You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zggesx.c 41 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static doublecomplex c_b1 = {0.,0.};
  487. static doublecomplex c_b2 = {1.,0.};
  488. static integer c__1 = 1;
  489. static integer c__0 = 0;
  490. static integer c_n1 = -1;
  491. /* > \brief <b> ZGGESX computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors
  492. for GE matrices</b> */
  493. /* =========== DOCUMENTATION =========== */
  494. /* Online html documentation available at */
  495. /* http://www.netlib.org/lapack/explore-html/ */
  496. /* > \htmlonly */
  497. /* > Download ZGGESX + dependencies */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggesx.
  499. f"> */
  500. /* > [TGZ]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggesx.
  502. f"> */
  503. /* > [ZIP]</a> */
  504. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggesx.
  505. f"> */
  506. /* > [TXT]</a> */
  507. /* > \endhtmlonly */
  508. /* Definition: */
  509. /* =========== */
  510. /* SUBROUTINE ZGGESX( JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, LDA, */
  511. /* B, LDB, SDIM, ALPHA, BETA, VSL, LDVSL, VSR, */
  512. /* LDVSR, RCONDE, RCONDV, WORK, LWORK, RWORK, */
  513. /* IWORK, LIWORK, BWORK, INFO ) */
  514. /* CHARACTER JOBVSL, JOBVSR, SENSE, SORT */
  515. /* INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LIWORK, LWORK, N, */
  516. /* $ SDIM */
  517. /* LOGICAL BWORK( * ) */
  518. /* INTEGER IWORK( * ) */
  519. /* DOUBLE PRECISION RCONDE( 2 ), RCONDV( 2 ), RWORK( * ) */
  520. /* COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ), */
  521. /* $ BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ), */
  522. /* $ WORK( * ) */
  523. /* LOGICAL SELCTG */
  524. /* EXTERNAL SELCTG */
  525. /* > \par Purpose: */
  526. /* ============= */
  527. /* > */
  528. /* > \verbatim */
  529. /* > */
  530. /* > ZGGESX computes for a pair of N-by-N complex nonsymmetric matrices */
  531. /* > (A,B), the generalized eigenvalues, the complex Schur form (S,T), */
  532. /* > and, optionally, the left and/or right matrices of Schur vectors (VSL */
  533. /* > and VSR). This gives the generalized Schur factorization */
  534. /* > */
  535. /* > (A,B) = ( (VSL) S (VSR)**H, (VSL) T (VSR)**H ) */
  536. /* > */
  537. /* > where (VSR)**H is the conjugate-transpose of VSR. */
  538. /* > */
  539. /* > Optionally, it also orders the eigenvalues so that a selected cluster */
  540. /* > of eigenvalues appears in the leading diagonal blocks of the upper */
  541. /* > triangular matrix S and the upper triangular matrix T; computes */
  542. /* > a reciprocal condition number for the average of the selected */
  543. /* > eigenvalues (RCONDE); and computes a reciprocal condition number for */
  544. /* > the right and left deflating subspaces corresponding to the selected */
  545. /* > eigenvalues (RCONDV). The leading columns of VSL and VSR then form */
  546. /* > an orthonormal basis for the corresponding left and right eigenspaces */
  547. /* > (deflating subspaces). */
  548. /* > */
  549. /* > A generalized eigenvalue for a pair of matrices (A,B) is a scalar w */
  550. /* > or a ratio alpha/beta = w, such that A - w*B is singular. It is */
  551. /* > usually represented as the pair (alpha,beta), as there is a */
  552. /* > reasonable interpretation for beta=0 or for both being zero. */
  553. /* > */
  554. /* > A pair of matrices (S,T) is in generalized complex Schur form if T is */
  555. /* > upper triangular with non-negative diagonal and S is upper */
  556. /* > triangular. */
  557. /* > \endverbatim */
  558. /* Arguments: */
  559. /* ========== */
  560. /* > \param[in] JOBVSL */
  561. /* > \verbatim */
  562. /* > JOBVSL is CHARACTER*1 */
  563. /* > = 'N': do not compute the left Schur vectors; */
  564. /* > = 'V': compute the left Schur vectors. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] JOBVSR */
  568. /* > \verbatim */
  569. /* > JOBVSR is CHARACTER*1 */
  570. /* > = 'N': do not compute the right Schur vectors; */
  571. /* > = 'V': compute the right Schur vectors. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in] SORT */
  575. /* > \verbatim */
  576. /* > SORT is CHARACTER*1 */
  577. /* > Specifies whether or not to order the eigenvalues on the */
  578. /* > diagonal of the generalized Schur form. */
  579. /* > = 'N': Eigenvalues are not ordered; */
  580. /* > = 'S': Eigenvalues are ordered (see SELCTG). */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[in] SELCTG */
  584. /* > \verbatim */
  585. /* > SELCTG is a LOGICAL FUNCTION of two COMPLEX*16 arguments */
  586. /* > SELCTG must be declared EXTERNAL in the calling subroutine. */
  587. /* > If SORT = 'N', SELCTG is not referenced. */
  588. /* > If SORT = 'S', SELCTG is used to select eigenvalues to sort */
  589. /* > to the top left of the Schur form. */
  590. /* > Note that a selected complex eigenvalue may no longer satisfy */
  591. /* > SELCTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since */
  592. /* > ordering may change the value of complex eigenvalues */
  593. /* > (especially if the eigenvalue is ill-conditioned), in this */
  594. /* > case INFO is set to N+3 see INFO below). */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[in] SENSE */
  598. /* > \verbatim */
  599. /* > SENSE is CHARACTER*1 */
  600. /* > Determines which reciprocal condition numbers are computed. */
  601. /* > = 'N': None are computed; */
  602. /* > = 'E': Computed for average of selected eigenvalues only; */
  603. /* > = 'V': Computed for selected deflating subspaces only; */
  604. /* > = 'B': Computed for both. */
  605. /* > If SENSE = 'E', 'V', or 'B', SORT must equal 'S'. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[in] N */
  609. /* > \verbatim */
  610. /* > N is INTEGER */
  611. /* > The order of the matrices A, B, VSL, and VSR. N >= 0. */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[in,out] A */
  615. /* > \verbatim */
  616. /* > A is COMPLEX*16 array, dimension (LDA, N) */
  617. /* > On entry, the first of the pair of matrices. */
  618. /* > On exit, A has been overwritten by its generalized Schur */
  619. /* > form S. */
  620. /* > \endverbatim */
  621. /* > */
  622. /* > \param[in] LDA */
  623. /* > \verbatim */
  624. /* > LDA is INTEGER */
  625. /* > The leading dimension of A. LDA >= f2cmax(1,N). */
  626. /* > \endverbatim */
  627. /* > */
  628. /* > \param[in,out] B */
  629. /* > \verbatim */
  630. /* > B is COMPLEX*16 array, dimension (LDB, N) */
  631. /* > On entry, the second of the pair of matrices. */
  632. /* > On exit, B has been overwritten by its generalized Schur */
  633. /* > form T. */
  634. /* > \endverbatim */
  635. /* > */
  636. /* > \param[in] LDB */
  637. /* > \verbatim */
  638. /* > LDB is INTEGER */
  639. /* > The leading dimension of B. LDB >= f2cmax(1,N). */
  640. /* > \endverbatim */
  641. /* > */
  642. /* > \param[out] SDIM */
  643. /* > \verbatim */
  644. /* > SDIM is INTEGER */
  645. /* > If SORT = 'N', SDIM = 0. */
  646. /* > If SORT = 'S', SDIM = number of eigenvalues (after sorting) */
  647. /* > for which SELCTG is true. */
  648. /* > \endverbatim */
  649. /* > */
  650. /* > \param[out] ALPHA */
  651. /* > \verbatim */
  652. /* > ALPHA is COMPLEX*16 array, dimension (N) */
  653. /* > \endverbatim */
  654. /* > */
  655. /* > \param[out] BETA */
  656. /* > \verbatim */
  657. /* > BETA is COMPLEX*16 array, dimension (N) */
  658. /* > On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the */
  659. /* > generalized eigenvalues. ALPHA(j) and BETA(j),j=1,...,N are */
  660. /* > the diagonals of the complex Schur form (S,T). BETA(j) will */
  661. /* > be non-negative real. */
  662. /* > */
  663. /* > Note: the quotients ALPHA(j)/BETA(j) may easily over- or */
  664. /* > underflow, and BETA(j) may even be zero. Thus, the user */
  665. /* > should avoid naively computing the ratio alpha/beta. */
  666. /* > However, ALPHA will be always less than and usually */
  667. /* > comparable with norm(A) in magnitude, and BETA always less */
  668. /* > than and usually comparable with norm(B). */
  669. /* > \endverbatim */
  670. /* > */
  671. /* > \param[out] VSL */
  672. /* > \verbatim */
  673. /* > VSL is COMPLEX*16 array, dimension (LDVSL,N) */
  674. /* > If JOBVSL = 'V', VSL will contain the left Schur vectors. */
  675. /* > Not referenced if JOBVSL = 'N'. */
  676. /* > \endverbatim */
  677. /* > */
  678. /* > \param[in] LDVSL */
  679. /* > \verbatim */
  680. /* > LDVSL is INTEGER */
  681. /* > The leading dimension of the matrix VSL. LDVSL >=1, and */
  682. /* > if JOBVSL = 'V', LDVSL >= N. */
  683. /* > \endverbatim */
  684. /* > */
  685. /* > \param[out] VSR */
  686. /* > \verbatim */
  687. /* > VSR is COMPLEX*16 array, dimension (LDVSR,N) */
  688. /* > If JOBVSR = 'V', VSR will contain the right Schur vectors. */
  689. /* > Not referenced if JOBVSR = 'N'. */
  690. /* > \endverbatim */
  691. /* > */
  692. /* > \param[in] LDVSR */
  693. /* > \verbatim */
  694. /* > LDVSR is INTEGER */
  695. /* > The leading dimension of the matrix VSR. LDVSR >= 1, and */
  696. /* > if JOBVSR = 'V', LDVSR >= N. */
  697. /* > \endverbatim */
  698. /* > */
  699. /* > \param[out] RCONDE */
  700. /* > \verbatim */
  701. /* > RCONDE is DOUBLE PRECISION array, dimension ( 2 ) */
  702. /* > If SENSE = 'E' or 'B', RCONDE(1) and RCONDE(2) contain the */
  703. /* > reciprocal condition numbers for the average of the selected */
  704. /* > eigenvalues. */
  705. /* > Not referenced if SENSE = 'N' or 'V'. */
  706. /* > \endverbatim */
  707. /* > */
  708. /* > \param[out] RCONDV */
  709. /* > \verbatim */
  710. /* > RCONDV is DOUBLE PRECISION array, dimension ( 2 ) */
  711. /* > If SENSE = 'V' or 'B', RCONDV(1) and RCONDV(2) contain the */
  712. /* > reciprocal condition number for the selected deflating */
  713. /* > subspaces. */
  714. /* > Not referenced if SENSE = 'N' or 'E'. */
  715. /* > \endverbatim */
  716. /* > */
  717. /* > \param[out] WORK */
  718. /* > \verbatim */
  719. /* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
  720. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  721. /* > \endverbatim */
  722. /* > */
  723. /* > \param[in] LWORK */
  724. /* > \verbatim */
  725. /* > LWORK is INTEGER */
  726. /* > The dimension of the array WORK. */
  727. /* > If N = 0, LWORK >= 1, else if SENSE = 'E', 'V', or 'B', */
  728. /* > LWORK >= MAX(1,2*N,2*SDIM*(N-SDIM)), else */
  729. /* > LWORK >= MAX(1,2*N). Note that 2*SDIM*(N-SDIM) <= N*N/2. */
  730. /* > Note also that an error is only returned if */
  731. /* > LWORK < MAX(1,2*N), but if SENSE = 'E' or 'V' or 'B' this may */
  732. /* > not be large enough. */
  733. /* > */
  734. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  735. /* > only calculates the bound on the optimal size of the WORK */
  736. /* > array and the minimum size of the IWORK array, returns these */
  737. /* > values as the first entries of the WORK and IWORK arrays, and */
  738. /* > no error message related to LWORK or LIWORK is issued by */
  739. /* > XERBLA. */
  740. /* > \endverbatim */
  741. /* > */
  742. /* > \param[out] RWORK */
  743. /* > \verbatim */
  744. /* > RWORK is DOUBLE PRECISION array, dimension ( 8*N ) */
  745. /* > Real workspace. */
  746. /* > \endverbatim */
  747. /* > */
  748. /* > \param[out] IWORK */
  749. /* > \verbatim */
  750. /* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
  751. /* > On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK. */
  752. /* > \endverbatim */
  753. /* > */
  754. /* > \param[in] LIWORK */
  755. /* > \verbatim */
  756. /* > LIWORK is INTEGER */
  757. /* > The dimension of the array IWORK. */
  758. /* > If SENSE = 'N' or N = 0, LIWORK >= 1, otherwise */
  759. /* > LIWORK >= N+2. */
  760. /* > */
  761. /* > If LIWORK = -1, then a workspace query is assumed; the */
  762. /* > routine only calculates the bound on the optimal size of the */
  763. /* > WORK array and the minimum size of the IWORK array, returns */
  764. /* > these values as the first entries of the WORK and IWORK */
  765. /* > arrays, and no error message related to LWORK or LIWORK is */
  766. /* > issued by XERBLA. */
  767. /* > \endverbatim */
  768. /* > */
  769. /* > \param[out] BWORK */
  770. /* > \verbatim */
  771. /* > BWORK is LOGICAL array, dimension (N) */
  772. /* > Not referenced if SORT = 'N'. */
  773. /* > \endverbatim */
  774. /* > */
  775. /* > \param[out] INFO */
  776. /* > \verbatim */
  777. /* > INFO is INTEGER */
  778. /* > = 0: successful exit */
  779. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  780. /* > = 1,...,N: */
  781. /* > The QZ iteration failed. (A,B) are not in Schur */
  782. /* > form, but ALPHA(j) and BETA(j) should be correct for */
  783. /* > j=INFO+1,...,N. */
  784. /* > > N: =N+1: other than QZ iteration failed in ZHGEQZ */
  785. /* > =N+2: after reordering, roundoff changed values of */
  786. /* > some complex eigenvalues so that leading */
  787. /* > eigenvalues in the Generalized Schur form no */
  788. /* > longer satisfy SELCTG=.TRUE. This could also */
  789. /* > be caused due to scaling. */
  790. /* > =N+3: reordering failed in ZTGSEN. */
  791. /* > \endverbatim */
  792. /* Authors: */
  793. /* ======== */
  794. /* > \author Univ. of Tennessee */
  795. /* > \author Univ. of California Berkeley */
  796. /* > \author Univ. of Colorado Denver */
  797. /* > \author NAG Ltd. */
  798. /* > \date June 2017 */
  799. /* > \ingroup complex16GEeigen */
  800. /* ===================================================================== */
  801. /* Subroutine */ void zggesx_(char *jobvsl, char *jobvsr, char *sort, L_fp
  802. selctg, char *sense, integer *n, doublecomplex *a, integer *lda,
  803. doublecomplex *b, integer *ldb, integer *sdim, doublecomplex *alpha,
  804. doublecomplex *beta, doublecomplex *vsl, integer *ldvsl,
  805. doublecomplex *vsr, integer *ldvsr, doublereal *rconde, doublereal *
  806. rcondv, doublecomplex *work, integer *lwork, doublereal *rwork,
  807. integer *iwork, integer *liwork, logical *bwork, integer *info)
  808. {
  809. /* System generated locals */
  810. integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset,
  811. vsr_dim1, vsr_offset, i__1, i__2;
  812. /* Local variables */
  813. integer ijob;
  814. doublereal anrm, bnrm;
  815. integer ierr, itau, iwrk, lwrk, i__;
  816. extern logical lsame_(char *, char *);
  817. integer ileft, icols;
  818. logical cursl, ilvsl, ilvsr;
  819. integer irwrk, irows;
  820. extern /* Subroutine */ void dlabad_(doublereal *, doublereal *);
  821. extern doublereal dlamch_(char *);
  822. doublereal pl, pr;
  823. extern /* Subroutine */ void zggbak_(char *, char *, integer *, integer *,
  824. integer *, doublereal *, doublereal *, integer *, doublecomplex *,
  825. integer *, integer *), zggbal_(char *, integer *,
  826. doublecomplex *, integer *, doublecomplex *, integer *, integer *
  827. , integer *, doublereal *, doublereal *, doublereal *, integer *);
  828. logical ilascl, ilbscl;
  829. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  830. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  831. integer *, integer *, ftnlen, ftnlen);
  832. extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
  833. integer *, doublereal *);
  834. doublereal bignum;
  835. integer ijobvl, iright;
  836. extern /* Subroutine */ void zgghrd_(char *, char *, integer *, integer *,
  837. integer *, doublecomplex *, integer *, doublecomplex *, integer *,
  838. doublecomplex *, integer *, doublecomplex *, integer *, integer *
  839. ), zlascl_(char *, integer *, integer *,
  840. doublereal *, doublereal *, integer *, integer *, doublecomplex *,
  841. integer *, integer *);
  842. integer ijobvr;
  843. logical wantsb;
  844. integer liwmin;
  845. logical wantse, lastsl;
  846. doublereal anrmto, bnrmto;
  847. extern /* Subroutine */ void zgeqrf_(integer *, integer *, doublecomplex *,
  848. integer *, doublecomplex *, doublecomplex *, integer *, integer *
  849. );
  850. integer maxwrk;
  851. logical wantsn;
  852. integer minwrk;
  853. doublereal smlnum;
  854. extern /* Subroutine */ void zhgeqz_(char *, char *, char *, integer *,
  855. integer *, integer *, doublecomplex *, integer *, doublecomplex *,
  856. integer *, doublecomplex *, doublecomplex *, doublecomplex *,
  857. integer *, doublecomplex *, integer *, doublecomplex *, integer *,
  858. doublereal *, integer *), zlacpy_(char *,
  859. integer *, integer *, doublecomplex *, integer *, doublecomplex *
  860. , integer *), zlaset_(char *, integer *, integer *,
  861. doublecomplex *, doublecomplex *, doublecomplex *, integer *);
  862. logical wantst, lquery, wantsv;
  863. extern /* Subroutine */ void ztgsen_(integer *, logical *, logical *,
  864. logical *, integer *, doublecomplex *, integer *, doublecomplex *,
  865. integer *, doublecomplex *, doublecomplex *, doublecomplex *,
  866. integer *, doublecomplex *, integer *, integer *, doublereal *,
  867. doublereal *, doublereal *, doublecomplex *, integer *, integer *,
  868. integer *, integer *), zungqr_(integer *, integer *, integer *,
  869. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  870. integer *, integer *), zunmqr_(char *, char *, integer *, integer
  871. *, integer *, doublecomplex *, integer *, doublecomplex *,
  872. doublecomplex *, integer *, doublecomplex *, integer *, integer *);
  873. doublereal dif[2];
  874. integer ihi, ilo;
  875. doublereal eps;
  876. /* -- LAPACK driver routine (version 3.7.1) -- */
  877. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  878. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  879. /* June 2017 */
  880. /* ===================================================================== */
  881. /* Decode the input arguments */
  882. /* Parameter adjustments */
  883. a_dim1 = *lda;
  884. a_offset = 1 + a_dim1 * 1;
  885. a -= a_offset;
  886. b_dim1 = *ldb;
  887. b_offset = 1 + b_dim1 * 1;
  888. b -= b_offset;
  889. --alpha;
  890. --beta;
  891. vsl_dim1 = *ldvsl;
  892. vsl_offset = 1 + vsl_dim1 * 1;
  893. vsl -= vsl_offset;
  894. vsr_dim1 = *ldvsr;
  895. vsr_offset = 1 + vsr_dim1 * 1;
  896. vsr -= vsr_offset;
  897. --rconde;
  898. --rcondv;
  899. --work;
  900. --rwork;
  901. --iwork;
  902. --bwork;
  903. /* Function Body */
  904. if (lsame_(jobvsl, "N")) {
  905. ijobvl = 1;
  906. ilvsl = FALSE_;
  907. } else if (lsame_(jobvsl, "V")) {
  908. ijobvl = 2;
  909. ilvsl = TRUE_;
  910. } else {
  911. ijobvl = -1;
  912. ilvsl = FALSE_;
  913. }
  914. if (lsame_(jobvsr, "N")) {
  915. ijobvr = 1;
  916. ilvsr = FALSE_;
  917. } else if (lsame_(jobvsr, "V")) {
  918. ijobvr = 2;
  919. ilvsr = TRUE_;
  920. } else {
  921. ijobvr = -1;
  922. ilvsr = FALSE_;
  923. }
  924. wantst = lsame_(sort, "S");
  925. wantsn = lsame_(sense, "N");
  926. wantse = lsame_(sense, "E");
  927. wantsv = lsame_(sense, "V");
  928. wantsb = lsame_(sense, "B");
  929. lquery = *lwork == -1 || *liwork == -1;
  930. if (wantsn) {
  931. ijob = 0;
  932. } else if (wantse) {
  933. ijob = 1;
  934. } else if (wantsv) {
  935. ijob = 2;
  936. } else if (wantsb) {
  937. ijob = 4;
  938. }
  939. /* Test the input arguments */
  940. *info = 0;
  941. if (ijobvl <= 0) {
  942. *info = -1;
  943. } else if (ijobvr <= 0) {
  944. *info = -2;
  945. } else if (! wantst && ! lsame_(sort, "N")) {
  946. *info = -3;
  947. } else if (! (wantsn || wantse || wantsv || wantsb) || ! wantst && !
  948. wantsn) {
  949. *info = -5;
  950. } else if (*n < 0) {
  951. *info = -6;
  952. } else if (*lda < f2cmax(1,*n)) {
  953. *info = -8;
  954. } else if (*ldb < f2cmax(1,*n)) {
  955. *info = -10;
  956. } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) {
  957. *info = -15;
  958. } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) {
  959. *info = -17;
  960. }
  961. /* Compute workspace */
  962. /* (Note: Comments in the code beginning "Workspace:" describe the */
  963. /* minimal amount of workspace needed at that point in the code, */
  964. /* as well as the preferred amount for good performance. */
  965. /* NB refers to the optimal block size for the immediately */
  966. /* following subroutine, as returned by ILAENV.) */
  967. if (*info == 0) {
  968. if (*n > 0) {
  969. minwrk = *n << 1;
  970. maxwrk = *n * (ilaenv_(&c__1, "ZGEQRF", " ", n, &c__1, n, &c__0, (
  971. ftnlen)6, (ftnlen)1) + 1);
  972. /* Computing MAX */
  973. i__1 = maxwrk, i__2 = *n * (ilaenv_(&c__1, "ZUNMQR", " ", n, &
  974. c__1, n, &c_n1, (ftnlen)6, (ftnlen)1) + 1);
  975. maxwrk = f2cmax(i__1,i__2);
  976. if (ilvsl) {
  977. /* Computing MAX */
  978. i__1 = maxwrk, i__2 = *n * (ilaenv_(&c__1, "ZUNGQR", " ", n, &
  979. c__1, n, &c_n1, (ftnlen)6, (ftnlen)1) + 1);
  980. maxwrk = f2cmax(i__1,i__2);
  981. }
  982. lwrk = maxwrk;
  983. if (ijob >= 1) {
  984. /* Computing MAX */
  985. i__1 = lwrk, i__2 = *n * *n / 2;
  986. lwrk = f2cmax(i__1,i__2);
  987. }
  988. } else {
  989. minwrk = 1;
  990. maxwrk = 1;
  991. lwrk = 1;
  992. }
  993. work[1].r = (doublereal) lwrk, work[1].i = 0.;
  994. if (wantsn || *n == 0) {
  995. liwmin = 1;
  996. } else {
  997. liwmin = *n + 2;
  998. }
  999. iwork[1] = liwmin;
  1000. if (*lwork < minwrk && ! lquery) {
  1001. *info = -21;
  1002. } else if (*liwork < liwmin && ! lquery) {
  1003. *info = -24;
  1004. }
  1005. }
  1006. if (*info != 0) {
  1007. i__1 = -(*info);
  1008. xerbla_("ZGGESX", &i__1, (ftnlen)6);
  1009. return;
  1010. } else if (lquery) {
  1011. return;
  1012. }
  1013. /* Quick return if possible */
  1014. if (*n == 0) {
  1015. *sdim = 0;
  1016. return;
  1017. }
  1018. /* Get machine constants */
  1019. eps = dlamch_("P");
  1020. smlnum = dlamch_("S");
  1021. bignum = 1. / smlnum;
  1022. dlabad_(&smlnum, &bignum);
  1023. smlnum = sqrt(smlnum) / eps;
  1024. bignum = 1. / smlnum;
  1025. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  1026. anrm = zlange_("M", n, n, &a[a_offset], lda, &rwork[1]);
  1027. ilascl = FALSE_;
  1028. if (anrm > 0. && anrm < smlnum) {
  1029. anrmto = smlnum;
  1030. ilascl = TRUE_;
  1031. } else if (anrm > bignum) {
  1032. anrmto = bignum;
  1033. ilascl = TRUE_;
  1034. }
  1035. if (ilascl) {
  1036. zlascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
  1037. ierr);
  1038. }
  1039. /* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
  1040. bnrm = zlange_("M", n, n, &b[b_offset], ldb, &rwork[1]);
  1041. ilbscl = FALSE_;
  1042. if (bnrm > 0. && bnrm < smlnum) {
  1043. bnrmto = smlnum;
  1044. ilbscl = TRUE_;
  1045. } else if (bnrm > bignum) {
  1046. bnrmto = bignum;
  1047. ilbscl = TRUE_;
  1048. }
  1049. if (ilbscl) {
  1050. zlascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
  1051. ierr);
  1052. }
  1053. /* Permute the matrix to make it more nearly triangular */
  1054. /* (Real Workspace: need 6*N) */
  1055. ileft = 1;
  1056. iright = *n + 1;
  1057. irwrk = iright + *n;
  1058. zggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &rwork[
  1059. ileft], &rwork[iright], &rwork[irwrk], &ierr);
  1060. /* Reduce B to triangular form (QR decomposition of B) */
  1061. /* (Complex Workspace: need N, prefer N*NB) */
  1062. irows = ihi + 1 - ilo;
  1063. icols = *n + 1 - ilo;
  1064. itau = 1;
  1065. iwrk = itau + irows;
  1066. i__1 = *lwork + 1 - iwrk;
  1067. zgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
  1068. iwrk], &i__1, &ierr);
  1069. /* Apply the unitary transformation to matrix A */
  1070. /* (Complex Workspace: need N, prefer N*NB) */
  1071. i__1 = *lwork + 1 - iwrk;
  1072. zunmqr_("L", "C", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
  1073. work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, &
  1074. ierr);
  1075. /* Initialize VSL */
  1076. /* (Complex Workspace: need N, prefer N*NB) */
  1077. if (ilvsl) {
  1078. zlaset_("Full", n, n, &c_b1, &c_b2, &vsl[vsl_offset], ldvsl);
  1079. if (irows > 1) {
  1080. i__1 = irows - 1;
  1081. i__2 = irows - 1;
  1082. zlacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[
  1083. ilo + 1 + ilo * vsl_dim1], ldvsl);
  1084. }
  1085. i__1 = *lwork + 1 - iwrk;
  1086. zungqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, &
  1087. work[itau], &work[iwrk], &i__1, &ierr);
  1088. }
  1089. /* Initialize VSR */
  1090. if (ilvsr) {
  1091. zlaset_("Full", n, n, &c_b1, &c_b2, &vsr[vsr_offset], ldvsr);
  1092. }
  1093. /* Reduce to generalized Hessenberg form */
  1094. /* (Workspace: none needed) */
  1095. zgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
  1096. ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &ierr);
  1097. *sdim = 0;
  1098. /* Perform QZ algorithm, computing Schur vectors if desired */
  1099. /* (Complex Workspace: need N) */
  1100. /* (Real Workspace: need N) */
  1101. iwrk = itau;
  1102. i__1 = *lwork + 1 - iwrk;
  1103. zhgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[
  1104. b_offset], ldb, &alpha[1], &beta[1], &vsl[vsl_offset], ldvsl, &
  1105. vsr[vsr_offset], ldvsr, &work[iwrk], &i__1, &rwork[irwrk], &ierr);
  1106. if (ierr != 0) {
  1107. if (ierr > 0 && ierr <= *n) {
  1108. *info = ierr;
  1109. } else if (ierr > *n && ierr <= *n << 1) {
  1110. *info = ierr - *n;
  1111. } else {
  1112. *info = *n + 1;
  1113. }
  1114. goto L40;
  1115. }
  1116. /* Sort eigenvalues ALPHA/BETA and compute the reciprocal of */
  1117. /* condition number(s) */
  1118. if (wantst) {
  1119. /* Undo scaling on eigenvalues before SELCTGing */
  1120. if (ilascl) {
  1121. zlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alpha[1], n,
  1122. &ierr);
  1123. }
  1124. if (ilbscl) {
  1125. zlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n,
  1126. &ierr);
  1127. }
  1128. /* Select eigenvalues */
  1129. i__1 = *n;
  1130. for (i__ = 1; i__ <= i__1; ++i__) {
  1131. bwork[i__] = (*selctg)(&alpha[i__], &beta[i__]);
  1132. /* L10: */
  1133. }
  1134. /* Reorder eigenvalues, transform Generalized Schur vectors, and */
  1135. /* compute reciprocal condition numbers */
  1136. /* (Complex Workspace: If IJOB >= 1, need MAX(1, 2*SDIM*(N-SDIM)) */
  1137. /* otherwise, need 1 ) */
  1138. i__1 = *lwork - iwrk + 1;
  1139. ztgsen_(&ijob, &ilvsl, &ilvsr, &bwork[1], n, &a[a_offset], lda, &b[
  1140. b_offset], ldb, &alpha[1], &beta[1], &vsl[vsl_offset], ldvsl,
  1141. &vsr[vsr_offset], ldvsr, sdim, &pl, &pr, dif, &work[iwrk], &
  1142. i__1, &iwork[1], liwork, &ierr);
  1143. if (ijob >= 1) {
  1144. /* Computing MAX */
  1145. i__1 = maxwrk, i__2 = (*sdim << 1) * (*n - *sdim);
  1146. maxwrk = f2cmax(i__1,i__2);
  1147. }
  1148. if (ierr == -21) {
  1149. /* not enough complex workspace */
  1150. *info = -21;
  1151. } else {
  1152. if (ijob == 1 || ijob == 4) {
  1153. rconde[1] = pl;
  1154. rconde[2] = pr;
  1155. }
  1156. if (ijob == 2 || ijob == 4) {
  1157. rcondv[1] = dif[0];
  1158. rcondv[2] = dif[1];
  1159. }
  1160. if (ierr == 1) {
  1161. *info = *n + 3;
  1162. }
  1163. }
  1164. }
  1165. /* Apply permutation to VSL and VSR */
  1166. /* (Workspace: none needed) */
  1167. if (ilvsl) {
  1168. zggbak_("P", "L", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, &
  1169. vsl[vsl_offset], ldvsl, &ierr);
  1170. }
  1171. if (ilvsr) {
  1172. zggbak_("P", "R", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, &
  1173. vsr[vsr_offset], ldvsr, &ierr);
  1174. }
  1175. /* Undo scaling */
  1176. if (ilascl) {
  1177. zlascl_("U", &c__0, &c__0, &anrmto, &anrm, n, n, &a[a_offset], lda, &
  1178. ierr);
  1179. zlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alpha[1], n, &
  1180. ierr);
  1181. }
  1182. if (ilbscl) {
  1183. zlascl_("U", &c__0, &c__0, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, &
  1184. ierr);
  1185. zlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
  1186. ierr);
  1187. }
  1188. if (wantst) {
  1189. /* Check if reordering is correct */
  1190. lastsl = TRUE_;
  1191. *sdim = 0;
  1192. i__1 = *n;
  1193. for (i__ = 1; i__ <= i__1; ++i__) {
  1194. cursl = (*selctg)(&alpha[i__], &beta[i__]);
  1195. if (cursl) {
  1196. ++(*sdim);
  1197. }
  1198. if (cursl && ! lastsl) {
  1199. *info = *n + 2;
  1200. }
  1201. lastsl = cursl;
  1202. /* L30: */
  1203. }
  1204. }
  1205. L40:
  1206. work[1].r = (doublereal) maxwrk, work[1].i = 0.;
  1207. iwork[1] = liwmin;
  1208. return;
  1209. /* End of ZGGESX */
  1210. } /* zggesx_ */