( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > CLATPS solves one of the triangular systems */
- /* > */
- /* > A * x = s*b, A**T * x = s*b, or A**H * x = s*b, */
- /* > */
- /* > with scaling to prevent overflow, where A is an upper or lower */
- /* > triangular matrix stored in packed form. Here A**T denotes the */
- /* > transpose of A, A**H denotes the conjugate transpose of A, x and b */
- /* > are n-element vectors, and s is a scaling factor, usually less than */
- /* > or equal to 1, chosen so that the components of x will be less than */
- /* > the overflow threshold. If the unscaled problem will not cause */
- /* > overflow, the Level 2 BLAS routine CTPSV is called. If the matrix A */
- /* > is singular (A(j,j) = 0 for some j), then s is set to 0 and a */
- /* > non-trivial solution to A*x = 0 is returned. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] UPLO */
- /* > \verbatim */
- /* > UPLO is CHARACTER*1 */
- /* > Specifies whether the matrix A is upper or lower triangular. */
- /* > = 'U': Upper triangular */
- /* > = 'L': Lower triangular */
- /* > \endverbatim */
- /* > */
- /* > \param[in] TRANS */
- /* > \verbatim */
- /* > TRANS is CHARACTER*1 */
- /* > Specifies the operation applied to A. */
- /* > = 'N': Solve A * x = s*b (No transpose) */
- /* > = 'T': Solve A**T * x = s*b (Transpose) */
- /* > = 'C': Solve A**H * x = s*b (Conjugate transpose) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] DIAG */
- /* > \verbatim */
- /* > DIAG is CHARACTER*1 */
- /* > Specifies whether or not the matrix A is unit triangular. */
- /* > = 'N': Non-unit triangular */
- /* > = 'U': Unit triangular */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NORMIN */
- /* > \verbatim */
- /* > NORMIN is CHARACTER*1 */
- /* > Specifies whether CNORM has been set or not. */
- /* > = 'Y': CNORM contains the column norms on entry */
- /* > = 'N': CNORM is not set on entry. On exit, the norms will */
- /* > be computed and stored in CNORM. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix A. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] AP */
- /* > \verbatim */
- /* > AP is COMPLEX array, dimension (N*(N+1)/2) */
- /* > The upper or lower triangular matrix A, packed columnwise in */
- /* > a linear array. The j-th column of A is stored in the array */
- /* > AP as follows: */
- /* > if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
- /* > if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] X */
- /* > \verbatim */
- /* > X is COMPLEX array, dimension (N) */
- /* > On entry, the right hand side b of the triangular system. */
- /* > On exit, X is overwritten by the solution vector x. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] SCALE */
- /* > \verbatim */
- /* > SCALE is REAL */
- /* > The scaling factor s for the triangular system */
- /* > A * x = s*b, A**T * x = s*b, or A**H * x = s*b. */
- /* > If SCALE = 0, the matrix A is singular or badly scaled, and */
- /* > the vector x is an exact or approximate solution to A*x = 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] CNORM */
- /* > \verbatim */
- /* > CNORM is REAL array, dimension (N) */
- /* > */
- /* > If NORMIN = 'Y', CNORM is an input argument and CNORM(j) */
- /* > contains the norm of the off-diagonal part of the j-th column */
- /* > of A. If TRANS = 'N', CNORM(j) must be greater than or equal */
- /* > to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j) */
- /* > must be greater than or equal to the 1-norm. */
- /* > */
- /* > If NORMIN = 'N', CNORM is an output argument and CNORM(j) */
- /* > returns the 1-norm of the offdiagonal part of the j-th column */
- /* > of A. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -k, the k-th argument had an illegal value */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup complexOTHERauxiliary */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > A rough bound on x is computed; if that is less than overflow, CTPSV */
- /* > is called, otherwise, specific code is used which checks for possible */
- /* > overflow or divide-by-zero at every operation. */
- /* > */
- /* > A columnwise scheme is used for solving A*x = b. The basic algorithm */
- /* > if A is lower triangular is */
- /* > */
- /* > x[1:n] := b[1:n] */
- /* > for j = 1, ..., n */
- /* > x(j) := x(j) / A(j,j) */
- /* > x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j] */
- /* > end */
- /* > */
- /* > Define bounds on the components of x after j iterations of the loop: */
- /* > M(j) = bound on x[1:j] */
- /* > G(j) = bound on x[j+1:n] */
- /* > Initially, let M(0) = 0 and G(0) = f2cmax{x(i), i=1,...,n}. */
- /* > */
- /* > Then for iteration j+1 we have */
- /* > M(j+1) <= G(j) / | A(j+1,j+1) | */
- /* > G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] | */
- /* > <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | ) */
- /* > */
- /* > where CNORM(j+1) is greater than or equal to the infinity-norm of */
- /* > column j+1 of A, not counting the diagonal. Hence */
- /* > */
- /* > G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | ) */
- /* > 1<=i<=j */
- /* > and */
- /* > */
- /* > |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| ) */
- /* > 1<=i< j */
- /* > */
- /* > Since |x(j)| <= M(j), we use the Level 2 BLAS routine CTPSV if the */
- /* > reciprocal of the largest M(j), j=1,..,n, is larger than */
- /* > f2cmax(underflow, 1/overflow). */
- /* > */
- /* > The bound on x(j) is also used to determine when a step in the */
- /* > columnwise method can be performed without fear of overflow. If */
- /* > the computed bound is greater than a large constant, x is scaled to */
- /* > prevent overflow, but if the bound overflows, x is set to 0, x(j) to */
- /* > 1, and scale to 0, and a non-trivial solution to A*x = 0 is found. */
- /* > */
- /* > Similarly, a row-wise scheme is used to solve A**T *x = b or */
- /* > A**H *x = b. The basic algorithm for A upper triangular is */
- /* > */
- /* > for j = 1, ..., n */
- /* > x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j) */
- /* > end */
- /* > */
- /* > We simultaneously compute two bounds */
- /* > G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j */
- /* > M(j) = bound on x(i), 1<=i<=j */
- /* > */
- /* > The initial values are G(0) = 0, M(0) = f2cmax{b(i), i=1,..,n}, and we */
- /* > add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1. */
- /* > Then the bound on x(j) is */
- /* > */
- /* > M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) | */
- /* > */
- /* > <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| ) */
- /* > 1<=i<=j */
- /* > */
- /* > and we can safely call CTPSV if 1/M(n) and 1/G(n) are both greater */
- /* > than f2cmax(underflow, 1/overflow). */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void clatps_(char *uplo, char *trans, char *diag, char *
- normin, integer *n, complex *ap, complex *x, real *scale, real *cnorm,
- integer *info)
- {
- /* System generated locals */
- integer i__1, i__2, i__3, i__4, i__5;
- real r__1, r__2, r__3, r__4;
- complex q__1, q__2, q__3, q__4;
-
- /* Local variables */
- integer jinc, jlen;
- real xbnd;
- integer imax;
- real tmax;
- complex tjjs;
- real xmax, grow;
- integer i__, j;
- extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer
- *, complex *, integer *);
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
- real tscal;
- complex uscal;
- integer jlast;
- extern /* Complex */ VOID cdotu_(complex *, integer *, complex *, integer
- *, complex *, integer *);
- complex csumj;
- extern /* Subroutine */ void caxpy_(integer *, complex *, complex *,
- integer *, complex *, integer *);
- logical upper;
- extern /* Subroutine */ void ctpsv_(char *, char *, char *, integer *,
- complex *, complex *, integer *), slabad_(
- real *, real *);
- integer ip;
- real xj;
- extern integer icamax_(integer *, complex *, integer *);
- extern /* Complex */ VOID cladiv_(complex *, complex *, complex *);
- extern real slamch_(char *);
- extern /* Subroutine */ void csscal_(integer *, real *, complex *, integer
- *);
- extern int xerbla_(char *, integer *, ftnlen);
- real bignum;
- extern integer isamax_(integer *, real *, integer *);
- extern real scasum_(integer *, complex *, integer *);
- logical notran;
- integer jfirst;
- real smlnum;
- logical nounit;
- real rec, tjj;
-
-
- /* -- LAPACK auxiliary routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Parameter adjustments */
- --cnorm;
- --x;
- --ap;
-
- /* Function Body */
- *info = 0;
- upper = lsame_(uplo, "U");
- notran = lsame_(trans, "N");
- nounit = lsame_(diag, "N");
-
- /* Test the input parameters. */
-
- if (! upper && ! lsame_(uplo, "L")) {
- *info = -1;
- } else if (! notran && ! lsame_(trans, "T") && !
- lsame_(trans, "C")) {
- *info = -2;
- } else if (! nounit && ! lsame_(diag, "U")) {
- *info = -3;
- } else if (! lsame_(normin, "Y") && ! lsame_(normin,
- "N")) {
- *info = -4;
- } else if (*n < 0) {
- *info = -5;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("CLATPS", &i__1, (ftnlen)6);
- return;
- }
-
- /* Quick return if possible */
-
- if (*n == 0) {
- return;
- }
-
- /* Determine machine dependent parameters to control overflow. */
-
- smlnum = slamch_("Safe minimum");
- bignum = 1.f / smlnum;
- slabad_(&smlnum, &bignum);
- smlnum /= slamch_("Precision");
- bignum = 1.f / smlnum;
- *scale = 1.f;
-
- if (lsame_(normin, "N")) {
-
- /* Compute the 1-norm of each column, not including the diagonal. */
-
- if (upper) {
-
- /* A is upper triangular. */
-
- ip = 1;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j - 1;
- cnorm[j] = scasum_(&i__2, &ap[ip], &c__1);
- ip += j;
- /* L10: */
- }
- } else {
-
- /* A is lower triangular. */
-
- ip = 1;
- i__1 = *n - 1;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n - j;
- cnorm[j] = scasum_(&i__2, &ap[ip + 1], &c__1);
- ip = ip + *n - j + 1;
- /* L20: */
- }
- cnorm[*n] = 0.f;
- }
- }
-
- /* Scale the column norms by TSCAL if the maximum element in CNORM is */
- /* greater than BIGNUM/2. */
-
- imax = isamax_(n, &cnorm[1], &c__1);
- tmax = cnorm[imax];
- if (tmax <= bignum * .5f) {
- tscal = 1.f;
- } else {
- tscal = .5f / (smlnum * tmax);
- sscal_(n, &tscal, &cnorm[1], &c__1);
- }
-
- /* Compute a bound on the computed solution vector to see if the */
- /* Level 2 BLAS routine CTPSV can be used. */
-
- xmax = 0.f;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- /* Computing MAX */
- i__2 = j;
- r__3 = xmax, r__4 = (r__1 = x[i__2].r / 2.f, abs(r__1)) + (r__2 =
- r_imag(&x[j]) / 2.f, abs(r__2));
- xmax = f2cmax(r__3,r__4);
- /* L30: */
- }
- xbnd = xmax;
- if (notran) {
-
- /* Compute the growth in A * x = b. */
-
- if (upper) {
- jfirst = *n;
- jlast = 1;
- jinc = -1;
- } else {
- jfirst = 1;
- jlast = *n;
- jinc = 1;
- }
-
- if (tscal != 1.f) {
- grow = 0.f;
- goto L60;
- }
-
- if (nounit) {
-
- /* A is non-unit triangular. */
-
- /* Compute GROW = 1/G(j) and XBND = 1/M(j). */
- /* Initially, G(0) = f2cmax{x(i), i=1,...,n}. */
-
- grow = .5f / f2cmax(xbnd,smlnum);
- xbnd = grow;
- ip = jfirst * (jfirst + 1) / 2;
- jlen = *n;
- i__1 = jlast;
- i__2 = jinc;
- for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
-
- /* Exit the loop if the growth factor is too small. */
-
- if (grow <= smlnum) {
- goto L60;
- }
-
- i__3 = ip;
- tjjs.r = ap[i__3].r, tjjs.i = ap[i__3].i;
- tjj = (r__1 = tjjs.r, abs(r__1)) + (r__2 = r_imag(&tjjs), abs(
- r__2));
-
- if (tjj >= smlnum) {
-
- /* M(j) = G(j-1) / abs(A(j,j)) */
-
- /* Computing MIN */
- r__1 = xbnd, r__2 = f2cmin(1.f,tjj) * grow;
- xbnd = f2cmin(r__1,r__2);
- } else {
-
- /* M(j) could overflow, set XBND to 0. */
-
- xbnd = 0.f;
- }
-
- if (tjj + cnorm[j] >= smlnum) {
-
- /* G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) ) */
-
- grow *= tjj / (tjj + cnorm[j]);
- } else {
-
- /* G(j) could overflow, set GROW to 0. */
-
- grow = 0.f;
- }
- ip += jinc * jlen;
- --jlen;
- /* L40: */
- }
- grow = xbnd;
- } else {
-
- /* A is unit triangular. */
-
- /* Compute GROW = 1/G(j), where G(0) = f2cmax{x(i), i=1,...,n}. */
-
- /* Computing MIN */
- r__1 = 1.f, r__2 = .5f / f2cmax(xbnd,smlnum);
- grow = f2cmin(r__1,r__2);
- i__2 = jlast;
- i__1 = jinc;
- for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
-
- /* Exit the loop if the growth factor is too small. */
-
- if (grow <= smlnum) {
- goto L60;
- }
-
- /* G(j) = G(j-1)*( 1 + CNORM(j) ) */
-
- grow *= 1.f / (cnorm[j] + 1.f);
- /* L50: */
- }
- }
- L60:
-
- ;
- } else {
-
- /* Compute the growth in A**T * x = b or A**H * x = b. */
-
- if (upper) {
- jfirst = 1;
- jlast = *n;
- jinc = 1;
- } else {
- jfirst = *n;
- jlast = 1;
- jinc = -1;
- }
-
- if (tscal != 1.f) {
- grow = 0.f;
- goto L90;
- }
-
- if (nounit) {
-
- /* A is non-unit triangular. */
-
- /* Compute GROW = 1/G(j) and XBND = 1/M(j). */
- /* Initially, M(0) = f2cmax{x(i), i=1,...,n}. */
-
- grow = .5f / f2cmax(xbnd,smlnum);
- xbnd = grow;
- ip = jfirst * (jfirst + 1) / 2;
- jlen = 1;
- i__1 = jlast;
- i__2 = jinc;
- for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
-
- /* Exit the loop if the growth factor is too small. */
-
- if (grow <= smlnum) {
- goto L90;
- }
-
- /* G(j) = f2cmax( G(j-1), M(j-1)*( 1 + CNORM(j) ) ) */
-
- xj = cnorm[j] + 1.f;
- /* Computing MIN */
- r__1 = grow, r__2 = xbnd / xj;
- grow = f2cmin(r__1,r__2);
-
- i__3 = ip;
- tjjs.r = ap[i__3].r, tjjs.i = ap[i__3].i;
- tjj = (r__1 = tjjs.r, abs(r__1)) + (r__2 = r_imag(&tjjs), abs(
- r__2));
-
- if (tjj >= smlnum) {
-
- /* M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j)) */
-
- if (xj > tjj) {
- xbnd *= tjj / xj;
- }
- } else {
-
- /* M(j) could overflow, set XBND to 0. */
-
- xbnd = 0.f;
- }
- ++jlen;
- ip += jinc * jlen;
- /* L70: */
- }
- grow = f2cmin(grow,xbnd);
- } else {
-
- /* A is unit triangular. */
-
- /* Compute GROW = 1/G(j), where G(0) = f2cmax{x(i), i=1,...,n}. */
-
- /* Computing MIN */
- r__1 = 1.f, r__2 = .5f / f2cmax(xbnd,smlnum);
- grow = f2cmin(r__1,r__2);
- i__2 = jlast;
- i__1 = jinc;
- for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
-
- /* Exit the loop if the growth factor is too small. */
-
- if (grow <= smlnum) {
- goto L90;
- }
-
- /* G(j) = ( 1 + CNORM(j) )*G(j-1) */
-
- xj = cnorm[j] + 1.f;
- grow /= xj;
- /* L80: */
- }
- }
- L90:
- ;
- }
-
- if (grow * tscal > smlnum) {
-
- /* Use the Level 2 BLAS solve if the reciprocal of the bound on */
- /* elements of X is not too small. */
-
- ctpsv_(uplo, trans, diag, n, &ap[1], &x[1], &c__1);
- } else {
-
- /* Use a Level 1 BLAS solve, scaling intermediate results. */
-
- if (xmax > bignum * .5f) {
-
- /* Scale X so that its components are less than or equal to */
- /* BIGNUM in absolute value. */
-
- *scale = bignum * .5f / xmax;
- csscal_(n, scale, &x[1], &c__1);
- xmax = bignum;
- } else {
- xmax *= 2.f;
- }
-
- if (notran) {
-
- /* Solve A * x = b */
-
- ip = jfirst * (jfirst + 1) / 2;
- i__1 = jlast;
- i__2 = jinc;
- for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
-
- /* Compute x(j) = b(j) / A(j,j), scaling x if necessary. */
-
- i__3 = j;
- xj = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[j]),
- abs(r__2));
- if (nounit) {
- i__3 = ip;
- q__1.r = tscal * ap[i__3].r, q__1.i = tscal * ap[i__3].i;
- tjjs.r = q__1.r, tjjs.i = q__1.i;
- } else {
- tjjs.r = tscal, tjjs.i = 0.f;
- if (tscal == 1.f) {
- goto L105;
- }
- }
- tjj = (r__1 = tjjs.r, abs(r__1)) + (r__2 = r_imag(&tjjs), abs(
- r__2));
- if (tjj > smlnum) {
-
- /* abs(A(j,j)) > SMLNUM: */
-
- if (tjj < 1.f) {
- if (xj > tjj * bignum) {
-
- /* Scale x by 1/b(j). */
-
- rec = 1.f / xj;
- csscal_(n, &rec, &x[1], &c__1);
- *scale *= rec;
- xmax *= rec;
- }
- }
- i__3 = j;
- cladiv_(&q__1, &x[j], &tjjs);
- x[i__3].r = q__1.r, x[i__3].i = q__1.i;
- i__3 = j;
- xj = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[j])
- , abs(r__2));
- } else if (tjj > 0.f) {
-
- /* 0 < abs(A(j,j)) <= SMLNUM: */
-
- if (xj > tjj * bignum) {
-
- /* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM */
- /* to avoid overflow when dividing by A(j,j). */
-
- rec = tjj * bignum / xj;
- if (cnorm[j] > 1.f) {
-
- /* Scale by 1/CNORM(j) to avoid overflow when */
- /* multiplying x(j) times column j. */
-
- rec /= cnorm[j];
- }
- csscal_(n, &rec, &x[1], &c__1);
- *scale *= rec;
- xmax *= rec;
- }
- i__3 = j;
- cladiv_(&q__1, &x[j], &tjjs);
- x[i__3].r = q__1.r, x[i__3].i = q__1.i;
- i__3 = j;
- xj = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[j])
- , abs(r__2));
- } else {
-
- /* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and */
- /* scale = 0, and compute a solution to A*x = 0. */
-
- i__3 = *n;
- for (i__ = 1; i__ <= i__3; ++i__) {
- i__4 = i__;
- x[i__4].r = 0.f, x[i__4].i = 0.f;
- /* L100: */
- }
- i__3 = j;
- x[i__3].r = 1.f, x[i__3].i = 0.f;
- xj = 1.f;
- *scale = 0.f;
- xmax = 0.f;
- }
- L105:
-
- /* Scale x if necessary to avoid overflow when adding a */
- /* multiple of column j of A. */
-
- if (xj > 1.f) {
- rec = 1.f / xj;
- if (cnorm[j] > (bignum - xmax) * rec) {
-
- /* Scale x by 1/(2*abs(x(j))). */
-
- rec *= .5f;
- csscal_(n, &rec, &x[1], &c__1);
- *scale *= rec;
- }
- } else if (xj * cnorm[j] > bignum - xmax) {
-
- /* Scale x by 1/2. */
-
- csscal_(n, &c_b36, &x[1], &c__1);
- *scale *= .5f;
- }
-
- if (upper) {
- if (j > 1) {
-
- /* Compute the update */
- /* x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j) */
-
- i__3 = j - 1;
- i__4 = j;
- q__2.r = -x[i__4].r, q__2.i = -x[i__4].i;
- q__1.r = tscal * q__2.r, q__1.i = tscal * q__2.i;
- caxpy_(&i__3, &q__1, &ap[ip - j + 1], &c__1, &x[1], &
- c__1);
- i__3 = j - 1;
- i__ = icamax_(&i__3, &x[1], &c__1);
- i__3 = i__;
- xmax = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(
- &x[i__]), abs(r__2));
- }
- ip -= j;
- } else {
- if (j < *n) {
-
- /* Compute the update */
- /* x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j) */
-
- i__3 = *n - j;
- i__4 = j;
- q__2.r = -x[i__4].r, q__2.i = -x[i__4].i;
- q__1.r = tscal * q__2.r, q__1.i = tscal * q__2.i;
- caxpy_(&i__3, &q__1, &ap[ip + 1], &c__1, &x[j + 1], &
- c__1);
- i__3 = *n - j;
- i__ = j + icamax_(&i__3, &x[j + 1], &c__1);
- i__3 = i__;
- xmax = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(
- &x[i__]), abs(r__2));
- }
- ip = ip + *n - j + 1;
- }
- /* L110: */
- }
-
- } else if (lsame_(trans, "T")) {
-
- /* Solve A**T * x = b */
-
- ip = jfirst * (jfirst + 1) / 2;
- jlen = 1;
- i__2 = jlast;
- i__1 = jinc;
- for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
-
- /* Compute x(j) = b(j) - sum A(k,j)*x(k). */
- /* k<>j */
-
- i__3 = j;
- xj = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[j]),
- abs(r__2));
- uscal.r = tscal, uscal.i = 0.f;
- rec = 1.f / f2cmax(xmax,1.f);
- if (cnorm[j] > (bignum - xj) * rec) {
-
- /* If x(j) could overflow, scale x by 1/(2*XMAX). */
-
- rec *= .5f;
- if (nounit) {
- i__3 = ip;
- q__1.r = tscal * ap[i__3].r, q__1.i = tscal * ap[i__3]
- .i;
- tjjs.r = q__1.r, tjjs.i = q__1.i;
- } else {
- tjjs.r = tscal, tjjs.i = 0.f;
- }
- tjj = (r__1 = tjjs.r, abs(r__1)) + (r__2 = r_imag(&tjjs),
- abs(r__2));
- if (tjj > 1.f) {
-
- /* Divide by A(j,j) when scaling x if A(j,j) > 1. */
-
- /* Computing MIN */
- r__1 = 1.f, r__2 = rec * tjj;
- rec = f2cmin(r__1,r__2);
- cladiv_(&q__1, &uscal, &tjjs);
- uscal.r = q__1.r, uscal.i = q__1.i;
- }
- if (rec < 1.f) {
- csscal_(n, &rec, &x[1], &c__1);
- *scale *= rec;
- xmax *= rec;
- }
- }
-
- csumj.r = 0.f, csumj.i = 0.f;
- if (uscal.r == 1.f && uscal.i == 0.f) {
-
- /* If the scaling needed for A in the dot product is 1, */
- /* call CDOTU to perform the dot product. */
-
- if (upper) {
- i__3 = j - 1;
- cdotu_(&q__1, &i__3, &ap[ip - j + 1], &c__1, &x[1], &
- c__1);
- csumj.r = q__1.r, csumj.i = q__1.i;
- } else if (j < *n) {
- i__3 = *n - j;
- cdotu_(&q__1, &i__3, &ap[ip + 1], &c__1, &x[j + 1], &
- c__1);
- csumj.r = q__1.r, csumj.i = q__1.i;
- }
- } else {
-
- /* Otherwise, use in-line code for the dot product. */
-
- if (upper) {
- i__3 = j - 1;
- for (i__ = 1; i__ <= i__3; ++i__) {
- i__4 = ip - j + i__;
- q__3.r = ap[i__4].r * uscal.r - ap[i__4].i *
- uscal.i, q__3.i = ap[i__4].r * uscal.i +
- ap[i__4].i * uscal.r;
- i__5 = i__;
- q__2.r = q__3.r * x[i__5].r - q__3.i * x[i__5].i,
- q__2.i = q__3.r * x[i__5].i + q__3.i * x[
- i__5].r;
- q__1.r = csumj.r + q__2.r, q__1.i = csumj.i +
- q__2.i;
- csumj.r = q__1.r, csumj.i = q__1.i;
- /* L120: */
- }
- } else if (j < *n) {
- i__3 = *n - j;
- for (i__ = 1; i__ <= i__3; ++i__) {
- i__4 = ip + i__;
- q__3.r = ap[i__4].r * uscal.r - ap[i__4].i *
- uscal.i, q__3.i = ap[i__4].r * uscal.i +
- ap[i__4].i * uscal.r;
- i__5 = j + i__;
- q__2.r = q__3.r * x[i__5].r - q__3.i * x[i__5].i,
- q__2.i = q__3.r * x[i__5].i + q__3.i * x[
- i__5].r;
- q__1.r = csumj.r + q__2.r, q__1.i = csumj.i +
- q__2.i;
- csumj.r = q__1.r, csumj.i = q__1.i;
- /* L130: */
- }
- }
- }
-
- q__1.r = tscal, q__1.i = 0.f;
- if (uscal.r == q__1.r && uscal.i == q__1.i) {
-
- /* Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j) */
- /* was not used to scale the dotproduct. */
-
- i__3 = j;
- i__4 = j;
- q__1.r = x[i__4].r - csumj.r, q__1.i = x[i__4].i -
- csumj.i;
- x[i__3].r = q__1.r, x[i__3].i = q__1.i;
- i__3 = j;
- xj = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[j])
- , abs(r__2));
- if (nounit) {
-
- /* Compute x(j) = x(j) / A(j,j), scaling if necessary. */
-
- i__3 = ip;
- q__1.r = tscal * ap[i__3].r, q__1.i = tscal * ap[i__3]
- .i;
- tjjs.r = q__1.r, tjjs.i = q__1.i;
- } else {
- tjjs.r = tscal, tjjs.i = 0.f;
- if (tscal == 1.f) {
- goto L145;
- }
- }
- tjj = (r__1 = tjjs.r, abs(r__1)) + (r__2 = r_imag(&tjjs),
- abs(r__2));
- if (tjj > smlnum) {
-
- /* abs(A(j,j)) > SMLNUM: */
-
- if (tjj < 1.f) {
- if (xj > tjj * bignum) {
-
- /* Scale X by 1/abs(x(j)). */
-
- rec = 1.f / xj;
- csscal_(n, &rec, &x[1], &c__1);
- *scale *= rec;
- xmax *= rec;
- }
- }
- i__3 = j;
- cladiv_(&q__1, &x[j], &tjjs);
- x[i__3].r = q__1.r, x[i__3].i = q__1.i;
- } else if (tjj > 0.f) {
-
- /* 0 < abs(A(j,j)) <= SMLNUM: */
-
- if (xj > tjj * bignum) {
-
- /* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM. */
-
- rec = tjj * bignum / xj;
- csscal_(n, &rec, &x[1], &c__1);
- *scale *= rec;
- xmax *= rec;
- }
- i__3 = j;
- cladiv_(&q__1, &x[j], &tjjs);
- x[i__3].r = q__1.r, x[i__3].i = q__1.i;
- } else {
-
- /* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and */
- /* scale = 0 and compute a solution to A**T *x = 0. */
-
- i__3 = *n;
- for (i__ = 1; i__ <= i__3; ++i__) {
- i__4 = i__;
- x[i__4].r = 0.f, x[i__4].i = 0.f;
- /* L140: */
- }
- i__3 = j;
- x[i__3].r = 1.f, x[i__3].i = 0.f;
- *scale = 0.f;
- xmax = 0.f;
- }
- L145:
- ;
- } else {
-
- /* Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot */
- /* product has already been divided by 1/A(j,j). */
-
- i__3 = j;
- cladiv_(&q__2, &x[j], &tjjs);
- q__1.r = q__2.r - csumj.r, q__1.i = q__2.i - csumj.i;
- x[i__3].r = q__1.r, x[i__3].i = q__1.i;
- }
- /* Computing MAX */
- i__3 = j;
- r__3 = xmax, r__4 = (r__1 = x[i__3].r, abs(r__1)) + (r__2 =
- r_imag(&x[j]), abs(r__2));
- xmax = f2cmax(r__3,r__4);
- ++jlen;
- ip += jinc * jlen;
- /* L150: */
- }
-
- } else {
-
- /* Solve A**H * x = b */
-
- ip = jfirst * (jfirst + 1) / 2;
- jlen = 1;
- i__1 = jlast;
- i__2 = jinc;
- for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
-
- /* Compute x(j) = b(j) - sum A(k,j)*x(k). */
- /* k<>j */
-
- i__3 = j;
- xj = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[j]),
- abs(r__2));
- uscal.r = tscal, uscal.i = 0.f;
- rec = 1.f / f2cmax(xmax,1.f);
- if (cnorm[j] > (bignum - xj) * rec) {
-
- /* If x(j) could overflow, scale x by 1/(2*XMAX). */
-
- rec *= .5f;
- if (nounit) {
- r_cnjg(&q__2, &ap[ip]);
- q__1.r = tscal * q__2.r, q__1.i = tscal * q__2.i;
- tjjs.r = q__1.r, tjjs.i = q__1.i;
- } else {
- tjjs.r = tscal, tjjs.i = 0.f;
- }
- tjj = (r__1 = tjjs.r, abs(r__1)) + (r__2 = r_imag(&tjjs),
- abs(r__2));
- if (tjj > 1.f) {
-
- /* Divide by A(j,j) when scaling x if A(j,j) > 1. */
-
- /* Computing MIN */
- r__1 = 1.f, r__2 = rec * tjj;
- rec = f2cmin(r__1,r__2);
- cladiv_(&q__1, &uscal, &tjjs);
- uscal.r = q__1.r, uscal.i = q__1.i;
- }
- if (rec < 1.f) {
- csscal_(n, &rec, &x[1], &c__1);
- *scale *= rec;
- xmax *= rec;
- }
- }
-
- csumj.r = 0.f, csumj.i = 0.f;
- if (uscal.r == 1.f && uscal.i == 0.f) {
-
- /* If the scaling needed for A in the dot product is 1, */
- /* call CDOTC to perform the dot product. */
-
- if (upper) {
- i__3 = j - 1;
- cdotc_(&q__1, &i__3, &ap[ip - j + 1], &c__1, &x[1], &
- c__1);
- csumj.r = q__1.r, csumj.i = q__1.i;
- } else if (j < *n) {
- i__3 = *n - j;
- cdotc_(&q__1, &i__3, &ap[ip + 1], &c__1, &x[j + 1], &
- c__1);
- csumj.r = q__1.r, csumj.i = q__1.i;
- }
- } else {
-
- /* Otherwise, use in-line code for the dot product. */
-
- if (upper) {
- i__3 = j - 1;
- for (i__ = 1; i__ <= i__3; ++i__) {
- r_cnjg(&q__4, &ap[ip - j + i__]);
- q__3.r = q__4.r * uscal.r - q__4.i * uscal.i,
- q__3.i = q__4.r * uscal.i + q__4.i *
- uscal.r;
- i__4 = i__;
- q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i,
- q__2.i = q__3.r * x[i__4].i + q__3.i * x[
- i__4].r;
- q__1.r = csumj.r + q__2.r, q__1.i = csumj.i +
- q__2.i;
- csumj.r = q__1.r, csumj.i = q__1.i;
- /* L160: */
- }
- } else if (j < *n) {
- i__3 = *n - j;
- for (i__ = 1; i__ <= i__3; ++i__) {
- r_cnjg(&q__4, &ap[ip + i__]);
- q__3.r = q__4.r * uscal.r - q__4.i * uscal.i,
- q__3.i = q__4.r * uscal.i + q__4.i *
- uscal.r;
- i__4 = j + i__;
- q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i,
- q__2.i = q__3.r * x[i__4].i + q__3.i * x[
- i__4].r;
- q__1.r = csumj.r + q__2.r, q__1.i = csumj.i +
- q__2.i;
- csumj.r = q__1.r, csumj.i = q__1.i;
- /* L170: */
- }
- }
- }
-
- q__1.r = tscal, q__1.i = 0.f;
- if (uscal.r == q__1.r && uscal.i == q__1.i) {
-
- /* Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j) */
- /* was not used to scale the dotproduct. */
-
- i__3 = j;
- i__4 = j;
- q__1.r = x[i__4].r - csumj.r, q__1.i = x[i__4].i -
- csumj.i;
- x[i__3].r = q__1.r, x[i__3].i = q__1.i;
- i__3 = j;
- xj = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[j])
- , abs(r__2));
- if (nounit) {
-
- /* Compute x(j) = x(j) / A(j,j), scaling if necessary. */
-
- r_cnjg(&q__2, &ap[ip]);
- q__1.r = tscal * q__2.r, q__1.i = tscal * q__2.i;
- tjjs.r = q__1.r, tjjs.i = q__1.i;
- } else {
- tjjs.r = tscal, tjjs.i = 0.f;
- if (tscal == 1.f) {
- goto L185;
- }
- }
- tjj = (r__1 = tjjs.r, abs(r__1)) + (r__2 = r_imag(&tjjs),
- abs(r__2));
- if (tjj > smlnum) {
-
- /* abs(A(j,j)) > SMLNUM: */
-
- if (tjj < 1.f) {
- if (xj > tjj * bignum) {
-
- /* Scale X by 1/abs(x(j)). */
-
- rec = 1.f / xj;
- csscal_(n, &rec, &x[1], &c__1);
- *scale *= rec;
- xmax *= rec;
- }
- }
- i__3 = j;
- cladiv_(&q__1, &x[j], &tjjs);
- x[i__3].r = q__1.r, x[i__3].i = q__1.i;
- } else if (tjj > 0.f) {
-
- /* 0 < abs(A(j,j)) <= SMLNUM: */
-
- if (xj > tjj * bignum) {
-
- /* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM. */
-
- rec = tjj * bignum / xj;
- csscal_(n, &rec, &x[1], &c__1);
- *scale *= rec;
- xmax *= rec;
- }
- i__3 = j;
- cladiv_(&q__1, &x[j], &tjjs);
- x[i__3].r = q__1.r, x[i__3].i = q__1.i;
- } else {
-
- /* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and */
- /* scale = 0 and compute a solution to A**H *x = 0. */
-
- i__3 = *n;
- for (i__ = 1; i__ <= i__3; ++i__) {
- i__4 = i__;
- x[i__4].r = 0.f, x[i__4].i = 0.f;
- /* L180: */
- }
- i__3 = j;
- x[i__3].r = 1.f, x[i__3].i = 0.f;
- *scale = 0.f;
- xmax = 0.f;
- }
- L185:
- ;
- } else {
-
- /* Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot */
- /* product has already been divided by 1/A(j,j). */
-
- i__3 = j;
- cladiv_(&q__2, &x[j], &tjjs);
- q__1.r = q__2.r - csumj.r, q__1.i = q__2.i - csumj.i;
- x[i__3].r = q__1.r, x[i__3].i = q__1.i;
- }
- /* Computing MAX */
- i__3 = j;
- r__3 = xmax, r__4 = (r__1 = x[i__3].r, abs(r__1)) + (r__2 =
- r_imag(&x[j]), abs(r__2));
- xmax = f2cmax(r__3,r__4);
- ++jlen;
- ip += jinc * jlen;
- /* L190: */
- }
- }
- *scale /= tscal;
- }
-
- /* Scale the column norms by 1/TSCAL for return. */
-
- if (tscal != 1.f) {
- r__1 = 1.f / tscal;
- sscal_(n, &r__1, &cnorm[1], &c__1);
- }
-
- return;
-
- /* End of CLATPS */
-
- } /* clatps_ */
-
|