You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clantb.c 27 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. /* > \brief \b CLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the ele
  488. ment of largest absolute value of a triangular band matrix. */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download CLANTB + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clantb.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clantb.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clantb.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* REAL FUNCTION CLANTB( NORM, UPLO, DIAG, N, K, AB, */
  507. /* LDAB, WORK ) */
  508. /* CHARACTER DIAG, NORM, UPLO */
  509. /* INTEGER K, LDAB, N */
  510. /* REAL WORK( * ) */
  511. /* COMPLEX AB( LDAB, * ) */
  512. /* > \par Purpose: */
  513. /* ============= */
  514. /* > */
  515. /* > \verbatim */
  516. /* > */
  517. /* > CLANTB returns the value of the one norm, or the Frobenius norm, or */
  518. /* > the infinity norm, or the element of largest absolute value of an */
  519. /* > n by n triangular band matrix A, with ( k + 1 ) diagonals. */
  520. /* > \endverbatim */
  521. /* > */
  522. /* > \return CLANTB */
  523. /* > \verbatim */
  524. /* > */
  525. /* > CLANTB = ( f2cmax(abs(A(i,j))), NORM = 'M' or 'm' */
  526. /* > ( */
  527. /* > ( norm1(A), NORM = '1', 'O' or 'o' */
  528. /* > ( */
  529. /* > ( normI(A), NORM = 'I' or 'i' */
  530. /* > ( */
  531. /* > ( normF(A), NORM = 'F', 'f', 'E' or 'e' */
  532. /* > */
  533. /* > where norm1 denotes the one norm of a matrix (maximum column sum), */
  534. /* > normI denotes the infinity norm of a matrix (maximum row sum) and */
  535. /* > normF denotes the Frobenius norm of a matrix (square root of sum of */
  536. /* > squares). Note that f2cmax(abs(A(i,j))) is not a consistent matrix norm. */
  537. /* > \endverbatim */
  538. /* Arguments: */
  539. /* ========== */
  540. /* > \param[in] NORM */
  541. /* > \verbatim */
  542. /* > NORM is CHARACTER*1 */
  543. /* > Specifies the value to be returned in CLANTB as described */
  544. /* > above. */
  545. /* > \endverbatim */
  546. /* > */
  547. /* > \param[in] UPLO */
  548. /* > \verbatim */
  549. /* > UPLO is CHARACTER*1 */
  550. /* > Specifies whether the matrix A is upper or lower triangular. */
  551. /* > = 'U': Upper triangular */
  552. /* > = 'L': Lower triangular */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in] DIAG */
  556. /* > \verbatim */
  557. /* > DIAG is CHARACTER*1 */
  558. /* > Specifies whether or not the matrix A is unit triangular. */
  559. /* > = 'N': Non-unit triangular */
  560. /* > = 'U': Unit triangular */
  561. /* > \endverbatim */
  562. /* > */
  563. /* > \param[in] N */
  564. /* > \verbatim */
  565. /* > N is INTEGER */
  566. /* > The order of the matrix A. N >= 0. When N = 0, CLANTB is */
  567. /* > set to zero. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] K */
  571. /* > \verbatim */
  572. /* > K is INTEGER */
  573. /* > The number of super-diagonals of the matrix A if UPLO = 'U', */
  574. /* > or the number of sub-diagonals of the matrix A if UPLO = 'L'. */
  575. /* > K >= 0. */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[in] AB */
  579. /* > \verbatim */
  580. /* > AB is COMPLEX array, dimension (LDAB,N) */
  581. /* > The upper or lower triangular band matrix A, stored in the */
  582. /* > first k+1 rows of AB. The j-th column of A is stored */
  583. /* > in the j-th column of the array AB as follows: */
  584. /* > if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for f2cmax(1,j-k)<=i<=j; */
  585. /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+k). */
  586. /* > Note that when DIAG = 'U', the elements of the array AB */
  587. /* > corresponding to the diagonal elements of the matrix A are */
  588. /* > not referenced, but are assumed to be one. */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[in] LDAB */
  592. /* > \verbatim */
  593. /* > LDAB is INTEGER */
  594. /* > The leading dimension of the array AB. LDAB >= K+1. */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[out] WORK */
  598. /* > \verbatim */
  599. /* > WORK is REAL array, dimension (MAX(1,LWORK)), */
  600. /* > where LWORK >= N when NORM = 'I'; otherwise, WORK is not */
  601. /* > referenced. */
  602. /* > \endverbatim */
  603. /* Authors: */
  604. /* ======== */
  605. /* > \author Univ. of Tennessee */
  606. /* > \author Univ. of California Berkeley */
  607. /* > \author Univ. of Colorado Denver */
  608. /* > \author NAG Ltd. */
  609. /* > \date December 2016 */
  610. /* > \ingroup complexOTHERauxiliary */
  611. /* ===================================================================== */
  612. real clantb_(char *norm, char *uplo, char *diag, integer *n, integer *k,
  613. complex *ab, integer *ldab, real *work)
  614. {
  615. /* System generated locals */
  616. integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5;
  617. real ret_val;
  618. /* Local variables */
  619. extern /* Subroutine */ void scombssq_(real *, real *);
  620. integer i__, j, l;
  621. logical udiag;
  622. extern logical lsame_(char *, char *);
  623. real value;
  624. extern /* Subroutine */ void classq_(integer *, complex *, integer *, real
  625. *, real *);
  626. extern logical sisnan_(real *);
  627. real colssq[2], sum, ssq[2];
  628. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  629. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  630. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  631. /* December 2016 */
  632. /* ===================================================================== */
  633. /* Parameter adjustments */
  634. ab_dim1 = *ldab;
  635. ab_offset = 1 + ab_dim1 * 1;
  636. ab -= ab_offset;
  637. --work;
  638. /* Function Body */
  639. if (*n == 0) {
  640. value = 0.f;
  641. } else if (lsame_(norm, "M")) {
  642. /* Find f2cmax(abs(A(i,j))). */
  643. if (lsame_(diag, "U")) {
  644. value = 1.f;
  645. if (lsame_(uplo, "U")) {
  646. i__1 = *n;
  647. for (j = 1; j <= i__1; ++j) {
  648. /* Computing MAX */
  649. i__2 = *k + 2 - j;
  650. i__3 = *k;
  651. for (i__ = f2cmax(i__2,1); i__ <= i__3; ++i__) {
  652. sum = c_abs(&ab[i__ + j * ab_dim1]);
  653. if (value < sum || sisnan_(&sum)) {
  654. value = sum;
  655. }
  656. /* L10: */
  657. }
  658. /* L20: */
  659. }
  660. } else {
  661. i__1 = *n;
  662. for (j = 1; j <= i__1; ++j) {
  663. /* Computing MIN */
  664. i__2 = *n + 1 - j, i__4 = *k + 1;
  665. i__3 = f2cmin(i__2,i__4);
  666. for (i__ = 2; i__ <= i__3; ++i__) {
  667. sum = c_abs(&ab[i__ + j * ab_dim1]);
  668. if (value < sum || sisnan_(&sum)) {
  669. value = sum;
  670. }
  671. /* L30: */
  672. }
  673. /* L40: */
  674. }
  675. }
  676. } else {
  677. value = 0.f;
  678. if (lsame_(uplo, "U")) {
  679. i__1 = *n;
  680. for (j = 1; j <= i__1; ++j) {
  681. /* Computing MAX */
  682. i__3 = *k + 2 - j;
  683. i__2 = *k + 1;
  684. for (i__ = f2cmax(i__3,1); i__ <= i__2; ++i__) {
  685. sum = c_abs(&ab[i__ + j * ab_dim1]);
  686. if (value < sum || sisnan_(&sum)) {
  687. value = sum;
  688. }
  689. /* L50: */
  690. }
  691. /* L60: */
  692. }
  693. } else {
  694. i__1 = *n;
  695. for (j = 1; j <= i__1; ++j) {
  696. /* Computing MIN */
  697. i__3 = *n + 1 - j, i__4 = *k + 1;
  698. i__2 = f2cmin(i__3,i__4);
  699. for (i__ = 1; i__ <= i__2; ++i__) {
  700. sum = c_abs(&ab[i__ + j * ab_dim1]);
  701. if (value < sum || sisnan_(&sum)) {
  702. value = sum;
  703. }
  704. /* L70: */
  705. }
  706. /* L80: */
  707. }
  708. }
  709. }
  710. } else if (lsame_(norm, "O") || *(unsigned char *)
  711. norm == '1') {
  712. /* Find norm1(A). */
  713. value = 0.f;
  714. udiag = lsame_(diag, "U");
  715. if (lsame_(uplo, "U")) {
  716. i__1 = *n;
  717. for (j = 1; j <= i__1; ++j) {
  718. if (udiag) {
  719. sum = 1.f;
  720. /* Computing MAX */
  721. i__2 = *k + 2 - j;
  722. i__3 = *k;
  723. for (i__ = f2cmax(i__2,1); i__ <= i__3; ++i__) {
  724. sum += c_abs(&ab[i__ + j * ab_dim1]);
  725. /* L90: */
  726. }
  727. } else {
  728. sum = 0.f;
  729. /* Computing MAX */
  730. i__3 = *k + 2 - j;
  731. i__2 = *k + 1;
  732. for (i__ = f2cmax(i__3,1); i__ <= i__2; ++i__) {
  733. sum += c_abs(&ab[i__ + j * ab_dim1]);
  734. /* L100: */
  735. }
  736. }
  737. if (value < sum || sisnan_(&sum)) {
  738. value = sum;
  739. }
  740. /* L110: */
  741. }
  742. } else {
  743. i__1 = *n;
  744. for (j = 1; j <= i__1; ++j) {
  745. if (udiag) {
  746. sum = 1.f;
  747. /* Computing MIN */
  748. i__3 = *n + 1 - j, i__4 = *k + 1;
  749. i__2 = f2cmin(i__3,i__4);
  750. for (i__ = 2; i__ <= i__2; ++i__) {
  751. sum += c_abs(&ab[i__ + j * ab_dim1]);
  752. /* L120: */
  753. }
  754. } else {
  755. sum = 0.f;
  756. /* Computing MIN */
  757. i__3 = *n + 1 - j, i__4 = *k + 1;
  758. i__2 = f2cmin(i__3,i__4);
  759. for (i__ = 1; i__ <= i__2; ++i__) {
  760. sum += c_abs(&ab[i__ + j * ab_dim1]);
  761. /* L130: */
  762. }
  763. }
  764. if (value < sum || sisnan_(&sum)) {
  765. value = sum;
  766. }
  767. /* L140: */
  768. }
  769. }
  770. } else if (lsame_(norm, "I")) {
  771. /* Find normI(A). */
  772. value = 0.f;
  773. if (lsame_(uplo, "U")) {
  774. if (lsame_(diag, "U")) {
  775. i__1 = *n;
  776. for (i__ = 1; i__ <= i__1; ++i__) {
  777. work[i__] = 1.f;
  778. /* L150: */
  779. }
  780. i__1 = *n;
  781. for (j = 1; j <= i__1; ++j) {
  782. l = *k + 1 - j;
  783. /* Computing MAX */
  784. i__2 = 1, i__3 = j - *k;
  785. i__4 = j - 1;
  786. for (i__ = f2cmax(i__2,i__3); i__ <= i__4; ++i__) {
  787. work[i__] += c_abs(&ab[l + i__ + j * ab_dim1]);
  788. /* L160: */
  789. }
  790. /* L170: */
  791. }
  792. } else {
  793. i__1 = *n;
  794. for (i__ = 1; i__ <= i__1; ++i__) {
  795. work[i__] = 0.f;
  796. /* L180: */
  797. }
  798. i__1 = *n;
  799. for (j = 1; j <= i__1; ++j) {
  800. l = *k + 1 - j;
  801. /* Computing MAX */
  802. i__4 = 1, i__2 = j - *k;
  803. i__3 = j;
  804. for (i__ = f2cmax(i__4,i__2); i__ <= i__3; ++i__) {
  805. work[i__] += c_abs(&ab[l + i__ + j * ab_dim1]);
  806. /* L190: */
  807. }
  808. /* L200: */
  809. }
  810. }
  811. } else {
  812. if (lsame_(diag, "U")) {
  813. i__1 = *n;
  814. for (i__ = 1; i__ <= i__1; ++i__) {
  815. work[i__] = 1.f;
  816. /* L210: */
  817. }
  818. i__1 = *n;
  819. for (j = 1; j <= i__1; ++j) {
  820. l = 1 - j;
  821. /* Computing MIN */
  822. i__4 = *n, i__2 = j + *k;
  823. i__3 = f2cmin(i__4,i__2);
  824. for (i__ = j + 1; i__ <= i__3; ++i__) {
  825. work[i__] += c_abs(&ab[l + i__ + j * ab_dim1]);
  826. /* L220: */
  827. }
  828. /* L230: */
  829. }
  830. } else {
  831. i__1 = *n;
  832. for (i__ = 1; i__ <= i__1; ++i__) {
  833. work[i__] = 0.f;
  834. /* L240: */
  835. }
  836. i__1 = *n;
  837. for (j = 1; j <= i__1; ++j) {
  838. l = 1 - j;
  839. /* Computing MIN */
  840. i__4 = *n, i__2 = j + *k;
  841. i__3 = f2cmin(i__4,i__2);
  842. for (i__ = j; i__ <= i__3; ++i__) {
  843. work[i__] += c_abs(&ab[l + i__ + j * ab_dim1]);
  844. /* L250: */
  845. }
  846. /* L260: */
  847. }
  848. }
  849. }
  850. i__1 = *n;
  851. for (i__ = 1; i__ <= i__1; ++i__) {
  852. sum = work[i__];
  853. if (value < sum || sisnan_(&sum)) {
  854. value = sum;
  855. }
  856. /* L270: */
  857. }
  858. } else if (lsame_(norm, "F") || lsame_(norm, "E")) {
  859. /* Find normF(A). */
  860. /* SSQ(1) is scale */
  861. /* SSQ(2) is sum-of-squares */
  862. /* For better accuracy, sum each column separately. */
  863. if (lsame_(uplo, "U")) {
  864. if (lsame_(diag, "U")) {
  865. ssq[0] = 1.f;
  866. ssq[1] = (real) (*n);
  867. if (*k > 0) {
  868. i__1 = *n;
  869. for (j = 2; j <= i__1; ++j) {
  870. colssq[0] = 0.f;
  871. colssq[1] = 1.f;
  872. /* Computing MIN */
  873. i__4 = j - 1;
  874. i__3 = f2cmin(i__4,*k);
  875. /* Computing MAX */
  876. i__2 = *k + 2 - j;
  877. classq_(&i__3, &ab[f2cmax(i__2,1) + j * ab_dim1], &c__1,
  878. colssq, &colssq[1]);
  879. scombssq_(ssq, colssq);
  880. /* L280: */
  881. }
  882. }
  883. } else {
  884. ssq[0] = 0.f;
  885. ssq[1] = 1.f;
  886. i__1 = *n;
  887. for (j = 1; j <= i__1; ++j) {
  888. colssq[0] = 0.f;
  889. colssq[1] = 1.f;
  890. /* Computing MIN */
  891. i__4 = j, i__2 = *k + 1;
  892. i__3 = f2cmin(i__4,i__2);
  893. /* Computing MAX */
  894. i__5 = *k + 2 - j;
  895. classq_(&i__3, &ab[f2cmax(i__5,1) + j * ab_dim1], &c__1,
  896. colssq, &colssq[1]);
  897. scombssq_(ssq, colssq);
  898. /* L290: */
  899. }
  900. }
  901. } else {
  902. if (lsame_(diag, "U")) {
  903. ssq[0] = 1.f;
  904. ssq[1] = (real) (*n);
  905. if (*k > 0) {
  906. i__1 = *n - 1;
  907. for (j = 1; j <= i__1; ++j) {
  908. colssq[0] = 0.f;
  909. colssq[1] = 1.f;
  910. /* Computing MIN */
  911. i__4 = *n - j;
  912. i__3 = f2cmin(i__4,*k);
  913. classq_(&i__3, &ab[j * ab_dim1 + 2], &c__1, colssq, &
  914. colssq[1]);
  915. scombssq_(ssq, colssq);
  916. /* L300: */
  917. }
  918. }
  919. } else {
  920. ssq[0] = 0.f;
  921. ssq[1] = 1.f;
  922. i__1 = *n;
  923. for (j = 1; j <= i__1; ++j) {
  924. colssq[0] = 0.f;
  925. colssq[1] = 1.f;
  926. /* Computing MIN */
  927. i__4 = *n - j + 1, i__2 = *k + 1;
  928. i__3 = f2cmin(i__4,i__2);
  929. classq_(&i__3, &ab[j * ab_dim1 + 1], &c__1, colssq, &
  930. colssq[1]);
  931. scombssq_(ssq, colssq);
  932. /* L310: */
  933. }
  934. }
  935. }
  936. value = ssq[0] * sqrt(ssq[1]);
  937. }
  938. ret_val = value;
  939. return ret_val;
  940. /* End of CLANTB */
  941. } /* clantb_ */