You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clahef_rk.c 62 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static complex c_b1 = {1.f,0.f};
  487. static integer c__1 = 1;
  488. /* > \brief \b CLAHEF_RK computes a partial factorization of a complex Hermitian indefinite matrix using bound
  489. ed Bunch-Kaufman (rook) diagonal pivoting method. */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download CLAHEF_RK + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clahef_
  496. rk.f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clahef_
  499. rk.f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clahef_
  502. rk.f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE CLAHEF_RK( UPLO, N, NB, KB, A, LDA, E, IPIV, W, LDW, */
  508. /* INFO ) */
  509. /* CHARACTER UPLO */
  510. /* INTEGER INFO, KB, LDA, LDW, N, NB */
  511. /* INTEGER IPIV( * ) */
  512. /* COMPLEX A( LDA, * ), E( * ), W( LDW, * ) */
  513. /* > \par Purpose: */
  514. /* ============= */
  515. /* > */
  516. /* > \verbatim */
  517. /* > CLAHEF_RK computes a partial factorization of a complex Hermitian */
  518. /* > matrix A using the bounded Bunch-Kaufman (rook) diagonal */
  519. /* > pivoting method. The partial factorization has the form: */
  520. /* > */
  521. /* > A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: */
  522. /* > ( 0 U22 ) ( 0 D ) ( U12**H U22**H ) */
  523. /* > */
  524. /* > A = ( L11 0 ) ( D 0 ) ( L11**H L21**H ) if UPLO = 'L', */
  525. /* > ( L21 I ) ( 0 A22 ) ( 0 I ) */
  526. /* > */
  527. /* > where the order of D is at most NB. The actual order is returned in */
  528. /* > the argument KB, and is either NB or NB-1, or N if N <= NB. */
  529. /* > */
  530. /* > CLAHEF_RK is an auxiliary routine called by CHETRF_RK. It uses */
  531. /* > blocked code (calling Level 3 BLAS) to update the submatrix */
  532. /* > A11 (if UPLO = 'U') or A22 (if UPLO = 'L'). */
  533. /* > \endverbatim */
  534. /* Arguments: */
  535. /* ========== */
  536. /* > \param[in] UPLO */
  537. /* > \verbatim */
  538. /* > UPLO is CHARACTER*1 */
  539. /* > Specifies whether the upper or lower triangular part of the */
  540. /* > Hermitian matrix A is stored: */
  541. /* > = 'U': Upper triangular */
  542. /* > = 'L': Lower triangular */
  543. /* > \endverbatim */
  544. /* > */
  545. /* > \param[in] N */
  546. /* > \verbatim */
  547. /* > N is INTEGER */
  548. /* > The order of the matrix A. N >= 0. */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[in] NB */
  552. /* > \verbatim */
  553. /* > NB is INTEGER */
  554. /* > The maximum number of columns of the matrix A that should be */
  555. /* > factored. NB should be at least 2 to allow for 2-by-2 pivot */
  556. /* > blocks. */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[out] KB */
  560. /* > \verbatim */
  561. /* > KB is INTEGER */
  562. /* > The number of columns of A that were actually factored. */
  563. /* > KB is either NB-1 or NB, or N if N <= NB. */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in,out] A */
  567. /* > \verbatim */
  568. /* > A is COMPLEX array, dimension (LDA,N) */
  569. /* > On entry, the Hermitian matrix A. */
  570. /* > If UPLO = 'U': the leading N-by-N upper triangular part */
  571. /* > of A contains the upper triangular part of the matrix A, */
  572. /* > and the strictly lower triangular part of A is not */
  573. /* > referenced. */
  574. /* > */
  575. /* > If UPLO = 'L': the leading N-by-N lower triangular part */
  576. /* > of A contains the lower triangular part of the matrix A, */
  577. /* > and the strictly upper triangular part of A is not */
  578. /* > referenced. */
  579. /* > */
  580. /* > On exit, contains: */
  581. /* > a) ONLY diagonal elements of the Hermitian block diagonal */
  582. /* > matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); */
  583. /* > (superdiagonal (or subdiagonal) elements of D */
  584. /* > are stored on exit in array E), and */
  585. /* > b) If UPLO = 'U': factor U in the superdiagonal part of A. */
  586. /* > If UPLO = 'L': factor L in the subdiagonal part of A. */
  587. /* > \endverbatim */
  588. /* > */
  589. /* > \param[in] LDA */
  590. /* > \verbatim */
  591. /* > LDA is INTEGER */
  592. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[out] E */
  596. /* > \verbatim */
  597. /* > E is COMPLEX array, dimension (N) */
  598. /* > On exit, contains the superdiagonal (or subdiagonal) */
  599. /* > elements of the Hermitian block diagonal matrix D */
  600. /* > with 1-by-1 or 2-by-2 diagonal blocks, where */
  601. /* > If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0; */
  602. /* > If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0. */
  603. /* > */
  604. /* > NOTE: For 1-by-1 diagonal block D(k), where */
  605. /* > 1 <= k <= N, the element E(k) is set to 0 in both */
  606. /* > UPLO = 'U' or UPLO = 'L' cases. */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[out] IPIV */
  610. /* > \verbatim */
  611. /* > IPIV is INTEGER array, dimension (N) */
  612. /* > IPIV describes the permutation matrix P in the factorization */
  613. /* > of matrix A as follows. The absolute value of IPIV(k) */
  614. /* > represents the index of row and column that were */
  615. /* > interchanged with the k-th row and column. The value of UPLO */
  616. /* > describes the order in which the interchanges were applied. */
  617. /* > Also, the sign of IPIV represents the block structure of */
  618. /* > the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2 */
  619. /* > diagonal blocks which correspond to 1 or 2 interchanges */
  620. /* > at each factorization step. */
  621. /* > */
  622. /* > If UPLO = 'U', */
  623. /* > ( in factorization order, k decreases from N to 1 ): */
  624. /* > a) A single positive entry IPIV(k) > 0 means: */
  625. /* > D(k,k) is a 1-by-1 diagonal block. */
  626. /* > If IPIV(k) != k, rows and columns k and IPIV(k) were */
  627. /* > interchanged in the submatrix A(1:N,N-KB+1:N); */
  628. /* > If IPIV(k) = k, no interchange occurred. */
  629. /* > */
  630. /* > */
  631. /* > b) A pair of consecutive negative entries */
  632. /* > IPIV(k) < 0 and IPIV(k-1) < 0 means: */
  633. /* > D(k-1:k,k-1:k) is a 2-by-2 diagonal block. */
  634. /* > (NOTE: negative entries in IPIV appear ONLY in pairs). */
  635. /* > 1) If -IPIV(k) != k, rows and columns */
  636. /* > k and -IPIV(k) were interchanged */
  637. /* > in the matrix A(1:N,N-KB+1:N). */
  638. /* > If -IPIV(k) = k, no interchange occurred. */
  639. /* > 2) If -IPIV(k-1) != k-1, rows and columns */
  640. /* > k-1 and -IPIV(k-1) were interchanged */
  641. /* > in the submatrix A(1:N,N-KB+1:N). */
  642. /* > If -IPIV(k-1) = k-1, no interchange occurred. */
  643. /* > */
  644. /* > c) In both cases a) and b) is always ABS( IPIV(k) ) <= k. */
  645. /* > */
  646. /* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
  647. /* > */
  648. /* > If UPLO = 'L', */
  649. /* > ( in factorization order, k increases from 1 to N ): */
  650. /* > a) A single positive entry IPIV(k) > 0 means: */
  651. /* > D(k,k) is a 1-by-1 diagonal block. */
  652. /* > If IPIV(k) != k, rows and columns k and IPIV(k) were */
  653. /* > interchanged in the submatrix A(1:N,1:KB). */
  654. /* > If IPIV(k) = k, no interchange occurred. */
  655. /* > */
  656. /* > b) A pair of consecutive negative entries */
  657. /* > IPIV(k) < 0 and IPIV(k+1) < 0 means: */
  658. /* > D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
  659. /* > (NOTE: negative entries in IPIV appear ONLY in pairs). */
  660. /* > 1) If -IPIV(k) != k, rows and columns */
  661. /* > k and -IPIV(k) were interchanged */
  662. /* > in the submatrix A(1:N,1:KB). */
  663. /* > If -IPIV(k) = k, no interchange occurred. */
  664. /* > 2) If -IPIV(k+1) != k+1, rows and columns */
  665. /* > k-1 and -IPIV(k-1) were interchanged */
  666. /* > in the submatrix A(1:N,1:KB). */
  667. /* > If -IPIV(k+1) = k+1, no interchange occurred. */
  668. /* > */
  669. /* > c) In both cases a) and b) is always ABS( IPIV(k) ) >= k. */
  670. /* > */
  671. /* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
  672. /* > \endverbatim */
  673. /* > */
  674. /* > \param[out] W */
  675. /* > \verbatim */
  676. /* > W is COMPLEX array, dimension (LDW,NB) */
  677. /* > \endverbatim */
  678. /* > */
  679. /* > \param[in] LDW */
  680. /* > \verbatim */
  681. /* > LDW is INTEGER */
  682. /* > The leading dimension of the array W. LDW >= f2cmax(1,N). */
  683. /* > \endverbatim */
  684. /* > */
  685. /* > \param[out] INFO */
  686. /* > \verbatim */
  687. /* > INFO is INTEGER */
  688. /* > = 0: successful exit */
  689. /* > */
  690. /* > < 0: If INFO = -k, the k-th argument had an illegal value */
  691. /* > */
  692. /* > > 0: If INFO = k, the matrix A is singular, because: */
  693. /* > If UPLO = 'U': column k in the upper */
  694. /* > triangular part of A contains all zeros. */
  695. /* > If UPLO = 'L': column k in the lower */
  696. /* > triangular part of A contains all zeros. */
  697. /* > */
  698. /* > Therefore D(k,k) is exactly zero, and superdiagonal */
  699. /* > elements of column k of U (or subdiagonal elements of */
  700. /* > column k of L ) are all zeros. The factorization has */
  701. /* > been completed, but the block diagonal matrix D is */
  702. /* > exactly singular, and division by zero will occur if */
  703. /* > it is used to solve a system of equations. */
  704. /* > */
  705. /* > NOTE: INFO only stores the first occurrence of */
  706. /* > a singularity, any subsequent occurrence of singularity */
  707. /* > is not stored in INFO even though the factorization */
  708. /* > always completes. */
  709. /* > \endverbatim */
  710. /* Authors: */
  711. /* ======== */
  712. /* > \author Univ. of Tennessee */
  713. /* > \author Univ. of California Berkeley */
  714. /* > \author Univ. of Colorado Denver */
  715. /* > \author NAG Ltd. */
  716. /* > \date December 2016 */
  717. /* > \ingroup complexHEcomputational */
  718. /* > \par Contributors: */
  719. /* ================== */
  720. /* > */
  721. /* > \verbatim */
  722. /* > */
  723. /* > December 2016, Igor Kozachenko, */
  724. /* > Computer Science Division, */
  725. /* > University of California, Berkeley */
  726. /* > */
  727. /* > September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
  728. /* > School of Mathematics, */
  729. /* > University of Manchester */
  730. /* > */
  731. /* > \endverbatim */
  732. /* ===================================================================== */
  733. /* Subroutine */ void clahef_rk_(char *uplo, integer *n, integer *nb, integer
  734. *kb, complex *a, integer *lda, complex *e, integer *ipiv, complex *w,
  735. integer *ldw, integer *info)
  736. {
  737. /* System generated locals */
  738. integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3, i__4, i__5;
  739. real r__1, r__2;
  740. complex q__1, q__2, q__3, q__4, q__5;
  741. /* Local variables */
  742. logical done;
  743. integer imax, jmax, j, k, p;
  744. real t, alpha;
  745. extern /* Subroutine */ void cgemm_(char *, char *, integer *, integer *,
  746. integer *, complex *, complex *, integer *, complex *, integer *,
  747. complex *, complex *, integer *);
  748. extern logical lsame_(char *, char *);
  749. extern /* Subroutine */ void cgemv_(char *, integer *, integer *, complex *
  750. , complex *, integer *, complex *, integer *, complex *, complex *
  751. , integer *);
  752. real sfmin;
  753. extern /* Subroutine */ void ccopy_(integer *, complex *, integer *,
  754. complex *, integer *);
  755. integer itemp;
  756. extern /* Subroutine */ void cswap_(integer *, complex *, integer *,
  757. complex *, integer *);
  758. integer kstep;
  759. real stemp, r1;
  760. complex d11, d21, d22;
  761. integer jb, ii, jj, kk, kp;
  762. real absakk;
  763. extern /* Subroutine */ void clacgv_(integer *, complex *, integer *);
  764. integer kw;
  765. extern integer icamax_(integer *, complex *, integer *);
  766. extern real slamch_(char *);
  767. extern /* Subroutine */ void csscal_(integer *, real *, complex *, integer
  768. *);
  769. real colmax, rowmax;
  770. integer kkw;
  771. /* -- LAPACK computational routine (version 3.7.0) -- */
  772. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  773. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  774. /* December 2016 */
  775. /* ===================================================================== */
  776. /* Parameter adjustments */
  777. a_dim1 = *lda;
  778. a_offset = 1 + a_dim1 * 1;
  779. a -= a_offset;
  780. --e;
  781. --ipiv;
  782. w_dim1 = *ldw;
  783. w_offset = 1 + w_dim1 * 1;
  784. w -= w_offset;
  785. /* Function Body */
  786. *info = 0;
  787. /* Initialize ALPHA for use in choosing pivot block size. */
  788. alpha = (sqrt(17.f) + 1.f) / 8.f;
  789. /* Compute machine safe minimum */
  790. sfmin = slamch_("S");
  791. if (lsame_(uplo, "U")) {
  792. /* Factorize the trailing columns of A using the upper triangle */
  793. /* of A and working backwards, and compute the matrix W = U12*D */
  794. /* for use in updating A11 (note that conjg(W) is actually stored) */
  795. /* Initialize the first entry of array E, where superdiagonal */
  796. /* elements of D are stored */
  797. e[1].r = 0.f, e[1].i = 0.f;
  798. /* K is the main loop index, decreasing from N in steps of 1 or 2 */
  799. k = *n;
  800. L10:
  801. /* KW is the column of W which corresponds to column K of A */
  802. kw = *nb + k - *n;
  803. /* Exit from loop */
  804. if (k <= *n - *nb + 1 && *nb < *n || k < 1) {
  805. goto L30;
  806. }
  807. kstep = 1;
  808. p = k;
  809. /* Copy column K of A to column KW of W and update it */
  810. if (k > 1) {
  811. i__1 = k - 1;
  812. ccopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &w[kw * w_dim1 + 1], &
  813. c__1);
  814. }
  815. i__1 = k + kw * w_dim1;
  816. i__2 = k + k * a_dim1;
  817. r__1 = a[i__2].r;
  818. w[i__1].r = r__1, w[i__1].i = 0.f;
  819. if (k < *n) {
  820. i__1 = *n - k;
  821. q__1.r = -1.f, q__1.i = 0.f;
  822. cgemv_("No transpose", &k, &i__1, &q__1, &a[(k + 1) * a_dim1 + 1],
  823. lda, &w[k + (kw + 1) * w_dim1], ldw, &c_b1, &w[kw *
  824. w_dim1 + 1], &c__1);
  825. i__1 = k + kw * w_dim1;
  826. i__2 = k + kw * w_dim1;
  827. r__1 = w[i__2].r;
  828. w[i__1].r = r__1, w[i__1].i = 0.f;
  829. }
  830. /* Determine rows and columns to be interchanged and whether */
  831. /* a 1-by-1 or 2-by-2 pivot block will be used */
  832. i__1 = k + kw * w_dim1;
  833. absakk = (r__1 = w[i__1].r, abs(r__1));
  834. /* IMAX is the row-index of the largest off-diagonal element in */
  835. /* column K, and COLMAX is its absolute value. */
  836. /* Determine both COLMAX and IMAX. */
  837. if (k > 1) {
  838. i__1 = k - 1;
  839. imax = icamax_(&i__1, &w[kw * w_dim1 + 1], &c__1);
  840. i__1 = imax + kw * w_dim1;
  841. colmax = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[imax +
  842. kw * w_dim1]), abs(r__2));
  843. } else {
  844. colmax = 0.f;
  845. }
  846. if (f2cmax(absakk,colmax) == 0.f) {
  847. /* Column K is zero or underflow: set INFO and continue */
  848. if (*info == 0) {
  849. *info = k;
  850. }
  851. kp = k;
  852. i__1 = k + k * a_dim1;
  853. i__2 = k + kw * w_dim1;
  854. r__1 = w[i__2].r;
  855. a[i__1].r = r__1, a[i__1].i = 0.f;
  856. if (k > 1) {
  857. i__1 = k - 1;
  858. ccopy_(&i__1, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1],
  859. &c__1);
  860. }
  861. /* Set E( K ) to zero */
  862. if (k > 1) {
  863. i__1 = k;
  864. e[i__1].r = 0.f, e[i__1].i = 0.f;
  865. }
  866. } else {
  867. /* ============================================================ */
  868. /* BEGIN pivot search */
  869. /* Case(1) */
  870. /* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
  871. /* (used to handle NaN and Inf) */
  872. if (! (absakk < alpha * colmax)) {
  873. /* no interchange, use 1-by-1 pivot block */
  874. kp = k;
  875. } else {
  876. /* Lop until pivot found */
  877. done = FALSE_;
  878. L12:
  879. /* BEGIN pivot search loop body */
  880. /* Copy column IMAX to column KW-1 of W and update it */
  881. if (imax > 1) {
  882. i__1 = imax - 1;
  883. ccopy_(&i__1, &a[imax * a_dim1 + 1], &c__1, &w[(kw - 1) *
  884. w_dim1 + 1], &c__1);
  885. }
  886. i__1 = imax + (kw - 1) * w_dim1;
  887. i__2 = imax + imax * a_dim1;
  888. r__1 = a[i__2].r;
  889. w[i__1].r = r__1, w[i__1].i = 0.f;
  890. i__1 = k - imax;
  891. ccopy_(&i__1, &a[imax + (imax + 1) * a_dim1], lda, &w[imax +
  892. 1 + (kw - 1) * w_dim1], &c__1);
  893. i__1 = k - imax;
  894. clacgv_(&i__1, &w[imax + 1 + (kw - 1) * w_dim1], &c__1);
  895. if (k < *n) {
  896. i__1 = *n - k;
  897. q__1.r = -1.f, q__1.i = 0.f;
  898. cgemv_("No transpose", &k, &i__1, &q__1, &a[(k + 1) *
  899. a_dim1 + 1], lda, &w[imax + (kw + 1) * w_dim1],
  900. ldw, &c_b1, &w[(kw - 1) * w_dim1 + 1], &c__1);
  901. i__1 = imax + (kw - 1) * w_dim1;
  902. i__2 = imax + (kw - 1) * w_dim1;
  903. r__1 = w[i__2].r;
  904. w[i__1].r = r__1, w[i__1].i = 0.f;
  905. }
  906. /* JMAX is the column-index of the largest off-diagonal */
  907. /* element in row IMAX, and ROWMAX is its absolute value. */
  908. /* Determine both ROWMAX and JMAX. */
  909. if (imax != k) {
  910. i__1 = k - imax;
  911. jmax = imax + icamax_(&i__1, &w[imax + 1 + (kw - 1) *
  912. w_dim1], &c__1);
  913. i__1 = jmax + (kw - 1) * w_dim1;
  914. rowmax = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&
  915. w[jmax + (kw - 1) * w_dim1]), abs(r__2));
  916. } else {
  917. rowmax = 0.f;
  918. }
  919. if (imax > 1) {
  920. i__1 = imax - 1;
  921. itemp = icamax_(&i__1, &w[(kw - 1) * w_dim1 + 1], &c__1);
  922. i__1 = itemp + (kw - 1) * w_dim1;
  923. stemp = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[
  924. itemp + (kw - 1) * w_dim1]), abs(r__2));
  925. if (stemp > rowmax) {
  926. rowmax = stemp;
  927. jmax = itemp;
  928. }
  929. }
  930. /* Case(2) */
  931. /* Equivalent to testing for */
  932. /* ABS( REAL( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX */
  933. /* (used to handle NaN and Inf) */
  934. i__1 = imax + (kw - 1) * w_dim1;
  935. if (! ((r__1 = w[i__1].r, abs(r__1)) < alpha * rowmax)) {
  936. /* interchange rows and columns K and IMAX, */
  937. /* use 1-by-1 pivot block */
  938. kp = imax;
  939. /* copy column KW-1 of W to column KW of W */
  940. ccopy_(&k, &w[(kw - 1) * w_dim1 + 1], &c__1, &w[kw *
  941. w_dim1 + 1], &c__1);
  942. done = TRUE_;
  943. /* Case(3) */
  944. /* Equivalent to testing for ROWMAX.EQ.COLMAX, */
  945. /* (used to handle NaN and Inf) */
  946. } else if (p == jmax || rowmax <= colmax) {
  947. /* interchange rows and columns K-1 and IMAX, */
  948. /* use 2-by-2 pivot block */
  949. kp = imax;
  950. kstep = 2;
  951. done = TRUE_;
  952. /* Case(4) */
  953. } else {
  954. /* Pivot not found: set params and repeat */
  955. p = imax;
  956. colmax = rowmax;
  957. imax = jmax;
  958. /* Copy updated JMAXth (next IMAXth) column to Kth of W */
  959. ccopy_(&k, &w[(kw - 1) * w_dim1 + 1], &c__1, &w[kw *
  960. w_dim1 + 1], &c__1);
  961. }
  962. /* END pivot search loop body */
  963. if (! done) {
  964. goto L12;
  965. }
  966. }
  967. /* END pivot search */
  968. /* ============================================================ */
  969. /* KK is the column of A where pivoting step stopped */
  970. kk = k - kstep + 1;
  971. /* KKW is the column of W which corresponds to column KK of A */
  972. kkw = *nb + kk - *n;
  973. /* Interchange rows and columns P and K. */
  974. /* Updated column P is already stored in column KW of W. */
  975. if (kstep == 2 && p != k) {
  976. /* Copy non-updated column K to column P of submatrix A */
  977. /* at step K. No need to copy element into columns */
  978. /* K and K-1 of A for 2-by-2 pivot, since these columns */
  979. /* will be later overwritten. */
  980. i__1 = p + p * a_dim1;
  981. i__2 = k + k * a_dim1;
  982. r__1 = a[i__2].r;
  983. a[i__1].r = r__1, a[i__1].i = 0.f;
  984. i__1 = k - 1 - p;
  985. ccopy_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + (p + 1) *
  986. a_dim1], lda);
  987. i__1 = k - 1 - p;
  988. clacgv_(&i__1, &a[p + (p + 1) * a_dim1], lda);
  989. if (p > 1) {
  990. i__1 = p - 1;
  991. ccopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[p * a_dim1 +
  992. 1], &c__1);
  993. }
  994. /* Interchange rows K and P in the last K+1 to N columns of A */
  995. /* (columns K and K-1 of A for 2-by-2 pivot will be */
  996. /* later overwritten). Interchange rows K and P */
  997. /* in last KKW to NB columns of W. */
  998. if (k < *n) {
  999. i__1 = *n - k;
  1000. cswap_(&i__1, &a[k + (k + 1) * a_dim1], lda, &a[p + (k +
  1001. 1) * a_dim1], lda);
  1002. }
  1003. i__1 = *n - kk + 1;
  1004. cswap_(&i__1, &w[k + kkw * w_dim1], ldw, &w[p + kkw * w_dim1],
  1005. ldw);
  1006. }
  1007. /* Interchange rows and columns KP and KK. */
  1008. /* Updated column KP is already stored in column KKW of W. */
  1009. if (kp != kk) {
  1010. /* Copy non-updated column KK to column KP of submatrix A */
  1011. /* at step K. No need to copy element into column K */
  1012. /* (or K and K-1 for 2-by-2 pivot) of A, since these columns */
  1013. /* will be later overwritten. */
  1014. i__1 = kp + kp * a_dim1;
  1015. i__2 = kk + kk * a_dim1;
  1016. r__1 = a[i__2].r;
  1017. a[i__1].r = r__1, a[i__1].i = 0.f;
  1018. i__1 = kk - 1 - kp;
  1019. ccopy_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (kp +
  1020. 1) * a_dim1], lda);
  1021. i__1 = kk - 1 - kp;
  1022. clacgv_(&i__1, &a[kp + (kp + 1) * a_dim1], lda);
  1023. if (kp > 1) {
  1024. i__1 = kp - 1;
  1025. ccopy_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1
  1026. + 1], &c__1);
  1027. }
  1028. /* Interchange rows KK and KP in last K+1 to N columns of A */
  1029. /* (columns K (or K and K-1 for 2-by-2 pivot) of A will be */
  1030. /* later overwritten). Interchange rows KK and KP */
  1031. /* in last KKW to NB columns of W. */
  1032. if (k < *n) {
  1033. i__1 = *n - k;
  1034. cswap_(&i__1, &a[kk + (k + 1) * a_dim1], lda, &a[kp + (k
  1035. + 1) * a_dim1], lda);
  1036. }
  1037. i__1 = *n - kk + 1;
  1038. cswap_(&i__1, &w[kk + kkw * w_dim1], ldw, &w[kp + kkw *
  1039. w_dim1], ldw);
  1040. }
  1041. if (kstep == 1) {
  1042. /* 1-by-1 pivot block D(k): column kw of W now holds */
  1043. /* W(kw) = U(k)*D(k), */
  1044. /* where U(k) is the k-th column of U */
  1045. /* (1) Store subdiag. elements of column U(k) */
  1046. /* and 1-by-1 block D(k) in column k of A. */
  1047. /* (NOTE: Diagonal element U(k,k) is a UNIT element */
  1048. /* and not stored) */
  1049. /* A(k,k) := D(k,k) = W(k,kw) */
  1050. /* A(1:k-1,k) := U(1:k-1,k) = W(1:k-1,kw)/D(k,k) */
  1051. /* (NOTE: No need to use for Hermitian matrix */
  1052. /* A( K, K ) = REAL( W( K, K) ) to separately copy diagonal */
  1053. /* element D(k,k) from W (potentially saves only one load)) */
  1054. ccopy_(&k, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &
  1055. c__1);
  1056. if (k > 1) {
  1057. /* (NOTE: No need to check if A(k,k) is NOT ZERO, */
  1058. /* since that was ensured earlier in pivot search: */
  1059. /* case A(k,k) = 0 falls into 2x2 pivot case(3)) */
  1060. /* Handle division by a small number */
  1061. i__1 = k + k * a_dim1;
  1062. t = a[i__1].r;
  1063. if (abs(t) >= sfmin) {
  1064. r1 = 1.f / t;
  1065. i__1 = k - 1;
  1066. csscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1);
  1067. } else {
  1068. i__1 = k - 1;
  1069. for (ii = 1; ii <= i__1; ++ii) {
  1070. i__2 = ii + k * a_dim1;
  1071. i__3 = ii + k * a_dim1;
  1072. q__1.r = a[i__3].r / t, q__1.i = a[i__3].i / t;
  1073. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1074. /* L14: */
  1075. }
  1076. }
  1077. /* (2) Conjugate column W(kw) */
  1078. i__1 = k - 1;
  1079. clacgv_(&i__1, &w[kw * w_dim1 + 1], &c__1);
  1080. /* Store the superdiagonal element of D in array E */
  1081. i__1 = k;
  1082. e[i__1].r = 0.f, e[i__1].i = 0.f;
  1083. }
  1084. } else {
  1085. /* 2-by-2 pivot block D(k): columns kw and kw-1 of W now hold */
  1086. /* ( W(kw-1) W(kw) ) = ( U(k-1) U(k) )*D(k) */
  1087. /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
  1088. /* of U */
  1089. /* (1) Store U(1:k-2,k-1) and U(1:k-2,k) and 2-by-2 */
  1090. /* block D(k-1:k,k-1:k) in columns k-1 and k of A. */
  1091. /* (NOTE: 2-by-2 diagonal block U(k-1:k,k-1:k) is a UNIT */
  1092. /* block and not stored) */
  1093. /* A(k-1:k,k-1:k) := D(k-1:k,k-1:k) = W(k-1:k,kw-1:kw) */
  1094. /* A(1:k-2,k-1:k) := U(1:k-2,k:k-1:k) = */
  1095. /* = W(1:k-2,kw-1:kw) * ( D(k-1:k,k-1:k)**(-1) ) */
  1096. if (k > 2) {
  1097. /* Factor out the columns of the inverse of 2-by-2 pivot */
  1098. /* block D, so that each column contains 1, to reduce the */
  1099. /* number of FLOPS when we multiply panel */
  1100. /* ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1). */
  1101. /* D**(-1) = ( d11 cj(d21) )**(-1) = */
  1102. /* ( d21 d22 ) */
  1103. /* = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) = */
  1104. /* ( (-d21) ( d11 ) ) */
  1105. /* = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) * */
  1106. /* * ( d21*( d22/d21 ) conj(d21)*( - 1 ) ) = */
  1107. /* ( ( -1 ) ( d11/conj(d21) ) ) */
  1108. /* = 1/(|d21|**2) * 1/(D22*D11-1) * */
  1109. /* * ( d21*( D11 ) conj(d21)*( -1 ) ) = */
  1110. /* ( ( -1 ) ( D22 ) ) */
  1111. /* = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*( -1 ) ) = */
  1112. /* ( ( -1 ) ( D22 ) ) */
  1113. /* = ( (T/conj(d21))*( D11 ) (T/d21)*( -1 ) ) = */
  1114. /* ( ( -1 ) ( D22 ) ) */
  1115. /* Handle division by a small number. (NOTE: order of */
  1116. /* operations is important) */
  1117. /* = ( T*(( D11 )/conj(D21)) T*(( -1 )/D21 ) ) */
  1118. /* ( (( -1 ) ) (( D22 ) ) ), */
  1119. /* where D11 = d22/d21, */
  1120. /* D22 = d11/conj(d21), */
  1121. /* D21 = d21, */
  1122. /* T = 1/(D22*D11-1). */
  1123. /* (NOTE: No need to check for division by ZERO, */
  1124. /* since that was ensured earlier in pivot search: */
  1125. /* (a) d21 != 0 in 2x2 pivot case(4), */
  1126. /* since |d21| should be larger than |d11| and |d22|; */
  1127. /* (b) (D22*D11 - 1) != 0, since from (a), */
  1128. /* both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.) */
  1129. i__1 = k - 1 + kw * w_dim1;
  1130. d21.r = w[i__1].r, d21.i = w[i__1].i;
  1131. r_cnjg(&q__2, &d21);
  1132. c_div(&q__1, &w[k + kw * w_dim1], &q__2);
  1133. d11.r = q__1.r, d11.i = q__1.i;
  1134. c_div(&q__1, &w[k - 1 + (kw - 1) * w_dim1], &d21);
  1135. d22.r = q__1.r, d22.i = q__1.i;
  1136. q__1.r = d11.r * d22.r - d11.i * d22.i, q__1.i = d11.r *
  1137. d22.i + d11.i * d22.r;
  1138. t = 1.f / (q__1.r - 1.f);
  1139. /* Update elements in columns A(k-1) and A(k) as */
  1140. /* dot products of rows of ( W(kw-1) W(kw) ) and columns */
  1141. /* of D**(-1) */
  1142. i__1 = k - 2;
  1143. for (j = 1; j <= i__1; ++j) {
  1144. i__2 = j + (k - 1) * a_dim1;
  1145. i__3 = j + (kw - 1) * w_dim1;
  1146. q__4.r = d11.r * w[i__3].r - d11.i * w[i__3].i,
  1147. q__4.i = d11.r * w[i__3].i + d11.i * w[i__3]
  1148. .r;
  1149. i__4 = j + kw * w_dim1;
  1150. q__3.r = q__4.r - w[i__4].r, q__3.i = q__4.i - w[i__4]
  1151. .i;
  1152. c_div(&q__2, &q__3, &d21);
  1153. q__1.r = t * q__2.r, q__1.i = t * q__2.i;
  1154. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1155. i__2 = j + k * a_dim1;
  1156. i__3 = j + kw * w_dim1;
  1157. q__4.r = d22.r * w[i__3].r - d22.i * w[i__3].i,
  1158. q__4.i = d22.r * w[i__3].i + d22.i * w[i__3]
  1159. .r;
  1160. i__4 = j + (kw - 1) * w_dim1;
  1161. q__3.r = q__4.r - w[i__4].r, q__3.i = q__4.i - w[i__4]
  1162. .i;
  1163. r_cnjg(&q__5, &d21);
  1164. c_div(&q__2, &q__3, &q__5);
  1165. q__1.r = t * q__2.r, q__1.i = t * q__2.i;
  1166. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1167. /* L20: */
  1168. }
  1169. }
  1170. /* Copy diagonal elements of D(K) to A, */
  1171. /* copy superdiagonal element of D(K) to E(K) and */
  1172. /* ZERO out superdiagonal entry of A */
  1173. i__1 = k - 1 + (k - 1) * a_dim1;
  1174. i__2 = k - 1 + (kw - 1) * w_dim1;
  1175. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1176. i__1 = k - 1 + k * a_dim1;
  1177. a[i__1].r = 0.f, a[i__1].i = 0.f;
  1178. i__1 = k + k * a_dim1;
  1179. i__2 = k + kw * w_dim1;
  1180. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1181. i__1 = k;
  1182. i__2 = k - 1 + kw * w_dim1;
  1183. e[i__1].r = w[i__2].r, e[i__1].i = w[i__2].i;
  1184. i__1 = k - 1;
  1185. e[i__1].r = 0.f, e[i__1].i = 0.f;
  1186. /* (2) Conjugate columns W(kw) and W(kw-1) */
  1187. i__1 = k - 1;
  1188. clacgv_(&i__1, &w[kw * w_dim1 + 1], &c__1);
  1189. i__1 = k - 2;
  1190. clacgv_(&i__1, &w[(kw - 1) * w_dim1 + 1], &c__1);
  1191. }
  1192. /* End column K is nonsingular */
  1193. }
  1194. /* Store details of the interchanges in IPIV */
  1195. if (kstep == 1) {
  1196. ipiv[k] = kp;
  1197. } else {
  1198. ipiv[k] = -p;
  1199. ipiv[k - 1] = -kp;
  1200. }
  1201. /* Decrease K and return to the start of the main loop */
  1202. k -= kstep;
  1203. goto L10;
  1204. L30:
  1205. /* Update the upper triangle of A11 (= A(1:k,1:k)) as */
  1206. /* A11 := A11 - U12*D*U12**H = A11 - U12*W**H */
  1207. /* computing blocks of NB columns at a time (note that conjg(W) is */
  1208. /* actually stored) */
  1209. i__1 = -(*nb);
  1210. for (j = (k - 1) / *nb * *nb + 1; i__1 < 0 ? j >= 1 : j <= 1; j +=
  1211. i__1) {
  1212. /* Computing MIN */
  1213. i__2 = *nb, i__3 = k - j + 1;
  1214. jb = f2cmin(i__2,i__3);
  1215. /* Update the upper triangle of the diagonal block */
  1216. i__2 = j + jb - 1;
  1217. for (jj = j; jj <= i__2; ++jj) {
  1218. i__3 = jj + jj * a_dim1;
  1219. i__4 = jj + jj * a_dim1;
  1220. r__1 = a[i__4].r;
  1221. a[i__3].r = r__1, a[i__3].i = 0.f;
  1222. i__3 = jj - j + 1;
  1223. i__4 = *n - k;
  1224. q__1.r = -1.f, q__1.i = 0.f;
  1225. cgemv_("No transpose", &i__3, &i__4, &q__1, &a[j + (k + 1) *
  1226. a_dim1], lda, &w[jj + (kw + 1) * w_dim1], ldw, &c_b1,
  1227. &a[j + jj * a_dim1], &c__1);
  1228. i__3 = jj + jj * a_dim1;
  1229. i__4 = jj + jj * a_dim1;
  1230. r__1 = a[i__4].r;
  1231. a[i__3].r = r__1, a[i__3].i = 0.f;
  1232. /* L40: */
  1233. }
  1234. /* Update the rectangular superdiagonal block */
  1235. if (j >= 2) {
  1236. i__2 = j - 1;
  1237. i__3 = *n - k;
  1238. q__1.r = -1.f, q__1.i = 0.f;
  1239. cgemm_("No transpose", "Transpose", &i__2, &jb, &i__3, &q__1,
  1240. &a[(k + 1) * a_dim1 + 1], lda, &w[j + (kw + 1) *
  1241. w_dim1], ldw, &c_b1, &a[j * a_dim1 + 1], lda);
  1242. }
  1243. /* L50: */
  1244. }
  1245. /* Set KB to the number of columns factorized */
  1246. *kb = *n - k;
  1247. } else {
  1248. /* Factorize the leading columns of A using the lower triangle */
  1249. /* of A and working forwards, and compute the matrix W = L21*D */
  1250. /* for use in updating A22 (note that conjg(W) is actually stored) */
  1251. /* Initialize the unused last entry of the subdiagonal array E. */
  1252. i__1 = *n;
  1253. e[i__1].r = 0.f, e[i__1].i = 0.f;
  1254. /* K is the main loop index, increasing from 1 in steps of 1 or 2 */
  1255. k = 1;
  1256. L70:
  1257. /* Exit from loop */
  1258. if (k >= *nb && *nb < *n || k > *n) {
  1259. goto L90;
  1260. }
  1261. kstep = 1;
  1262. p = k;
  1263. /* Copy column K of A to column K of W and update column K of W */
  1264. i__1 = k + k * w_dim1;
  1265. i__2 = k + k * a_dim1;
  1266. r__1 = a[i__2].r;
  1267. w[i__1].r = r__1, w[i__1].i = 0.f;
  1268. if (k < *n) {
  1269. i__1 = *n - k;
  1270. ccopy_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &w[k + 1 + k *
  1271. w_dim1], &c__1);
  1272. }
  1273. if (k > 1) {
  1274. i__1 = *n - k + 1;
  1275. i__2 = k - 1;
  1276. q__1.r = -1.f, q__1.i = 0.f;
  1277. cgemv_("No transpose", &i__1, &i__2, &q__1, &a[k + a_dim1], lda, &
  1278. w[k + w_dim1], ldw, &c_b1, &w[k + k * w_dim1], &c__1);
  1279. i__1 = k + k * w_dim1;
  1280. i__2 = k + k * w_dim1;
  1281. r__1 = w[i__2].r;
  1282. w[i__1].r = r__1, w[i__1].i = 0.f;
  1283. }
  1284. /* Determine rows and columns to be interchanged and whether */
  1285. /* a 1-by-1 or 2-by-2 pivot block will be used */
  1286. i__1 = k + k * w_dim1;
  1287. absakk = (r__1 = w[i__1].r, abs(r__1));
  1288. /* IMAX is the row-index of the largest off-diagonal element in */
  1289. /* column K, and COLMAX is its absolute value. */
  1290. /* Determine both COLMAX and IMAX. */
  1291. if (k < *n) {
  1292. i__1 = *n - k;
  1293. imax = k + icamax_(&i__1, &w[k + 1 + k * w_dim1], &c__1);
  1294. i__1 = imax + k * w_dim1;
  1295. colmax = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[imax +
  1296. k * w_dim1]), abs(r__2));
  1297. } else {
  1298. colmax = 0.f;
  1299. }
  1300. if (f2cmax(absakk,colmax) == 0.f) {
  1301. /* Column K is zero or underflow: set INFO and continue */
  1302. if (*info == 0) {
  1303. *info = k;
  1304. }
  1305. kp = k;
  1306. i__1 = k + k * a_dim1;
  1307. i__2 = k + k * w_dim1;
  1308. r__1 = w[i__2].r;
  1309. a[i__1].r = r__1, a[i__1].i = 0.f;
  1310. if (k < *n) {
  1311. i__1 = *n - k;
  1312. ccopy_(&i__1, &w[k + 1 + k * w_dim1], &c__1, &a[k + 1 + k *
  1313. a_dim1], &c__1);
  1314. }
  1315. /* Set E( K ) to zero */
  1316. if (k < *n) {
  1317. i__1 = k;
  1318. e[i__1].r = 0.f, e[i__1].i = 0.f;
  1319. }
  1320. } else {
  1321. /* ============================================================ */
  1322. /* BEGIN pivot search */
  1323. /* Case(1) */
  1324. /* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
  1325. /* (used to handle NaN and Inf) */
  1326. if (! (absakk < alpha * colmax)) {
  1327. /* no interchange, use 1-by-1 pivot block */
  1328. kp = k;
  1329. } else {
  1330. done = FALSE_;
  1331. /* Loop until pivot found */
  1332. L72:
  1333. /* BEGIN pivot search loop body */
  1334. /* Copy column IMAX to column k+1 of W and update it */
  1335. i__1 = imax - k;
  1336. ccopy_(&i__1, &a[imax + k * a_dim1], lda, &w[k + (k + 1) *
  1337. w_dim1], &c__1);
  1338. i__1 = imax - k;
  1339. clacgv_(&i__1, &w[k + (k + 1) * w_dim1], &c__1);
  1340. i__1 = imax + (k + 1) * w_dim1;
  1341. i__2 = imax + imax * a_dim1;
  1342. r__1 = a[i__2].r;
  1343. w[i__1].r = r__1, w[i__1].i = 0.f;
  1344. if (imax < *n) {
  1345. i__1 = *n - imax;
  1346. ccopy_(&i__1, &a[imax + 1 + imax * a_dim1], &c__1, &w[
  1347. imax + 1 + (k + 1) * w_dim1], &c__1);
  1348. }
  1349. if (k > 1) {
  1350. i__1 = *n - k + 1;
  1351. i__2 = k - 1;
  1352. q__1.r = -1.f, q__1.i = 0.f;
  1353. cgemv_("No transpose", &i__1, &i__2, &q__1, &a[k + a_dim1]
  1354. , lda, &w[imax + w_dim1], ldw, &c_b1, &w[k + (k +
  1355. 1) * w_dim1], &c__1);
  1356. i__1 = imax + (k + 1) * w_dim1;
  1357. i__2 = imax + (k + 1) * w_dim1;
  1358. r__1 = w[i__2].r;
  1359. w[i__1].r = r__1, w[i__1].i = 0.f;
  1360. }
  1361. /* JMAX is the column-index of the largest off-diagonal */
  1362. /* element in row IMAX, and ROWMAX is its absolute value. */
  1363. /* Determine both ROWMAX and JMAX. */
  1364. if (imax != k) {
  1365. i__1 = imax - k;
  1366. jmax = k - 1 + icamax_(&i__1, &w[k + (k + 1) * w_dim1], &
  1367. c__1);
  1368. i__1 = jmax + (k + 1) * w_dim1;
  1369. rowmax = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&
  1370. w[jmax + (k + 1) * w_dim1]), abs(r__2));
  1371. } else {
  1372. rowmax = 0.f;
  1373. }
  1374. if (imax < *n) {
  1375. i__1 = *n - imax;
  1376. itemp = imax + icamax_(&i__1, &w[imax + 1 + (k + 1) *
  1377. w_dim1], &c__1);
  1378. i__1 = itemp + (k + 1) * w_dim1;
  1379. stemp = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[
  1380. itemp + (k + 1) * w_dim1]), abs(r__2));
  1381. if (stemp > rowmax) {
  1382. rowmax = stemp;
  1383. jmax = itemp;
  1384. }
  1385. }
  1386. /* Case(2) */
  1387. /* Equivalent to testing for */
  1388. /* ABS( REAL( W( IMAX,K+1 ) ) ).GE.ALPHA*ROWMAX */
  1389. /* (used to handle NaN and Inf) */
  1390. i__1 = imax + (k + 1) * w_dim1;
  1391. if (! ((r__1 = w[i__1].r, abs(r__1)) < alpha * rowmax)) {
  1392. /* interchange rows and columns K and IMAX, */
  1393. /* use 1-by-1 pivot block */
  1394. kp = imax;
  1395. /* copy column K+1 of W to column K of W */
  1396. i__1 = *n - k + 1;
  1397. ccopy_(&i__1, &w[k + (k + 1) * w_dim1], &c__1, &w[k + k *
  1398. w_dim1], &c__1);
  1399. done = TRUE_;
  1400. /* Case(3) */
  1401. /* Equivalent to testing for ROWMAX.EQ.COLMAX, */
  1402. /* (used to handle NaN and Inf) */
  1403. } else if (p == jmax || rowmax <= colmax) {
  1404. /* interchange rows and columns K+1 and IMAX, */
  1405. /* use 2-by-2 pivot block */
  1406. kp = imax;
  1407. kstep = 2;
  1408. done = TRUE_;
  1409. /* Case(4) */
  1410. } else {
  1411. /* Pivot not found: set params and repeat */
  1412. p = imax;
  1413. colmax = rowmax;
  1414. imax = jmax;
  1415. /* Copy updated JMAXth (next IMAXth) column to Kth of W */
  1416. i__1 = *n - k + 1;
  1417. ccopy_(&i__1, &w[k + (k + 1) * w_dim1], &c__1, &w[k + k *
  1418. w_dim1], &c__1);
  1419. }
  1420. /* End pivot search loop body */
  1421. if (! done) {
  1422. goto L72;
  1423. }
  1424. }
  1425. /* END pivot search */
  1426. /* ============================================================ */
  1427. /* KK is the column of A where pivoting step stopped */
  1428. kk = k + kstep - 1;
  1429. /* Interchange rows and columns P and K (only for 2-by-2 pivot). */
  1430. /* Updated column P is already stored in column K of W. */
  1431. if (kstep == 2 && p != k) {
  1432. /* Copy non-updated column KK-1 to column P of submatrix A */
  1433. /* at step K. No need to copy element into columns */
  1434. /* K and K+1 of A for 2-by-2 pivot, since these columns */
  1435. /* will be later overwritten. */
  1436. i__1 = p + p * a_dim1;
  1437. i__2 = k + k * a_dim1;
  1438. r__1 = a[i__2].r;
  1439. a[i__1].r = r__1, a[i__1].i = 0.f;
  1440. i__1 = p - k - 1;
  1441. ccopy_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &a[p + (k + 1) *
  1442. a_dim1], lda);
  1443. i__1 = p - k - 1;
  1444. clacgv_(&i__1, &a[p + (k + 1) * a_dim1], lda);
  1445. if (p < *n) {
  1446. i__1 = *n - p;
  1447. ccopy_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + 1 + p
  1448. * a_dim1], &c__1);
  1449. }
  1450. /* Interchange rows K and P in first K-1 columns of A */
  1451. /* (columns K and K+1 of A for 2-by-2 pivot will be */
  1452. /* later overwritten). Interchange rows K and P */
  1453. /* in first KK columns of W. */
  1454. if (k > 1) {
  1455. i__1 = k - 1;
  1456. cswap_(&i__1, &a[k + a_dim1], lda, &a[p + a_dim1], lda);
  1457. }
  1458. cswap_(&kk, &w[k + w_dim1], ldw, &w[p + w_dim1], ldw);
  1459. }
  1460. /* Interchange rows and columns KP and KK. */
  1461. /* Updated column KP is already stored in column KK of W. */
  1462. if (kp != kk) {
  1463. /* Copy non-updated column KK to column KP of submatrix A */
  1464. /* at step K. No need to copy element into column K */
  1465. /* (or K and K+1 for 2-by-2 pivot) of A, since these columns */
  1466. /* will be later overwritten. */
  1467. i__1 = kp + kp * a_dim1;
  1468. i__2 = kk + kk * a_dim1;
  1469. r__1 = a[i__2].r;
  1470. a[i__1].r = r__1, a[i__1].i = 0.f;
  1471. i__1 = kp - kk - 1;
  1472. ccopy_(&i__1, &a[kk + 1 + kk * a_dim1], &c__1, &a[kp + (kk +
  1473. 1) * a_dim1], lda);
  1474. i__1 = kp - kk - 1;
  1475. clacgv_(&i__1, &a[kp + (kk + 1) * a_dim1], lda);
  1476. if (kp < *n) {
  1477. i__1 = *n - kp;
  1478. ccopy_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1
  1479. + kp * a_dim1], &c__1);
  1480. }
  1481. /* Interchange rows KK and KP in first K-1 columns of A */
  1482. /* (column K (or K and K+1 for 2-by-2 pivot) of A will be */
  1483. /* later overwritten). Interchange rows KK and KP */
  1484. /* in first KK columns of W. */
  1485. if (k > 1) {
  1486. i__1 = k - 1;
  1487. cswap_(&i__1, &a[kk + a_dim1], lda, &a[kp + a_dim1], lda);
  1488. }
  1489. cswap_(&kk, &w[kk + w_dim1], ldw, &w[kp + w_dim1], ldw);
  1490. }
  1491. if (kstep == 1) {
  1492. /* 1-by-1 pivot block D(k): column k of W now holds */
  1493. /* W(k) = L(k)*D(k), */
  1494. /* where L(k) is the k-th column of L */
  1495. /* (1) Store subdiag. elements of column L(k) */
  1496. /* and 1-by-1 block D(k) in column k of A. */
  1497. /* (NOTE: Diagonal element L(k,k) is a UNIT element */
  1498. /* and not stored) */
  1499. /* A(k,k) := D(k,k) = W(k,k) */
  1500. /* A(k+1:N,k) := L(k+1:N,k) = W(k+1:N,k)/D(k,k) */
  1501. /* (NOTE: No need to use for Hermitian matrix */
  1502. /* A( K, K ) = REAL( W( K, K) ) to separately copy diagonal */
  1503. /* element D(k,k) from W (potentially saves only one load)) */
  1504. i__1 = *n - k + 1;
  1505. ccopy_(&i__1, &w[k + k * w_dim1], &c__1, &a[k + k * a_dim1], &
  1506. c__1);
  1507. if (k < *n) {
  1508. /* (NOTE: No need to check if A(k,k) is NOT ZERO, */
  1509. /* since that was ensured earlier in pivot search: */
  1510. /* case A(k,k) = 0 falls into 2x2 pivot case(3)) */
  1511. /* Handle division by a small number */
  1512. i__1 = k + k * a_dim1;
  1513. t = a[i__1].r;
  1514. if (abs(t) >= sfmin) {
  1515. r1 = 1.f / t;
  1516. i__1 = *n - k;
  1517. csscal_(&i__1, &r1, &a[k + 1 + k * a_dim1], &c__1);
  1518. } else {
  1519. i__1 = *n;
  1520. for (ii = k + 1; ii <= i__1; ++ii) {
  1521. i__2 = ii + k * a_dim1;
  1522. i__3 = ii + k * a_dim1;
  1523. q__1.r = a[i__3].r / t, q__1.i = a[i__3].i / t;
  1524. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1525. /* L74: */
  1526. }
  1527. }
  1528. /* (2) Conjugate column W(k) */
  1529. i__1 = *n - k;
  1530. clacgv_(&i__1, &w[k + 1 + k * w_dim1], &c__1);
  1531. /* Store the subdiagonal element of D in array E */
  1532. i__1 = k;
  1533. e[i__1].r = 0.f, e[i__1].i = 0.f;
  1534. }
  1535. } else {
  1536. /* 2-by-2 pivot block D(k): columns k and k+1 of W now hold */
  1537. /* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
  1538. /* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
  1539. /* of L */
  1540. /* (1) Store L(k+2:N,k) and L(k+2:N,k+1) and 2-by-2 */
  1541. /* block D(k:k+1,k:k+1) in columns k and k+1 of A. */
  1542. /* NOTE: 2-by-2 diagonal block L(k:k+1,k:k+1) is a UNIT */
  1543. /* block and not stored. */
  1544. /* A(k:k+1,k:k+1) := D(k:k+1,k:k+1) = W(k:k+1,k:k+1) */
  1545. /* A(k+2:N,k:k+1) := L(k+2:N,k:k+1) = */
  1546. /* = W(k+2:N,k:k+1) * ( D(k:k+1,k:k+1)**(-1) ) */
  1547. if (k < *n - 1) {
  1548. /* Factor out the columns of the inverse of 2-by-2 pivot */
  1549. /* block D, so that each column contains 1, to reduce the */
  1550. /* number of FLOPS when we multiply panel */
  1551. /* ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1). */
  1552. /* D**(-1) = ( d11 cj(d21) )**(-1) = */
  1553. /* ( d21 d22 ) */
  1554. /* = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) = */
  1555. /* ( (-d21) ( d11 ) ) */
  1556. /* = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) * */
  1557. /* * ( d21*( d22/d21 ) conj(d21)*( - 1 ) ) = */
  1558. /* ( ( -1 ) ( d11/conj(d21) ) ) */
  1559. /* = 1/(|d21|**2) * 1/(D22*D11-1) * */
  1560. /* * ( d21*( D11 ) conj(d21)*( -1 ) ) = */
  1561. /* ( ( -1 ) ( D22 ) ) */
  1562. /* = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*( -1 ) ) = */
  1563. /* ( ( -1 ) ( D22 ) ) */
  1564. /* = ( (T/conj(d21))*( D11 ) (T/d21)*( -1 ) ) = */
  1565. /* ( ( -1 ) ( D22 ) ) */
  1566. /* Handle division by a small number. (NOTE: order of */
  1567. /* operations is important) */
  1568. /* = ( T*(( D11 )/conj(D21)) T*(( -1 )/D21 ) ) */
  1569. /* ( (( -1 ) ) (( D22 ) ) ), */
  1570. /* where D11 = d22/d21, */
  1571. /* D22 = d11/conj(d21), */
  1572. /* D21 = d21, */
  1573. /* T = 1/(D22*D11-1). */
  1574. /* (NOTE: No need to check for division by ZERO, */
  1575. /* since that was ensured earlier in pivot search: */
  1576. /* (a) d21 != 0 in 2x2 pivot case(4), */
  1577. /* since |d21| should be larger than |d11| and |d22|; */
  1578. /* (b) (D22*D11 - 1) != 0, since from (a), */
  1579. /* both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.) */
  1580. i__1 = k + 1 + k * w_dim1;
  1581. d21.r = w[i__1].r, d21.i = w[i__1].i;
  1582. c_div(&q__1, &w[k + 1 + (k + 1) * w_dim1], &d21);
  1583. d11.r = q__1.r, d11.i = q__1.i;
  1584. r_cnjg(&q__2, &d21);
  1585. c_div(&q__1, &w[k + k * w_dim1], &q__2);
  1586. d22.r = q__1.r, d22.i = q__1.i;
  1587. q__1.r = d11.r * d22.r - d11.i * d22.i, q__1.i = d11.r *
  1588. d22.i + d11.i * d22.r;
  1589. t = 1.f / (q__1.r - 1.f);
  1590. /* Update elements in columns A(k) and A(k+1) as */
  1591. /* dot products of rows of ( W(k) W(k+1) ) and columns */
  1592. /* of D**(-1) */
  1593. i__1 = *n;
  1594. for (j = k + 2; j <= i__1; ++j) {
  1595. i__2 = j + k * a_dim1;
  1596. i__3 = j + k * w_dim1;
  1597. q__4.r = d11.r * w[i__3].r - d11.i * w[i__3].i,
  1598. q__4.i = d11.r * w[i__3].i + d11.i * w[i__3]
  1599. .r;
  1600. i__4 = j + (k + 1) * w_dim1;
  1601. q__3.r = q__4.r - w[i__4].r, q__3.i = q__4.i - w[i__4]
  1602. .i;
  1603. r_cnjg(&q__5, &d21);
  1604. c_div(&q__2, &q__3, &q__5);
  1605. q__1.r = t * q__2.r, q__1.i = t * q__2.i;
  1606. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1607. i__2 = j + (k + 1) * a_dim1;
  1608. i__3 = j + (k + 1) * w_dim1;
  1609. q__4.r = d22.r * w[i__3].r - d22.i * w[i__3].i,
  1610. q__4.i = d22.r * w[i__3].i + d22.i * w[i__3]
  1611. .r;
  1612. i__4 = j + k * w_dim1;
  1613. q__3.r = q__4.r - w[i__4].r, q__3.i = q__4.i - w[i__4]
  1614. .i;
  1615. c_div(&q__2, &q__3, &d21);
  1616. q__1.r = t * q__2.r, q__1.i = t * q__2.i;
  1617. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1618. /* L80: */
  1619. }
  1620. }
  1621. /* Copy diagonal elements of D(K) to A, */
  1622. /* copy subdiagonal element of D(K) to E(K) and */
  1623. /* ZERO out subdiagonal entry of A */
  1624. i__1 = k + k * a_dim1;
  1625. i__2 = k + k * w_dim1;
  1626. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1627. i__1 = k + 1 + k * a_dim1;
  1628. a[i__1].r = 0.f, a[i__1].i = 0.f;
  1629. i__1 = k + 1 + (k + 1) * a_dim1;
  1630. i__2 = k + 1 + (k + 1) * w_dim1;
  1631. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1632. i__1 = k;
  1633. i__2 = k + 1 + k * w_dim1;
  1634. e[i__1].r = w[i__2].r, e[i__1].i = w[i__2].i;
  1635. i__1 = k + 1;
  1636. e[i__1].r = 0.f, e[i__1].i = 0.f;
  1637. /* (2) Conjugate columns W(k) and W(k+1) */
  1638. i__1 = *n - k;
  1639. clacgv_(&i__1, &w[k + 1 + k * w_dim1], &c__1);
  1640. i__1 = *n - k - 1;
  1641. clacgv_(&i__1, &w[k + 2 + (k + 1) * w_dim1], &c__1);
  1642. }
  1643. /* End column K is nonsingular */
  1644. }
  1645. /* Store details of the interchanges in IPIV */
  1646. if (kstep == 1) {
  1647. ipiv[k] = kp;
  1648. } else {
  1649. ipiv[k] = -p;
  1650. ipiv[k + 1] = -kp;
  1651. }
  1652. /* Increase K and return to the start of the main loop */
  1653. k += kstep;
  1654. goto L70;
  1655. L90:
  1656. /* Update the lower triangle of A22 (= A(k:n,k:n)) as */
  1657. /* A22 := A22 - L21*D*L21**H = A22 - L21*W**H */
  1658. /* computing blocks of NB columns at a time (note that conjg(W) is */
  1659. /* actually stored) */
  1660. i__1 = *n;
  1661. i__2 = *nb;
  1662. for (j = k; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  1663. /* Computing MIN */
  1664. i__3 = *nb, i__4 = *n - j + 1;
  1665. jb = f2cmin(i__3,i__4);
  1666. /* Update the lower triangle of the diagonal block */
  1667. i__3 = j + jb - 1;
  1668. for (jj = j; jj <= i__3; ++jj) {
  1669. i__4 = jj + jj * a_dim1;
  1670. i__5 = jj + jj * a_dim1;
  1671. r__1 = a[i__5].r;
  1672. a[i__4].r = r__1, a[i__4].i = 0.f;
  1673. i__4 = j + jb - jj;
  1674. i__5 = k - 1;
  1675. q__1.r = -1.f, q__1.i = 0.f;
  1676. cgemv_("No transpose", &i__4, &i__5, &q__1, &a[jj + a_dim1],
  1677. lda, &w[jj + w_dim1], ldw, &c_b1, &a[jj + jj * a_dim1]
  1678. , &c__1);
  1679. i__4 = jj + jj * a_dim1;
  1680. i__5 = jj + jj * a_dim1;
  1681. r__1 = a[i__5].r;
  1682. a[i__4].r = r__1, a[i__4].i = 0.f;
  1683. /* L100: */
  1684. }
  1685. /* Update the rectangular subdiagonal block */
  1686. if (j + jb <= *n) {
  1687. i__3 = *n - j - jb + 1;
  1688. i__4 = k - 1;
  1689. q__1.r = -1.f, q__1.i = 0.f;
  1690. cgemm_("No transpose", "Transpose", &i__3, &jb, &i__4, &q__1,
  1691. &a[j + jb + a_dim1], lda, &w[j + w_dim1], ldw, &c_b1,
  1692. &a[j + jb + j * a_dim1], lda);
  1693. }
  1694. /* L110: */
  1695. }
  1696. /* Set KB to the number of columns factorized */
  1697. *kb = k - 1;
  1698. }
  1699. return;
  1700. /* End of CLAHEF_RK */
  1701. } /* clahef_rk__ */