|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718 |
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static complex c_b1 = {1.f,0.f};
- static integer c__1 = 1;
-
- /* > \brief \b CLASYF_RK computes a partial factorization of a complex symmetric indefinite matrix using bound
- ed Bunch-Kaufman (rook) diagonal pivoting method. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download CLASYF_RK + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clasyf_
- rk.f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clasyf_
- rk.f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clasyf_
- rk.f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE CLASYF_RK( UPLO, N, NB, KB, A, LDA, E, IPIV, W, LDW, */
- /* INFO ) */
-
- /* CHARACTER UPLO */
- /* INTEGER INFO, KB, LDA, LDW, N, NB */
- /* INTEGER IPIV( * ) */
- /* COMPLEX A( LDA, * ), E( * ), W( LDW, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > CLASYF_RK computes a partial factorization of a complex symmetric */
- /* > matrix A using the bounded Bunch-Kaufman (rook) diagonal */
- /* > pivoting method. The partial factorization has the form: */
- /* > */
- /* > A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: */
- /* > ( 0 U22 ) ( 0 D ) ( U12**T U22**T ) */
- /* > */
- /* > A = ( L11 0 ) ( D 0 ) ( L11**T L21**T ) if UPLO = 'L', */
- /* > ( L21 I ) ( 0 A22 ) ( 0 I ) */
- /* > */
- /* > where the order of D is at most NB. The actual order is returned in */
- /* > the argument KB, and is either NB or NB-1, or N if N <= NB. */
- /* > */
- /* > CLASYF_RK is an auxiliary routine called by CSYTRF_RK. It uses */
- /* > blocked code (calling Level 3 BLAS) to update the submatrix */
- /* > A11 (if UPLO = 'U') or A22 (if UPLO = 'L'). */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] UPLO */
- /* > \verbatim */
- /* > UPLO is CHARACTER*1 */
- /* > Specifies whether the upper or lower triangular part of the */
- /* > symmetric matrix A is stored: */
- /* > = 'U': Upper triangular */
- /* > = 'L': Lower triangular */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix A. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NB */
- /* > \verbatim */
- /* > NB is INTEGER */
- /* > The maximum number of columns of the matrix A that should be */
- /* > factored. NB should be at least 2 to allow for 2-by-2 pivot */
- /* > blocks. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] KB */
- /* > \verbatim */
- /* > KB is INTEGER */
- /* > The number of columns of A that were actually factored. */
- /* > KB is either NB-1 or NB, or N if N <= NB. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is COMPLEX array, dimension (LDA,N) */
- /* > On entry, the symmetric matrix A. */
- /* > If UPLO = 'U': the leading N-by-N upper triangular part */
- /* > of A contains the upper triangular part of the matrix A, */
- /* > and the strictly lower triangular part of A is not */
- /* > referenced. */
- /* > */
- /* > If UPLO = 'L': the leading N-by-N lower triangular part */
- /* > of A contains the lower triangular part of the matrix A, */
- /* > and the strictly upper triangular part of A is not */
- /* > referenced. */
- /* > */
- /* > On exit, contains: */
- /* > a) ONLY diagonal elements of the symmetric block diagonal */
- /* > matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); */
- /* > (superdiagonal (or subdiagonal) elements of D */
- /* > are stored on exit in array E), and */
- /* > b) If UPLO = 'U': factor U in the superdiagonal part of A. */
- /* > If UPLO = 'L': factor L in the subdiagonal part of A. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] E */
- /* > \verbatim */
- /* > E is COMPLEX array, dimension (N) */
- /* > On exit, contains the superdiagonal (or subdiagonal) */
- /* > elements of the symmetric block diagonal matrix D */
- /* > with 1-by-1 or 2-by-2 diagonal blocks, where */
- /* > If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0; */
- /* > If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0. */
- /* > */
- /* > NOTE: For 1-by-1 diagonal block D(k), where */
- /* > 1 <= k <= N, the element E(k) is set to 0 in both */
- /* > UPLO = 'U' or UPLO = 'L' cases. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IPIV */
- /* > \verbatim */
- /* > IPIV is INTEGER array, dimension (N) */
- /* > IPIV describes the permutation matrix P in the factorization */
- /* > of matrix A as follows. The absolute value of IPIV(k) */
- /* > represents the index of row and column that were */
- /* > interchanged with the k-th row and column. The value of UPLO */
- /* > describes the order in which the interchanges were applied. */
- /* > Also, the sign of IPIV represents the block structure of */
- /* > the symmetric block diagonal matrix D with 1-by-1 or 2-by-2 */
- /* > diagonal blocks which correspond to 1 or 2 interchanges */
- /* > at each factorization step. */
- /* > */
- /* > If UPLO = 'U', */
- /* > ( in factorization order, k decreases from N to 1 ): */
- /* > a) A single positive entry IPIV(k) > 0 means: */
- /* > D(k,k) is a 1-by-1 diagonal block. */
- /* > If IPIV(k) != k, rows and columns k and IPIV(k) were */
- /* > interchanged in the submatrix A(1:N,N-KB+1:N); */
- /* > If IPIV(k) = k, no interchange occurred. */
- /* > */
- /* > */
- /* > b) A pair of consecutive negative entries */
- /* > IPIV(k) < 0 and IPIV(k-1) < 0 means: */
- /* > D(k-1:k,k-1:k) is a 2-by-2 diagonal block. */
- /* > (NOTE: negative entries in IPIV appear ONLY in pairs). */
- /* > 1) If -IPIV(k) != k, rows and columns */
- /* > k and -IPIV(k) were interchanged */
- /* > in the matrix A(1:N,N-KB+1:N). */
- /* > If -IPIV(k) = k, no interchange occurred. */
- /* > 2) If -IPIV(k-1) != k-1, rows and columns */
- /* > k-1 and -IPIV(k-1) were interchanged */
- /* > in the submatrix A(1:N,N-KB+1:N). */
- /* > If -IPIV(k-1) = k-1, no interchange occurred. */
- /* > */
- /* > c) In both cases a) and b) is always ABS( IPIV(k) ) <= k. */
- /* > */
- /* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
- /* > */
- /* > If UPLO = 'L', */
- /* > ( in factorization order, k increases from 1 to N ): */
- /* > a) A single positive entry IPIV(k) > 0 means: */
- /* > D(k,k) is a 1-by-1 diagonal block. */
- /* > If IPIV(k) != k, rows and columns k and IPIV(k) were */
- /* > interchanged in the submatrix A(1:N,1:KB). */
- /* > If IPIV(k) = k, no interchange occurred. */
- /* > */
- /* > b) A pair of consecutive negative entries */
- /* > IPIV(k) < 0 and IPIV(k+1) < 0 means: */
- /* > D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
- /* > (NOTE: negative entries in IPIV appear ONLY in pairs). */
- /* > 1) If -IPIV(k) != k, rows and columns */
- /* > k and -IPIV(k) were interchanged */
- /* > in the submatrix A(1:N,1:KB). */
- /* > If -IPIV(k) = k, no interchange occurred. */
- /* > 2) If -IPIV(k+1) != k+1, rows and columns */
- /* > k-1 and -IPIV(k-1) were interchanged */
- /* > in the submatrix A(1:N,1:KB). */
- /* > If -IPIV(k+1) = k+1, no interchange occurred. */
- /* > */
- /* > c) In both cases a) and b) is always ABS( IPIV(k) ) >= k. */
- /* > */
- /* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] W */
- /* > \verbatim */
- /* > W is COMPLEX array, dimension (LDW,NB) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDW */
- /* > \verbatim */
- /* > LDW is INTEGER */
- /* > The leading dimension of the array W. LDW >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > */
- /* > < 0: If INFO = -k, the k-th argument had an illegal value */
- /* > */
- /* > > 0: If INFO = k, the matrix A is singular, because: */
- /* > If UPLO = 'U': column k in the upper */
- /* > triangular part of A contains all zeros. */
- /* > If UPLO = 'L': column k in the lower */
- /* > triangular part of A contains all zeros. */
- /* > */
- /* > Therefore D(k,k) is exactly zero, and superdiagonal */
- /* > elements of column k of U (or subdiagonal elements of */
- /* > column k of L ) are all zeros. The factorization has */
- /* > been completed, but the block diagonal matrix D is */
- /* > exactly singular, and division by zero will occur if */
- /* > it is used to solve a system of equations. */
- /* > */
- /* > NOTE: INFO only stores the first occurrence of */
- /* > a singularity, any subsequent occurrence of singularity */
- /* > is not stored in INFO even though the factorization */
- /* > always completes. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup complexSYcomputational */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > December 2016, Igor Kozachenko, */
- /* > Computer Science Division, */
- /* > University of California, Berkeley */
- /* > */
- /* > September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
- /* > School of Mathematics, */
- /* > University of Manchester */
- /* > */
- /* > \endverbatim */
-
- /* ===================================================================== */
- /* Subroutine */ void clasyf_rk_(char *uplo, integer *n, integer *nb, integer
- *kb, complex *a, integer *lda, complex *e, integer *ipiv, complex *w,
- integer *ldw, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3, i__4, i__5;
- real r__1, r__2;
- complex q__1, q__2, q__3, q__4;
-
- /* Local variables */
- logical done;
- integer imax, jmax, j, k, p;
- complex t;
- real alpha;
- extern /* Subroutine */ void cscal_(integer *, complex *, complex *,
- integer *), cgemm_(char *, char *, integer *, integer *, integer *
- , complex *, complex *, integer *, complex *, integer *, complex *
- , complex *, integer *);
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ void cgemv_(char *, integer *, integer *, complex *
- , complex *, integer *, complex *, integer *, complex *, complex *
- , integer *);
- real sfmin;
- extern /* Subroutine */ void ccopy_(integer *, complex *, integer *,
- complex *, integer *);
- integer itemp;
- extern /* Subroutine */ void cswap_(integer *, complex *, integer *,
- complex *, integer *);
- integer kstep;
- real stemp;
- complex r1, d11, d12, d21, d22;
- integer jb, ii, jj, kk, kp;
- real absakk;
- integer kw;
- extern integer icamax_(integer *, complex *, integer *);
- extern real slamch_(char *);
- real colmax, rowmax;
- integer kkw;
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --e;
- --ipiv;
- w_dim1 = *ldw;
- w_offset = 1 + w_dim1 * 1;
- w -= w_offset;
-
- /* Function Body */
- *info = 0;
-
- /* Initialize ALPHA for use in choosing pivot block size. */
-
- alpha = (sqrt(17.f) + 1.f) / 8.f;
-
- /* Compute machine safe minimum */
-
- sfmin = slamch_("S");
-
- if (lsame_(uplo, "U")) {
-
- /* Factorize the trailing columns of A using the upper triangle */
- /* of A and working backwards, and compute the matrix W = U12*D */
- /* for use in updating A11 */
-
- /* Initialize the first entry of array E, where superdiagonal */
- /* elements of D are stored */
-
- e[1].r = 0.f, e[1].i = 0.f;
-
- /* K is the main loop index, decreasing from N in steps of 1 or 2 */
-
- k = *n;
- L10:
-
- /* KW is the column of W which corresponds to column K of A */
-
- kw = *nb + k - *n;
-
- /* Exit from loop */
-
- if (k <= *n - *nb + 1 && *nb < *n || k < 1) {
- goto L30;
- }
-
- kstep = 1;
- p = k;
-
- /* Copy column K of A to column KW of W and update it */
-
- ccopy_(&k, &a[k * a_dim1 + 1], &c__1, &w[kw * w_dim1 + 1], &c__1);
- if (k < *n) {
- i__1 = *n - k;
- q__1.r = -1.f, q__1.i = 0.f;
- cgemv_("No transpose", &k, &i__1, &q__1, &a[(k + 1) * a_dim1 + 1],
- lda, &w[k + (kw + 1) * w_dim1], ldw, &c_b1, &w[kw *
- w_dim1 + 1], &c__1);
- }
-
- /* Determine rows and columns to be interchanged and whether */
- /* a 1-by-1 or 2-by-2 pivot block will be used */
-
- i__1 = k + kw * w_dim1;
- absakk = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[k + kw *
- w_dim1]), abs(r__2));
-
- /* IMAX is the row-index of the largest off-diagonal element in */
- /* column K, and COLMAX is its absolute value. */
- /* Determine both COLMAX and IMAX. */
-
- if (k > 1) {
- i__1 = k - 1;
- imax = icamax_(&i__1, &w[kw * w_dim1 + 1], &c__1);
- i__1 = imax + kw * w_dim1;
- colmax = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[imax +
- kw * w_dim1]), abs(r__2));
- } else {
- colmax = 0.f;
- }
-
- if (f2cmax(absakk,colmax) == 0.f) {
-
- /* Column K is zero or underflow: set INFO and continue */
-
- if (*info == 0) {
- *info = k;
- }
- kp = k;
- ccopy_(&k, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &c__1);
-
- /* Set E( K ) to zero */
-
- if (k > 1) {
- i__1 = k;
- e[i__1].r = 0.f, e[i__1].i = 0.f;
- }
-
- } else {
-
- /* ============================================================ */
-
- /* Test for interchange */
-
- /* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
- /* (used to handle NaN and Inf) */
-
- if (! (absakk < alpha * colmax)) {
-
- /* no interchange, use 1-by-1 pivot block */
-
- kp = k;
-
- } else {
-
- done = FALSE_;
-
- /* Loop until pivot found */
-
- L12:
-
- /* Begin pivot search loop body */
-
-
- /* Copy column IMAX to column KW-1 of W and update it */
-
- ccopy_(&imax, &a[imax * a_dim1 + 1], &c__1, &w[(kw - 1) *
- w_dim1 + 1], &c__1);
- i__1 = k - imax;
- ccopy_(&i__1, &a[imax + (imax + 1) * a_dim1], lda, &w[imax +
- 1 + (kw - 1) * w_dim1], &c__1);
-
- if (k < *n) {
- i__1 = *n - k;
- q__1.r = -1.f, q__1.i = 0.f;
- cgemv_("No transpose", &k, &i__1, &q__1, &a[(k + 1) *
- a_dim1 + 1], lda, &w[imax + (kw + 1) * w_dim1],
- ldw, &c_b1, &w[(kw - 1) * w_dim1 + 1], &c__1);
- }
-
- /* JMAX is the column-index of the largest off-diagonal */
- /* element in row IMAX, and ROWMAX is its absolute value. */
- /* Determine both ROWMAX and JMAX. */
-
- if (imax != k) {
- i__1 = k - imax;
- jmax = imax + icamax_(&i__1, &w[imax + 1 + (kw - 1) *
- w_dim1], &c__1);
- i__1 = jmax + (kw - 1) * w_dim1;
- rowmax = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&
- w[jmax + (kw - 1) * w_dim1]), abs(r__2));
- } else {
- rowmax = 0.f;
- }
-
- if (imax > 1) {
- i__1 = imax - 1;
- itemp = icamax_(&i__1, &w[(kw - 1) * w_dim1 + 1], &c__1);
- i__1 = itemp + (kw - 1) * w_dim1;
- stemp = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[
- itemp + (kw - 1) * w_dim1]), abs(r__2));
- if (stemp > rowmax) {
- rowmax = stemp;
- jmax = itemp;
- }
- }
-
- /* Equivalent to testing for */
- /* CABS1( W( IMAX, KW-1 ) ).GE.ALPHA*ROWMAX */
- /* (used to handle NaN and Inf) */
-
- i__1 = imax + (kw - 1) * w_dim1;
- if (! ((r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[imax
- + (kw - 1) * w_dim1]), abs(r__2)) < alpha * rowmax)) {
-
- /* interchange rows and columns K and IMAX, */
- /* use 1-by-1 pivot block */
-
- kp = imax;
-
- /* copy column KW-1 of W to column KW of W */
-
- ccopy_(&k, &w[(kw - 1) * w_dim1 + 1], &c__1, &w[kw *
- w_dim1 + 1], &c__1);
-
- done = TRUE_;
-
- /* Equivalent to testing for ROWMAX.EQ.COLMAX, */
- /* (used to handle NaN and Inf) */
-
- } else if (p == jmax || rowmax <= colmax) {
-
- /* interchange rows and columns K-1 and IMAX, */
- /* use 2-by-2 pivot block */
-
- kp = imax;
- kstep = 2;
- done = TRUE_;
- } else {
-
- /* Pivot not found: set params and repeat */
-
- p = imax;
- colmax = rowmax;
- imax = jmax;
-
- /* Copy updated JMAXth (next IMAXth) column to Kth of W */
-
- ccopy_(&k, &w[(kw - 1) * w_dim1 + 1], &c__1, &w[kw *
- w_dim1 + 1], &c__1);
-
- }
-
- /* End pivot search loop body */
-
- if (! done) {
- goto L12;
- }
-
- }
-
- /* ============================================================ */
-
- kk = k - kstep + 1;
-
- /* KKW is the column of W which corresponds to column KK of A */
-
- kkw = *nb + kk - *n;
-
- if (kstep == 2 && p != k) {
-
- /* Copy non-updated column K to column P */
-
- i__1 = k - p;
- ccopy_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + (p + 1) *
- a_dim1], lda);
- ccopy_(&p, &a[k * a_dim1 + 1], &c__1, &a[p * a_dim1 + 1], &
- c__1);
-
- /* Interchange rows K and P in last N-K+1 columns of A */
- /* and last N-K+2 columns of W */
-
- i__1 = *n - k + 1;
- cswap_(&i__1, &a[k + k * a_dim1], lda, &a[p + k * a_dim1],
- lda);
- i__1 = *n - kk + 1;
- cswap_(&i__1, &w[k + kkw * w_dim1], ldw, &w[p + kkw * w_dim1],
- ldw);
- }
-
- /* Updated column KP is already stored in column KKW of W */
-
- if (kp != kk) {
-
- /* Copy non-updated column KK to column KP */
-
- i__1 = kp + k * a_dim1;
- i__2 = kk + k * a_dim1;
- a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
- i__1 = k - 1 - kp;
- ccopy_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (kp +
- 1) * a_dim1], lda);
- ccopy_(&kp, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1 + 1], &
- c__1);
-
- /* Interchange rows KK and KP in last N-KK+1 columns */
- /* of A and W */
-
- i__1 = *n - kk + 1;
- cswap_(&i__1, &a[kk + kk * a_dim1], lda, &a[kp + kk * a_dim1],
- lda);
- i__1 = *n - kk + 1;
- cswap_(&i__1, &w[kk + kkw * w_dim1], ldw, &w[kp + kkw *
- w_dim1], ldw);
- }
-
- if (kstep == 1) {
-
- /* 1-by-1 pivot block D(k): column KW of W now holds */
-
- /* W(k) = U(k)*D(k) */
-
- /* where U(k) is the k-th column of U */
-
- /* Store U(k) in column k of A */
-
- ccopy_(&k, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &
- c__1);
- if (k > 1) {
- i__1 = k + k * a_dim1;
- if ((r__1 = a[i__1].r, abs(r__1)) + (r__2 = r_imag(&a[k +
- k * a_dim1]), abs(r__2)) >= sfmin) {
- c_div(&q__1, &c_b1, &a[k + k * a_dim1]);
- r1.r = q__1.r, r1.i = q__1.i;
- i__1 = k - 1;
- cscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1);
- } else /* if(complicated condition) */ {
- i__1 = k + k * a_dim1;
- if (a[i__1].r != 0.f || a[i__1].i != 0.f) {
- i__1 = k - 1;
- for (ii = 1; ii <= i__1; ++ii) {
- i__2 = ii + k * a_dim1;
- c_div(&q__1, &a[ii + k * a_dim1], &a[k + k *
- a_dim1]);
- a[i__2].r = q__1.r, a[i__2].i = q__1.i;
- /* L14: */
- }
- }
- }
-
- /* Store the superdiagonal element of D in array E */
-
- i__1 = k;
- e[i__1].r = 0.f, e[i__1].i = 0.f;
-
- }
-
- } else {
-
- /* 2-by-2 pivot block D(k): columns KW and KW-1 of W now */
- /* hold */
-
- /* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
-
- /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
- /* of U */
-
- if (k > 2) {
-
- /* Store U(k) and U(k-1) in columns k and k-1 of A */
-
- i__1 = k - 1 + kw * w_dim1;
- d12.r = w[i__1].r, d12.i = w[i__1].i;
- c_div(&q__1, &w[k + kw * w_dim1], &d12);
- d11.r = q__1.r, d11.i = q__1.i;
- c_div(&q__1, &w[k - 1 + (kw - 1) * w_dim1], &d12);
- d22.r = q__1.r, d22.i = q__1.i;
- q__3.r = d11.r * d22.r - d11.i * d22.i, q__3.i = d11.r *
- d22.i + d11.i * d22.r;
- q__2.r = q__3.r - 1.f, q__2.i = q__3.i + 0.f;
- c_div(&q__1, &c_b1, &q__2);
- t.r = q__1.r, t.i = q__1.i;
- i__1 = k - 2;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j + (k - 1) * a_dim1;
- i__3 = j + (kw - 1) * w_dim1;
- q__4.r = d11.r * w[i__3].r - d11.i * w[i__3].i,
- q__4.i = d11.r * w[i__3].i + d11.i * w[i__3]
- .r;
- i__4 = j + kw * w_dim1;
- q__3.r = q__4.r - w[i__4].r, q__3.i = q__4.i - w[i__4]
- .i;
- c_div(&q__2, &q__3, &d12);
- q__1.r = t.r * q__2.r - t.i * q__2.i, q__1.i = t.r *
- q__2.i + t.i * q__2.r;
- a[i__2].r = q__1.r, a[i__2].i = q__1.i;
- i__2 = j + k * a_dim1;
- i__3 = j + kw * w_dim1;
- q__4.r = d22.r * w[i__3].r - d22.i * w[i__3].i,
- q__4.i = d22.r * w[i__3].i + d22.i * w[i__3]
- .r;
- i__4 = j + (kw - 1) * w_dim1;
- q__3.r = q__4.r - w[i__4].r, q__3.i = q__4.i - w[i__4]
- .i;
- c_div(&q__2, &q__3, &d12);
- q__1.r = t.r * q__2.r - t.i * q__2.i, q__1.i = t.r *
- q__2.i + t.i * q__2.r;
- a[i__2].r = q__1.r, a[i__2].i = q__1.i;
- /* L20: */
- }
- }
-
- /* Copy diagonal elements of D(K) to A, */
- /* copy superdiagonal element of D(K) to E(K) and */
- /* ZERO out superdiagonal entry of A */
-
- i__1 = k - 1 + (k - 1) * a_dim1;
- i__2 = k - 1 + (kw - 1) * w_dim1;
- a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
- i__1 = k - 1 + k * a_dim1;
- a[i__1].r = 0.f, a[i__1].i = 0.f;
- i__1 = k + k * a_dim1;
- i__2 = k + kw * w_dim1;
- a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
- i__1 = k;
- i__2 = k - 1 + kw * w_dim1;
- e[i__1].r = w[i__2].r, e[i__1].i = w[i__2].i;
- i__1 = k - 1;
- e[i__1].r = 0.f, e[i__1].i = 0.f;
-
- }
-
- /* End column K is nonsingular */
-
- }
-
- /* Store details of the interchanges in IPIV */
-
- if (kstep == 1) {
- ipiv[k] = kp;
- } else {
- ipiv[k] = -p;
- ipiv[k - 1] = -kp;
- }
-
- /* Decrease K and return to the start of the main loop */
-
- k -= kstep;
- goto L10;
-
- L30:
-
- /* Update the upper triangle of A11 (= A(1:k,1:k)) as */
-
- /* A11 := A11 - U12*D*U12**T = A11 - U12*W**T */
-
- /* computing blocks of NB columns at a time */
-
- i__1 = -(*nb);
- for (j = (k - 1) / *nb * *nb + 1; i__1 < 0 ? j >= 1 : j <= 1; j +=
- i__1) {
- /* Computing MIN */
- i__2 = *nb, i__3 = k - j + 1;
- jb = f2cmin(i__2,i__3);
-
- /* Update the upper triangle of the diagonal block */
-
- i__2 = j + jb - 1;
- for (jj = j; jj <= i__2; ++jj) {
- i__3 = jj - j + 1;
- i__4 = *n - k;
- q__1.r = -1.f, q__1.i = 0.f;
- cgemv_("No transpose", &i__3, &i__4, &q__1, &a[j + (k + 1) *
- a_dim1], lda, &w[jj + (kw + 1) * w_dim1], ldw, &c_b1,
- &a[j + jj * a_dim1], &c__1);
- /* L40: */
- }
-
- /* Update the rectangular superdiagonal block */
-
- if (j >= 2) {
- i__2 = j - 1;
- i__3 = *n - k;
- q__1.r = -1.f, q__1.i = 0.f;
- cgemm_("No transpose", "Transpose", &i__2, &jb, &i__3, &q__1,
- &a[(k + 1) * a_dim1 + 1], lda, &w[j + (kw + 1) *
- w_dim1], ldw, &c_b1, &a[j * a_dim1 + 1], lda);
- }
- /* L50: */
- }
-
- /* Set KB to the number of columns factorized */
-
- *kb = *n - k;
-
- } else {
-
- /* Factorize the leading columns of A using the lower triangle */
- /* of A and working forwards, and compute the matrix W = L21*D */
- /* for use in updating A22 */
-
- /* Initialize the unused last entry of the subdiagonal array E. */
-
- i__1 = *n;
- e[i__1].r = 0.f, e[i__1].i = 0.f;
-
- /* K is the main loop index, increasing from 1 in steps of 1 or 2 */
-
- k = 1;
- L70:
-
- /* Exit from loop */
-
- if (k >= *nb && *nb < *n || k > *n) {
- goto L90;
- }
-
- kstep = 1;
- p = k;
-
- /* Copy column K of A to column K of W and update it */
-
- i__1 = *n - k + 1;
- ccopy_(&i__1, &a[k + k * a_dim1], &c__1, &w[k + k * w_dim1], &c__1);
- if (k > 1) {
- i__1 = *n - k + 1;
- i__2 = k - 1;
- q__1.r = -1.f, q__1.i = 0.f;
- cgemv_("No transpose", &i__1, &i__2, &q__1, &a[k + a_dim1], lda, &
- w[k + w_dim1], ldw, &c_b1, &w[k + k * w_dim1], &c__1);
- }
-
- /* Determine rows and columns to be interchanged and whether */
- /* a 1-by-1 or 2-by-2 pivot block will be used */
-
- i__1 = k + k * w_dim1;
- absakk = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[k + k *
- w_dim1]), abs(r__2));
-
- /* IMAX is the row-index of the largest off-diagonal element in */
- /* column K, and COLMAX is its absolute value. */
- /* Determine both COLMAX and IMAX. */
-
- if (k < *n) {
- i__1 = *n - k;
- imax = k + icamax_(&i__1, &w[k + 1 + k * w_dim1], &c__1);
- i__1 = imax + k * w_dim1;
- colmax = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[imax +
- k * w_dim1]), abs(r__2));
- } else {
- colmax = 0.f;
- }
-
- if (f2cmax(absakk,colmax) == 0.f) {
-
- /* Column K is zero or underflow: set INFO and continue */
-
- if (*info == 0) {
- *info = k;
- }
- kp = k;
- i__1 = *n - k + 1;
- ccopy_(&i__1, &w[k + k * w_dim1], &c__1, &a[k + k * a_dim1], &
- c__1);
-
- /* Set E( K ) to zero */
-
- if (k < *n) {
- i__1 = k;
- e[i__1].r = 0.f, e[i__1].i = 0.f;
- }
-
- } else {
-
- /* ============================================================ */
-
- /* Test for interchange */
-
- /* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
- /* (used to handle NaN and Inf) */
-
- if (! (absakk < alpha * colmax)) {
-
- /* no interchange, use 1-by-1 pivot block */
-
- kp = k;
-
- } else {
-
- done = FALSE_;
-
- /* Loop until pivot found */
-
- L72:
-
- /* Begin pivot search loop body */
-
-
- /* Copy column IMAX to column K+1 of W and update it */
-
- i__1 = imax - k;
- ccopy_(&i__1, &a[imax + k * a_dim1], lda, &w[k + (k + 1) *
- w_dim1], &c__1);
- i__1 = *n - imax + 1;
- ccopy_(&i__1, &a[imax + imax * a_dim1], &c__1, &w[imax + (k +
- 1) * w_dim1], &c__1);
- if (k > 1) {
- i__1 = *n - k + 1;
- i__2 = k - 1;
- q__1.r = -1.f, q__1.i = 0.f;
- cgemv_("No transpose", &i__1, &i__2, &q__1, &a[k + a_dim1]
- , lda, &w[imax + w_dim1], ldw, &c_b1, &w[k + (k +
- 1) * w_dim1], &c__1);
- }
-
- /* JMAX is the column-index of the largest off-diagonal */
- /* element in row IMAX, and ROWMAX is its absolute value. */
- /* Determine both ROWMAX and JMAX. */
-
- if (imax != k) {
- i__1 = imax - k;
- jmax = k - 1 + icamax_(&i__1, &w[k + (k + 1) * w_dim1], &
- c__1);
- i__1 = jmax + (k + 1) * w_dim1;
- rowmax = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&
- w[jmax + (k + 1) * w_dim1]), abs(r__2));
- } else {
- rowmax = 0.f;
- }
-
- if (imax < *n) {
- i__1 = *n - imax;
- itemp = imax + icamax_(&i__1, &w[imax + 1 + (k + 1) *
- w_dim1], &c__1);
- i__1 = itemp + (k + 1) * w_dim1;
- stemp = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[
- itemp + (k + 1) * w_dim1]), abs(r__2));
- if (stemp > rowmax) {
- rowmax = stemp;
- jmax = itemp;
- }
- }
-
- /* Equivalent to testing for */
- /* CABS1( W( IMAX, K+1 ) ).GE.ALPHA*ROWMAX */
- /* (used to handle NaN and Inf) */
-
- i__1 = imax + (k + 1) * w_dim1;
- if (! ((r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[imax
- + (k + 1) * w_dim1]), abs(r__2)) < alpha * rowmax)) {
-
- /* interchange rows and columns K and IMAX, */
- /* use 1-by-1 pivot block */
-
- kp = imax;
-
- /* copy column K+1 of W to column K of W */
-
- i__1 = *n - k + 1;
- ccopy_(&i__1, &w[k + (k + 1) * w_dim1], &c__1, &w[k + k *
- w_dim1], &c__1);
-
- done = TRUE_;
-
- /* Equivalent to testing for ROWMAX.EQ.COLMAX, */
- /* (used to handle NaN and Inf) */
-
- } else if (p == jmax || rowmax <= colmax) {
-
- /* interchange rows and columns K+1 and IMAX, */
- /* use 2-by-2 pivot block */
-
- kp = imax;
- kstep = 2;
- done = TRUE_;
- } else {
-
- /* Pivot not found: set params and repeat */
-
- p = imax;
- colmax = rowmax;
- imax = jmax;
-
- /* Copy updated JMAXth (next IMAXth) column to Kth of W */
-
- i__1 = *n - k + 1;
- ccopy_(&i__1, &w[k + (k + 1) * w_dim1], &c__1, &w[k + k *
- w_dim1], &c__1);
-
- }
-
- /* End pivot search loop body */
-
- if (! done) {
- goto L72;
- }
-
- }
-
- /* ============================================================ */
-
- kk = k + kstep - 1;
-
- if (kstep == 2 && p != k) {
-
- /* Copy non-updated column K to column P */
-
- i__1 = p - k;
- ccopy_(&i__1, &a[k + k * a_dim1], &c__1, &a[p + k * a_dim1],
- lda);
- i__1 = *n - p + 1;
- ccopy_(&i__1, &a[p + k * a_dim1], &c__1, &a[p + p * a_dim1], &
- c__1);
-
- /* Interchange rows K and P in first K columns of A */
- /* and first K+1 columns of W */
-
- cswap_(&k, &a[k + a_dim1], lda, &a[p + a_dim1], lda);
- cswap_(&kk, &w[k + w_dim1], ldw, &w[p + w_dim1], ldw);
- }
-
- /* Updated column KP is already stored in column KK of W */
-
- if (kp != kk) {
-
- /* Copy non-updated column KK to column KP */
-
- i__1 = kp + k * a_dim1;
- i__2 = kk + k * a_dim1;
- a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
- i__1 = kp - k - 1;
- ccopy_(&i__1, &a[k + 1 + kk * a_dim1], &c__1, &a[kp + (k + 1)
- * a_dim1], lda);
- i__1 = *n - kp + 1;
- ccopy_(&i__1, &a[kp + kk * a_dim1], &c__1, &a[kp + kp *
- a_dim1], &c__1);
-
- /* Interchange rows KK and KP in first KK columns of A and W */
-
- cswap_(&kk, &a[kk + a_dim1], lda, &a[kp + a_dim1], lda);
- cswap_(&kk, &w[kk + w_dim1], ldw, &w[kp + w_dim1], ldw);
- }
-
- if (kstep == 1) {
-
- /* 1-by-1 pivot block D(k): column k of W now holds */
-
- /* W(k) = L(k)*D(k) */
-
- /* where L(k) is the k-th column of L */
-
- /* Store L(k) in column k of A */
-
- i__1 = *n - k + 1;
- ccopy_(&i__1, &w[k + k * w_dim1], &c__1, &a[k + k * a_dim1], &
- c__1);
- if (k < *n) {
- i__1 = k + k * a_dim1;
- if ((r__1 = a[i__1].r, abs(r__1)) + (r__2 = r_imag(&a[k +
- k * a_dim1]), abs(r__2)) >= sfmin) {
- c_div(&q__1, &c_b1, &a[k + k * a_dim1]);
- r1.r = q__1.r, r1.i = q__1.i;
- i__1 = *n - k;
- cscal_(&i__1, &r1, &a[k + 1 + k * a_dim1], &c__1);
- } else /* if(complicated condition) */ {
- i__1 = k + k * a_dim1;
- if (a[i__1].r != 0.f || a[i__1].i != 0.f) {
- i__1 = *n;
- for (ii = k + 1; ii <= i__1; ++ii) {
- i__2 = ii + k * a_dim1;
- c_div(&q__1, &a[ii + k * a_dim1], &a[k + k *
- a_dim1]);
- a[i__2].r = q__1.r, a[i__2].i = q__1.i;
- /* L74: */
- }
- }
- }
-
- /* Store the subdiagonal element of D in array E */
-
- i__1 = k;
- e[i__1].r = 0.f, e[i__1].i = 0.f;
-
- }
-
- } else {
-
- /* 2-by-2 pivot block D(k): columns k and k+1 of W now hold */
-
- /* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
-
- /* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
- /* of L */
-
- if (k < *n - 1) {
-
- /* Store L(k) and L(k+1) in columns k and k+1 of A */
-
- i__1 = k + 1 + k * w_dim1;
- d21.r = w[i__1].r, d21.i = w[i__1].i;
- c_div(&q__1, &w[k + 1 + (k + 1) * w_dim1], &d21);
- d11.r = q__1.r, d11.i = q__1.i;
- c_div(&q__1, &w[k + k * w_dim1], &d21);
- d22.r = q__1.r, d22.i = q__1.i;
- q__3.r = d11.r * d22.r - d11.i * d22.i, q__3.i = d11.r *
- d22.i + d11.i * d22.r;
- q__2.r = q__3.r - 1.f, q__2.i = q__3.i + 0.f;
- c_div(&q__1, &c_b1, &q__2);
- t.r = q__1.r, t.i = q__1.i;
- i__1 = *n;
- for (j = k + 2; j <= i__1; ++j) {
- i__2 = j + k * a_dim1;
- i__3 = j + k * w_dim1;
- q__4.r = d11.r * w[i__3].r - d11.i * w[i__3].i,
- q__4.i = d11.r * w[i__3].i + d11.i * w[i__3]
- .r;
- i__4 = j + (k + 1) * w_dim1;
- q__3.r = q__4.r - w[i__4].r, q__3.i = q__4.i - w[i__4]
- .i;
- c_div(&q__2, &q__3, &d21);
- q__1.r = t.r * q__2.r - t.i * q__2.i, q__1.i = t.r *
- q__2.i + t.i * q__2.r;
- a[i__2].r = q__1.r, a[i__2].i = q__1.i;
- i__2 = j + (k + 1) * a_dim1;
- i__3 = j + (k + 1) * w_dim1;
- q__4.r = d22.r * w[i__3].r - d22.i * w[i__3].i,
- q__4.i = d22.r * w[i__3].i + d22.i * w[i__3]
- .r;
- i__4 = j + k * w_dim1;
- q__3.r = q__4.r - w[i__4].r, q__3.i = q__4.i - w[i__4]
- .i;
- c_div(&q__2, &q__3, &d21);
- q__1.r = t.r * q__2.r - t.i * q__2.i, q__1.i = t.r *
- q__2.i + t.i * q__2.r;
- a[i__2].r = q__1.r, a[i__2].i = q__1.i;
- /* L80: */
- }
- }
-
- /* Copy diagonal elements of D(K) to A, */
- /* copy subdiagonal element of D(K) to E(K) and */
- /* ZERO out subdiagonal entry of A */
-
- i__1 = k + k * a_dim1;
- i__2 = k + k * w_dim1;
- a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
- i__1 = k + 1 + k * a_dim1;
- a[i__1].r = 0.f, a[i__1].i = 0.f;
- i__1 = k + 1 + (k + 1) * a_dim1;
- i__2 = k + 1 + (k + 1) * w_dim1;
- a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
- i__1 = k;
- i__2 = k + 1 + k * w_dim1;
- e[i__1].r = w[i__2].r, e[i__1].i = w[i__2].i;
- i__1 = k + 1;
- e[i__1].r = 0.f, e[i__1].i = 0.f;
-
- }
-
- /* End column K is nonsingular */
-
- }
-
- /* Store details of the interchanges in IPIV */
-
- if (kstep == 1) {
- ipiv[k] = kp;
- } else {
- ipiv[k] = -p;
- ipiv[k + 1] = -kp;
- }
-
- /* Increase K and return to the start of the main loop */
-
- k += kstep;
- goto L70;
-
- L90:
-
- /* Update the lower triangle of A22 (= A(k:n,k:n)) as */
-
- /* A22 := A22 - L21*D*L21**T = A22 - L21*W**T */
-
- /* computing blocks of NB columns at a time */
-
- i__1 = *n;
- i__2 = *nb;
- for (j = k; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
- /* Computing MIN */
- i__3 = *nb, i__4 = *n - j + 1;
- jb = f2cmin(i__3,i__4);
-
- /* Update the lower triangle of the diagonal block */
-
- i__3 = j + jb - 1;
- for (jj = j; jj <= i__3; ++jj) {
- i__4 = j + jb - jj;
- i__5 = k - 1;
- q__1.r = -1.f, q__1.i = 0.f;
- cgemv_("No transpose", &i__4, &i__5, &q__1, &a[jj + a_dim1],
- lda, &w[jj + w_dim1], ldw, &c_b1, &a[jj + jj * a_dim1]
- , &c__1);
- /* L100: */
- }
-
- /* Update the rectangular subdiagonal block */
-
- if (j + jb <= *n) {
- i__3 = *n - j - jb + 1;
- i__4 = k - 1;
- q__1.r = -1.f, q__1.i = 0.f;
- cgemm_("No transpose", "Transpose", &i__3, &jb, &i__4, &q__1,
- &a[j + jb + a_dim1], lda, &w[j + w_dim1], ldw, &c_b1,
- &a[j + jb + j * a_dim1], lda);
- }
- /* L110: */
- }
-
- /* Set KB to the number of columns factorized */
-
- *kb = k - 1;
-
- }
-
- return;
-
- /* End of CLASYF_RK */
-
- } /* clasyf_rk__ */
-
|