You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlantb.c 27 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. /* > \brief \b ZLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the ele
  488. ment of largest absolute value of a triangular band matrix. */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download ZLANTB + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlantb.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlantb.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlantb.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* DOUBLE PRECISION FUNCTION ZLANTB( NORM, UPLO, DIAG, N, K, AB, */
  507. /* LDAB, WORK ) */
  508. /* CHARACTER DIAG, NORM, UPLO */
  509. /* INTEGER K, LDAB, N */
  510. /* DOUBLE PRECISION WORK( * ) */
  511. /* COMPLEX*16 AB( LDAB, * ) */
  512. /* > \par Purpose: */
  513. /* ============= */
  514. /* > */
  515. /* > \verbatim */
  516. /* > */
  517. /* > ZLANTB returns the value of the one norm, or the Frobenius norm, or */
  518. /* > the infinity norm, or the element of largest absolute value of an */
  519. /* > n by n triangular band matrix A, with ( k + 1 ) diagonals. */
  520. /* > \endverbatim */
  521. /* > */
  522. /* > \return ZLANTB */
  523. /* > \verbatim */
  524. /* > */
  525. /* > ZLANTB = ( f2cmax(abs(A(i,j))), NORM = 'M' or 'm' */
  526. /* > ( */
  527. /* > ( norm1(A), NORM = '1', 'O' or 'o' */
  528. /* > ( */
  529. /* > ( normI(A), NORM = 'I' or 'i' */
  530. /* > ( */
  531. /* > ( normF(A), NORM = 'F', 'f', 'E' or 'e' */
  532. /* > */
  533. /* > where norm1 denotes the one norm of a matrix (maximum column sum), */
  534. /* > normI denotes the infinity norm of a matrix (maximum row sum) and */
  535. /* > normF denotes the Frobenius norm of a matrix (square root of sum of */
  536. /* > squares). Note that f2cmax(abs(A(i,j))) is not a consistent matrix norm. */
  537. /* > \endverbatim */
  538. /* Arguments: */
  539. /* ========== */
  540. /* > \param[in] NORM */
  541. /* > \verbatim */
  542. /* > NORM is CHARACTER*1 */
  543. /* > Specifies the value to be returned in ZLANTB as described */
  544. /* > above. */
  545. /* > \endverbatim */
  546. /* > */
  547. /* > \param[in] UPLO */
  548. /* > \verbatim */
  549. /* > UPLO is CHARACTER*1 */
  550. /* > Specifies whether the matrix A is upper or lower triangular. */
  551. /* > = 'U': Upper triangular */
  552. /* > = 'L': Lower triangular */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in] DIAG */
  556. /* > \verbatim */
  557. /* > DIAG is CHARACTER*1 */
  558. /* > Specifies whether or not the matrix A is unit triangular. */
  559. /* > = 'N': Non-unit triangular */
  560. /* > = 'U': Unit triangular */
  561. /* > \endverbatim */
  562. /* > */
  563. /* > \param[in] N */
  564. /* > \verbatim */
  565. /* > N is INTEGER */
  566. /* > The order of the matrix A. N >= 0. When N = 0, ZLANTB is */
  567. /* > set to zero. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] K */
  571. /* > \verbatim */
  572. /* > K is INTEGER */
  573. /* > The number of super-diagonals of the matrix A if UPLO = 'U', */
  574. /* > or the number of sub-diagonals of the matrix A if UPLO = 'L'. */
  575. /* > K >= 0. */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[in] AB */
  579. /* > \verbatim */
  580. /* > AB is COMPLEX*16 array, dimension (LDAB,N) */
  581. /* > The upper or lower triangular band matrix A, stored in the */
  582. /* > first k+1 rows of AB. The j-th column of A is stored */
  583. /* > in the j-th column of the array AB as follows: */
  584. /* > if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for f2cmax(1,j-k)<=i<=j; */
  585. /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+k). */
  586. /* > Note that when DIAG = 'U', the elements of the array AB */
  587. /* > corresponding to the diagonal elements of the matrix A are */
  588. /* > not referenced, but are assumed to be one. */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[in] LDAB */
  592. /* > \verbatim */
  593. /* > LDAB is INTEGER */
  594. /* > The leading dimension of the array AB. LDAB >= K+1. */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[out] WORK */
  598. /* > \verbatim */
  599. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)), */
  600. /* > where LWORK >= N when NORM = 'I'; otherwise, WORK is not */
  601. /* > referenced. */
  602. /* > \endverbatim */
  603. /* Authors: */
  604. /* ======== */
  605. /* > \author Univ. of Tennessee */
  606. /* > \author Univ. of California Berkeley */
  607. /* > \author Univ. of Colorado Denver */
  608. /* > \author NAG Ltd. */
  609. /* > \date December 2016 */
  610. /* > \ingroup complex16OTHERauxiliary */
  611. /* ===================================================================== */
  612. doublereal zlantb_(char *norm, char *uplo, char *diag, integer *n, integer *k,
  613. doublecomplex *ab, integer *ldab, doublereal *work)
  614. {
  615. /* System generated locals */
  616. integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5;
  617. doublereal ret_val;
  618. /* Local variables */
  619. extern /* Subroutine */ void dcombssq_(doublereal *, doublereal *);
  620. integer i__, j, l;
  621. logical udiag;
  622. extern logical lsame_(char *, char *);
  623. doublereal value;
  624. extern logical disnan_(doublereal *);
  625. doublereal colssq[2];
  626. extern /* Subroutine */ void zlassq_(integer *, doublecomplex *, integer *,
  627. doublereal *, doublereal *);
  628. doublereal sum, ssq[2];
  629. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  630. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  631. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  632. /* December 2016 */
  633. /* ===================================================================== */
  634. /* Parameter adjustments */
  635. ab_dim1 = *ldab;
  636. ab_offset = 1 + ab_dim1 * 1;
  637. ab -= ab_offset;
  638. --work;
  639. /* Function Body */
  640. if (*n == 0) {
  641. value = 0.;
  642. } else if (lsame_(norm, "M")) {
  643. /* Find f2cmax(abs(A(i,j))). */
  644. if (lsame_(diag, "U")) {
  645. value = 1.;
  646. if (lsame_(uplo, "U")) {
  647. i__1 = *n;
  648. for (j = 1; j <= i__1; ++j) {
  649. /* Computing MAX */
  650. i__2 = *k + 2 - j;
  651. i__3 = *k;
  652. for (i__ = f2cmax(i__2,1); i__ <= i__3; ++i__) {
  653. sum = z_abs(&ab[i__ + j * ab_dim1]);
  654. if (value < sum || disnan_(&sum)) {
  655. value = sum;
  656. }
  657. /* L10: */
  658. }
  659. /* L20: */
  660. }
  661. } else {
  662. i__1 = *n;
  663. for (j = 1; j <= i__1; ++j) {
  664. /* Computing MIN */
  665. i__2 = *n + 1 - j, i__4 = *k + 1;
  666. i__3 = f2cmin(i__2,i__4);
  667. for (i__ = 2; i__ <= i__3; ++i__) {
  668. sum = z_abs(&ab[i__ + j * ab_dim1]);
  669. if (value < sum || disnan_(&sum)) {
  670. value = sum;
  671. }
  672. /* L30: */
  673. }
  674. /* L40: */
  675. }
  676. }
  677. } else {
  678. value = 0.;
  679. if (lsame_(uplo, "U")) {
  680. i__1 = *n;
  681. for (j = 1; j <= i__1; ++j) {
  682. /* Computing MAX */
  683. i__3 = *k + 2 - j;
  684. i__2 = *k + 1;
  685. for (i__ = f2cmax(i__3,1); i__ <= i__2; ++i__) {
  686. sum = z_abs(&ab[i__ + j * ab_dim1]);
  687. if (value < sum || disnan_(&sum)) {
  688. value = sum;
  689. }
  690. /* L50: */
  691. }
  692. /* L60: */
  693. }
  694. } else {
  695. i__1 = *n;
  696. for (j = 1; j <= i__1; ++j) {
  697. /* Computing MIN */
  698. i__3 = *n + 1 - j, i__4 = *k + 1;
  699. i__2 = f2cmin(i__3,i__4);
  700. for (i__ = 1; i__ <= i__2; ++i__) {
  701. sum = z_abs(&ab[i__ + j * ab_dim1]);
  702. if (value < sum || disnan_(&sum)) {
  703. value = sum;
  704. }
  705. /* L70: */
  706. }
  707. /* L80: */
  708. }
  709. }
  710. }
  711. } else if (lsame_(norm, "O") || *(unsigned char *)
  712. norm == '1') {
  713. /* Find norm1(A). */
  714. value = 0.;
  715. udiag = lsame_(diag, "U");
  716. if (lsame_(uplo, "U")) {
  717. i__1 = *n;
  718. for (j = 1; j <= i__1; ++j) {
  719. if (udiag) {
  720. sum = 1.;
  721. /* Computing MAX */
  722. i__2 = *k + 2 - j;
  723. i__3 = *k;
  724. for (i__ = f2cmax(i__2,1); i__ <= i__3; ++i__) {
  725. sum += z_abs(&ab[i__ + j * ab_dim1]);
  726. /* L90: */
  727. }
  728. } else {
  729. sum = 0.;
  730. /* Computing MAX */
  731. i__3 = *k + 2 - j;
  732. i__2 = *k + 1;
  733. for (i__ = f2cmax(i__3,1); i__ <= i__2; ++i__) {
  734. sum += z_abs(&ab[i__ + j * ab_dim1]);
  735. /* L100: */
  736. }
  737. }
  738. if (value < sum || disnan_(&sum)) {
  739. value = sum;
  740. }
  741. /* L110: */
  742. }
  743. } else {
  744. i__1 = *n;
  745. for (j = 1; j <= i__1; ++j) {
  746. if (udiag) {
  747. sum = 1.;
  748. /* Computing MIN */
  749. i__3 = *n + 1 - j, i__4 = *k + 1;
  750. i__2 = f2cmin(i__3,i__4);
  751. for (i__ = 2; i__ <= i__2; ++i__) {
  752. sum += z_abs(&ab[i__ + j * ab_dim1]);
  753. /* L120: */
  754. }
  755. } else {
  756. sum = 0.;
  757. /* Computing MIN */
  758. i__3 = *n + 1 - j, i__4 = *k + 1;
  759. i__2 = f2cmin(i__3,i__4);
  760. for (i__ = 1; i__ <= i__2; ++i__) {
  761. sum += z_abs(&ab[i__ + j * ab_dim1]);
  762. /* L130: */
  763. }
  764. }
  765. if (value < sum || disnan_(&sum)) {
  766. value = sum;
  767. }
  768. /* L140: */
  769. }
  770. }
  771. } else if (lsame_(norm, "I")) {
  772. /* Find normI(A). */
  773. value = 0.;
  774. if (lsame_(uplo, "U")) {
  775. if (lsame_(diag, "U")) {
  776. i__1 = *n;
  777. for (i__ = 1; i__ <= i__1; ++i__) {
  778. work[i__] = 1.;
  779. /* L150: */
  780. }
  781. i__1 = *n;
  782. for (j = 1; j <= i__1; ++j) {
  783. l = *k + 1 - j;
  784. /* Computing MAX */
  785. i__2 = 1, i__3 = j - *k;
  786. i__4 = j - 1;
  787. for (i__ = f2cmax(i__2,i__3); i__ <= i__4; ++i__) {
  788. work[i__] += z_abs(&ab[l + i__ + j * ab_dim1]);
  789. /* L160: */
  790. }
  791. /* L170: */
  792. }
  793. } else {
  794. i__1 = *n;
  795. for (i__ = 1; i__ <= i__1; ++i__) {
  796. work[i__] = 0.;
  797. /* L180: */
  798. }
  799. i__1 = *n;
  800. for (j = 1; j <= i__1; ++j) {
  801. l = *k + 1 - j;
  802. /* Computing MAX */
  803. i__4 = 1, i__2 = j - *k;
  804. i__3 = j;
  805. for (i__ = f2cmax(i__4,i__2); i__ <= i__3; ++i__) {
  806. work[i__] += z_abs(&ab[l + i__ + j * ab_dim1]);
  807. /* L190: */
  808. }
  809. /* L200: */
  810. }
  811. }
  812. } else {
  813. if (lsame_(diag, "U")) {
  814. i__1 = *n;
  815. for (i__ = 1; i__ <= i__1; ++i__) {
  816. work[i__] = 1.;
  817. /* L210: */
  818. }
  819. i__1 = *n;
  820. for (j = 1; j <= i__1; ++j) {
  821. l = 1 - j;
  822. /* Computing MIN */
  823. i__4 = *n, i__2 = j + *k;
  824. i__3 = f2cmin(i__4,i__2);
  825. for (i__ = j + 1; i__ <= i__3; ++i__) {
  826. work[i__] += z_abs(&ab[l + i__ + j * ab_dim1]);
  827. /* L220: */
  828. }
  829. /* L230: */
  830. }
  831. } else {
  832. i__1 = *n;
  833. for (i__ = 1; i__ <= i__1; ++i__) {
  834. work[i__] = 0.;
  835. /* L240: */
  836. }
  837. i__1 = *n;
  838. for (j = 1; j <= i__1; ++j) {
  839. l = 1 - j;
  840. /* Computing MIN */
  841. i__4 = *n, i__2 = j + *k;
  842. i__3 = f2cmin(i__4,i__2);
  843. for (i__ = j; i__ <= i__3; ++i__) {
  844. work[i__] += z_abs(&ab[l + i__ + j * ab_dim1]);
  845. /* L250: */
  846. }
  847. /* L260: */
  848. }
  849. }
  850. }
  851. i__1 = *n;
  852. for (i__ = 1; i__ <= i__1; ++i__) {
  853. sum = work[i__];
  854. if (value < sum || disnan_(&sum)) {
  855. value = sum;
  856. }
  857. /* L270: */
  858. }
  859. } else if (lsame_(norm, "F") || lsame_(norm, "E")) {
  860. /* Find normF(A). */
  861. /* SSQ(1) is scale */
  862. /* SSQ(2) is sum-of-squares */
  863. /* For better accuracy, sum each column separately. */
  864. if (lsame_(uplo, "U")) {
  865. if (lsame_(diag, "U")) {
  866. ssq[0] = 1.;
  867. ssq[1] = (doublereal) (*n);
  868. if (*k > 0) {
  869. i__1 = *n;
  870. for (j = 2; j <= i__1; ++j) {
  871. colssq[0] = 0.;
  872. colssq[1] = 1.;
  873. /* Computing MIN */
  874. i__4 = j - 1;
  875. i__3 = f2cmin(i__4,*k);
  876. /* Computing MAX */
  877. i__2 = *k + 2 - j;
  878. zlassq_(&i__3, &ab[f2cmax(i__2,1) + j * ab_dim1], &c__1,
  879. colssq, &colssq[1]);
  880. dcombssq_(ssq, colssq);
  881. /* L280: */
  882. }
  883. }
  884. } else {
  885. ssq[0] = 0.;
  886. ssq[1] = 1.;
  887. i__1 = *n;
  888. for (j = 1; j <= i__1; ++j) {
  889. colssq[0] = 0.;
  890. colssq[1] = 1.;
  891. /* Computing MIN */
  892. i__4 = j, i__2 = *k + 1;
  893. i__3 = f2cmin(i__4,i__2);
  894. /* Computing MAX */
  895. i__5 = *k + 2 - j;
  896. zlassq_(&i__3, &ab[f2cmax(i__5,1) + j * ab_dim1], &c__1,
  897. colssq, &colssq[1]);
  898. dcombssq_(ssq, colssq);
  899. /* L290: */
  900. }
  901. }
  902. } else {
  903. if (lsame_(diag, "U")) {
  904. ssq[0] = 1.;
  905. ssq[1] = (doublereal) (*n);
  906. if (*k > 0) {
  907. i__1 = *n - 1;
  908. for (j = 1; j <= i__1; ++j) {
  909. colssq[0] = 0.;
  910. colssq[1] = 1.;
  911. /* Computing MIN */
  912. i__4 = *n - j;
  913. i__3 = f2cmin(i__4,*k);
  914. zlassq_(&i__3, &ab[j * ab_dim1 + 2], &c__1, colssq, &
  915. colssq[1]);
  916. dcombssq_(ssq, colssq);
  917. /* L300: */
  918. }
  919. }
  920. } else {
  921. ssq[0] = 0.;
  922. ssq[1] = 1.;
  923. i__1 = *n;
  924. for (j = 1; j <= i__1; ++j) {
  925. colssq[0] = 0.;
  926. colssq[1] = 1.;
  927. /* Computing MIN */
  928. i__4 = *n - j + 1, i__2 = *k + 1;
  929. i__3 = f2cmin(i__4,i__2);
  930. zlassq_(&i__3, &ab[j * ab_dim1 + 1], &c__1, colssq, &
  931. colssq[1]);
  932. dcombssq_(ssq, colssq);
  933. /* L310: */
  934. }
  935. }
  936. }
  937. value = ssq[0] * sqrt(ssq[1]);
  938. }
  939. ret_val = value;
  940. return ret_val;
  941. /* End of ZLANTB */
  942. } /* zlantb_ */