You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sggevx.c 46 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c__0 = 0;
  488. static real c_b57 = 0.f;
  489. static real c_b58 = 1.f;
  490. /* > \brief <b> SGGEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE mat
  491. rices</b> */
  492. /* =========== DOCUMENTATION =========== */
  493. /* Online html documentation available at */
  494. /* http://www.netlib.org/lapack/explore-html/ */
  495. /* > \htmlonly */
  496. /* > Download SGGEVX + dependencies */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggevx.
  498. f"> */
  499. /* > [TGZ]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggevx.
  501. f"> */
  502. /* > [ZIP]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggevx.
  504. f"> */
  505. /* > [TXT]</a> */
  506. /* > \endhtmlonly */
  507. /* Definition: */
  508. /* =========== */
  509. /* SUBROUTINE SGGEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB, */
  510. /* ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, ILO, */
  511. /* IHI, LSCALE, RSCALE, ABNRM, BBNRM, RCONDE, */
  512. /* RCONDV, WORK, LWORK, IWORK, BWORK, INFO ) */
  513. /* CHARACTER BALANC, JOBVL, JOBVR, SENSE */
  514. /* INTEGER IHI, ILO, INFO, LDA, LDB, LDVL, LDVR, LWORK, N */
  515. /* REAL ABNRM, BBNRM */
  516. /* LOGICAL BWORK( * ) */
  517. /* INTEGER IWORK( * ) */
  518. /* REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ), */
  519. /* $ B( LDB, * ), BETA( * ), LSCALE( * ), */
  520. /* $ RCONDE( * ), RCONDV( * ), RSCALE( * ), */
  521. /* $ VL( LDVL, * ), VR( LDVR, * ), WORK( * ) */
  522. /* > \par Purpose: */
  523. /* ============= */
  524. /* > */
  525. /* > \verbatim */
  526. /* > */
  527. /* > SGGEVX computes for a pair of N-by-N real nonsymmetric matrices (A,B) */
  528. /* > the generalized eigenvalues, and optionally, the left and/or right */
  529. /* > generalized eigenvectors. */
  530. /* > */
  531. /* > Optionally also, it computes a balancing transformation to improve */
  532. /* > the conditioning of the eigenvalues and eigenvectors (ILO, IHI, */
  533. /* > LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for */
  534. /* > the eigenvalues (RCONDE), and reciprocal condition numbers for the */
  535. /* > right eigenvectors (RCONDV). */
  536. /* > */
  537. /* > A generalized eigenvalue for a pair of matrices (A,B) is a scalar */
  538. /* > lambda or a ratio alpha/beta = lambda, such that A - lambda*B is */
  539. /* > singular. It is usually represented as the pair (alpha,beta), as */
  540. /* > there is a reasonable interpretation for beta=0, and even for both */
  541. /* > being zero. */
  542. /* > */
  543. /* > The right eigenvector v(j) corresponding to the eigenvalue lambda(j) */
  544. /* > of (A,B) satisfies */
  545. /* > */
  546. /* > A * v(j) = lambda(j) * B * v(j) . */
  547. /* > */
  548. /* > The left eigenvector u(j) corresponding to the eigenvalue lambda(j) */
  549. /* > of (A,B) satisfies */
  550. /* > */
  551. /* > u(j)**H * A = lambda(j) * u(j)**H * B. */
  552. /* > */
  553. /* > where u(j)**H is the conjugate-transpose of u(j). */
  554. /* > */
  555. /* > \endverbatim */
  556. /* Arguments: */
  557. /* ========== */
  558. /* > \param[in] BALANC */
  559. /* > \verbatim */
  560. /* > BALANC is CHARACTER*1 */
  561. /* > Specifies the balance option to be performed. */
  562. /* > = 'N': do not diagonally scale or permute; */
  563. /* > = 'P': permute only; */
  564. /* > = 'S': scale only; */
  565. /* > = 'B': both permute and scale. */
  566. /* > Computed reciprocal condition numbers will be for the */
  567. /* > matrices after permuting and/or balancing. Permuting does */
  568. /* > not change condition numbers (in exact arithmetic), but */
  569. /* > balancing does. */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in] JOBVL */
  573. /* > \verbatim */
  574. /* > JOBVL is CHARACTER*1 */
  575. /* > = 'N': do not compute the left generalized eigenvectors; */
  576. /* > = 'V': compute the left generalized eigenvectors. */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[in] JOBVR */
  580. /* > \verbatim */
  581. /* > JOBVR is CHARACTER*1 */
  582. /* > = 'N': do not compute the right generalized eigenvectors; */
  583. /* > = 'V': compute the right generalized eigenvectors. */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in] SENSE */
  587. /* > \verbatim */
  588. /* > SENSE is CHARACTER*1 */
  589. /* > Determines which reciprocal condition numbers are computed. */
  590. /* > = 'N': none are computed; */
  591. /* > = 'E': computed for eigenvalues only; */
  592. /* > = 'V': computed for eigenvectors only; */
  593. /* > = 'B': computed for eigenvalues and eigenvectors. */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[in] N */
  597. /* > \verbatim */
  598. /* > N is INTEGER */
  599. /* > The order of the matrices A, B, VL, and VR. N >= 0. */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in,out] A */
  603. /* > \verbatim */
  604. /* > A is REAL array, dimension (LDA, N) */
  605. /* > On entry, the matrix A in the pair (A,B). */
  606. /* > On exit, A has been overwritten. If JOBVL='V' or JOBVR='V' */
  607. /* > or both, then A contains the first part of the real Schur */
  608. /* > form of the "balanced" versions of the input A and B. */
  609. /* > \endverbatim */
  610. /* > */
  611. /* > \param[in] LDA */
  612. /* > \verbatim */
  613. /* > LDA is INTEGER */
  614. /* > The leading dimension of A. LDA >= f2cmax(1,N). */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[in,out] B */
  618. /* > \verbatim */
  619. /* > B is REAL array, dimension (LDB, N) */
  620. /* > On entry, the matrix B in the pair (A,B). */
  621. /* > On exit, B has been overwritten. If JOBVL='V' or JOBVR='V' */
  622. /* > or both, then B contains the second part of the real Schur */
  623. /* > form of the "balanced" versions of the input A and B. */
  624. /* > \endverbatim */
  625. /* > */
  626. /* > \param[in] LDB */
  627. /* > \verbatim */
  628. /* > LDB is INTEGER */
  629. /* > The leading dimension of B. LDB >= f2cmax(1,N). */
  630. /* > \endverbatim */
  631. /* > */
  632. /* > \param[out] ALPHAR */
  633. /* > \verbatim */
  634. /* > ALPHAR is REAL array, dimension (N) */
  635. /* > \endverbatim */
  636. /* > */
  637. /* > \param[out] ALPHAI */
  638. /* > \verbatim */
  639. /* > ALPHAI is REAL array, dimension (N) */
  640. /* > \endverbatim */
  641. /* > */
  642. /* > \param[out] BETA */
  643. /* > \verbatim */
  644. /* > BETA is REAL array, dimension (N) */
  645. /* > On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
  646. /* > be the generalized eigenvalues. If ALPHAI(j) is zero, then */
  647. /* > the j-th eigenvalue is real; if positive, then the j-th and */
  648. /* > (j+1)-st eigenvalues are a complex conjugate pair, with */
  649. /* > ALPHAI(j+1) negative. */
  650. /* > */
  651. /* > Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */
  652. /* > may easily over- or underflow, and BETA(j) may even be zero. */
  653. /* > Thus, the user should avoid naively computing the ratio */
  654. /* > ALPHA/BETA. However, ALPHAR and ALPHAI will be always less */
  655. /* > than and usually comparable with norm(A) in magnitude, and */
  656. /* > BETA always less than and usually comparable with norm(B). */
  657. /* > \endverbatim */
  658. /* > */
  659. /* > \param[out] VL */
  660. /* > \verbatim */
  661. /* > VL is REAL array, dimension (LDVL,N) */
  662. /* > If JOBVL = 'V', the left eigenvectors u(j) are stored one */
  663. /* > after another in the columns of VL, in the same order as */
  664. /* > their eigenvalues. If the j-th eigenvalue is real, then */
  665. /* > u(j) = VL(:,j), the j-th column of VL. If the j-th and */
  666. /* > (j+1)-th eigenvalues form a complex conjugate pair, then */
  667. /* > u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1). */
  668. /* > Each eigenvector will be scaled so the largest component have */
  669. /* > abs(real part) + abs(imag. part) = 1. */
  670. /* > Not referenced if JOBVL = 'N'. */
  671. /* > \endverbatim */
  672. /* > */
  673. /* > \param[in] LDVL */
  674. /* > \verbatim */
  675. /* > LDVL is INTEGER */
  676. /* > The leading dimension of the matrix VL. LDVL >= 1, and */
  677. /* > if JOBVL = 'V', LDVL >= N. */
  678. /* > \endverbatim */
  679. /* > */
  680. /* > \param[out] VR */
  681. /* > \verbatim */
  682. /* > VR is REAL array, dimension (LDVR,N) */
  683. /* > If JOBVR = 'V', the right eigenvectors v(j) are stored one */
  684. /* > after another in the columns of VR, in the same order as */
  685. /* > their eigenvalues. If the j-th eigenvalue is real, then */
  686. /* > v(j) = VR(:,j), the j-th column of VR. If the j-th and */
  687. /* > (j+1)-th eigenvalues form a complex conjugate pair, then */
  688. /* > v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1). */
  689. /* > Each eigenvector will be scaled so the largest component have */
  690. /* > abs(real part) + abs(imag. part) = 1. */
  691. /* > Not referenced if JOBVR = 'N'. */
  692. /* > \endverbatim */
  693. /* > */
  694. /* > \param[in] LDVR */
  695. /* > \verbatim */
  696. /* > LDVR is INTEGER */
  697. /* > The leading dimension of the matrix VR. LDVR >= 1, and */
  698. /* > if JOBVR = 'V', LDVR >= N. */
  699. /* > \endverbatim */
  700. /* > */
  701. /* > \param[out] ILO */
  702. /* > \verbatim */
  703. /* > ILO is INTEGER */
  704. /* > \endverbatim */
  705. /* > */
  706. /* > \param[out] IHI */
  707. /* > \verbatim */
  708. /* > IHI is INTEGER */
  709. /* > ILO and IHI are integer values such that on exit */
  710. /* > A(i,j) = 0 and B(i,j) = 0 if i > j and */
  711. /* > j = 1,...,ILO-1 or i = IHI+1,...,N. */
  712. /* > If BALANC = 'N' or 'S', ILO = 1 and IHI = N. */
  713. /* > \endverbatim */
  714. /* > */
  715. /* > \param[out] LSCALE */
  716. /* > \verbatim */
  717. /* > LSCALE is REAL array, dimension (N) */
  718. /* > Details of the permutations and scaling factors applied */
  719. /* > to the left side of A and B. If PL(j) is the index of the */
  720. /* > row interchanged with row j, and DL(j) is the scaling */
  721. /* > factor applied to row j, then */
  722. /* > LSCALE(j) = PL(j) for j = 1,...,ILO-1 */
  723. /* > = DL(j) for j = ILO,...,IHI */
  724. /* > = PL(j) for j = IHI+1,...,N. */
  725. /* > The order in which the interchanges are made is N to IHI+1, */
  726. /* > then 1 to ILO-1. */
  727. /* > \endverbatim */
  728. /* > */
  729. /* > \param[out] RSCALE */
  730. /* > \verbatim */
  731. /* > RSCALE is REAL array, dimension (N) */
  732. /* > Details of the permutations and scaling factors applied */
  733. /* > to the right side of A and B. If PR(j) is the index of the */
  734. /* > column interchanged with column j, and DR(j) is the scaling */
  735. /* > factor applied to column j, then */
  736. /* > RSCALE(j) = PR(j) for j = 1,...,ILO-1 */
  737. /* > = DR(j) for j = ILO,...,IHI */
  738. /* > = PR(j) for j = IHI+1,...,N */
  739. /* > The order in which the interchanges are made is N to IHI+1, */
  740. /* > then 1 to ILO-1. */
  741. /* > \endverbatim */
  742. /* > */
  743. /* > \param[out] ABNRM */
  744. /* > \verbatim */
  745. /* > ABNRM is REAL */
  746. /* > The one-norm of the balanced matrix A. */
  747. /* > \endverbatim */
  748. /* > */
  749. /* > \param[out] BBNRM */
  750. /* > \verbatim */
  751. /* > BBNRM is REAL */
  752. /* > The one-norm of the balanced matrix B. */
  753. /* > \endverbatim */
  754. /* > */
  755. /* > \param[out] RCONDE */
  756. /* > \verbatim */
  757. /* > RCONDE is REAL array, dimension (N) */
  758. /* > If SENSE = 'E' or 'B', the reciprocal condition numbers of */
  759. /* > the eigenvalues, stored in consecutive elements of the array. */
  760. /* > For a complex conjugate pair of eigenvalues two consecutive */
  761. /* > elements of RCONDE are set to the same value. Thus RCONDE(j), */
  762. /* > RCONDV(j), and the j-th columns of VL and VR all correspond */
  763. /* > to the j-th eigenpair. */
  764. /* > If SENSE = 'N' or 'V', RCONDE is not referenced. */
  765. /* > \endverbatim */
  766. /* > */
  767. /* > \param[out] RCONDV */
  768. /* > \verbatim */
  769. /* > RCONDV is REAL array, dimension (N) */
  770. /* > If SENSE = 'V' or 'B', the estimated reciprocal condition */
  771. /* > numbers of the eigenvectors, stored in consecutive elements */
  772. /* > of the array. For a complex eigenvector two consecutive */
  773. /* > elements of RCONDV are set to the same value. If the */
  774. /* > eigenvalues cannot be reordered to compute RCONDV(j), */
  775. /* > RCONDV(j) is set to 0; this can only occur when the true */
  776. /* > value would be very small anyway. */
  777. /* > If SENSE = 'N' or 'E', RCONDV is not referenced. */
  778. /* > \endverbatim */
  779. /* > */
  780. /* > \param[out] WORK */
  781. /* > \verbatim */
  782. /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
  783. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  784. /* > \endverbatim */
  785. /* > */
  786. /* > \param[in] LWORK */
  787. /* > \verbatim */
  788. /* > LWORK is INTEGER */
  789. /* > The dimension of the array WORK. LWORK >= f2cmax(1,2*N). */
  790. /* > If BALANC = 'S' or 'B', or JOBVL = 'V', or JOBVR = 'V', */
  791. /* > LWORK >= f2cmax(1,6*N). */
  792. /* > If SENSE = 'E', LWORK >= f2cmax(1,10*N). */
  793. /* > If SENSE = 'V' or 'B', LWORK >= 2*N*N+8*N+16. */
  794. /* > */
  795. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  796. /* > only calculates the optimal size of the WORK array, returns */
  797. /* > this value as the first entry of the WORK array, and no error */
  798. /* > message related to LWORK is issued by XERBLA. */
  799. /* > \endverbatim */
  800. /* > */
  801. /* > \param[out] IWORK */
  802. /* > \verbatim */
  803. /* > IWORK is INTEGER array, dimension (N+6) */
  804. /* > If SENSE = 'E', IWORK is not referenced. */
  805. /* > \endverbatim */
  806. /* > */
  807. /* > \param[out] BWORK */
  808. /* > \verbatim */
  809. /* > BWORK is LOGICAL array, dimension (N) */
  810. /* > If SENSE = 'N', BWORK is not referenced. */
  811. /* > \endverbatim */
  812. /* > */
  813. /* > \param[out] INFO */
  814. /* > \verbatim */
  815. /* > INFO is INTEGER */
  816. /* > = 0: successful exit */
  817. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  818. /* > = 1,...,N: */
  819. /* > The QZ iteration failed. No eigenvectors have been */
  820. /* > calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) */
  821. /* > should be correct for j=INFO+1,...,N. */
  822. /* > > N: =N+1: other than QZ iteration failed in SHGEQZ. */
  823. /* > =N+2: error return from STGEVC. */
  824. /* > \endverbatim */
  825. /* Authors: */
  826. /* ======== */
  827. /* > \author Univ. of Tennessee */
  828. /* > \author Univ. of California Berkeley */
  829. /* > \author Univ. of Colorado Denver */
  830. /* > \author NAG Ltd. */
  831. /* > \date April 2012 */
  832. /* > \ingroup realGEeigen */
  833. /* > \par Further Details: */
  834. /* ===================== */
  835. /* > */
  836. /* > \verbatim */
  837. /* > */
  838. /* > Balancing a matrix pair (A,B) includes, first, permuting rows and */
  839. /* > columns to isolate eigenvalues, second, applying diagonal similarity */
  840. /* > transformation to the rows and columns to make the rows and columns */
  841. /* > as close in norm as possible. The computed reciprocal condition */
  842. /* > numbers correspond to the balanced matrix. Permuting rows and columns */
  843. /* > will not change the condition numbers (in exact arithmetic) but */
  844. /* > diagonal scaling will. For further explanation of balancing, see */
  845. /* > section 4.11.1.2 of LAPACK Users' Guide. */
  846. /* > */
  847. /* > An approximate error bound on the chordal distance between the i-th */
  848. /* > computed generalized eigenvalue w and the corresponding exact */
  849. /* > eigenvalue lambda is */
  850. /* > */
  851. /* > chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I) */
  852. /* > */
  853. /* > An approximate error bound for the angle between the i-th computed */
  854. /* > eigenvector VL(i) or VR(i) is given by */
  855. /* > */
  856. /* > EPS * norm(ABNRM, BBNRM) / DIF(i). */
  857. /* > */
  858. /* > For further explanation of the reciprocal condition numbers RCONDE */
  859. /* > and RCONDV, see section 4.11 of LAPACK User's Guide. */
  860. /* > \endverbatim */
  861. /* > */
  862. /* ===================================================================== */
  863. /* Subroutine */ void sggevx_(char *balanc, char *jobvl, char *jobvr, char *
  864. sense, integer *n, real *a, integer *lda, real *b, integer *ldb, real
  865. *alphar, real *alphai, real *beta, real *vl, integer *ldvl, real *vr,
  866. integer *ldvr, integer *ilo, integer *ihi, real *lscale, real *rscale,
  867. real *abnrm, real *bbnrm, real *rconde, real *rcondv, real *work,
  868. integer *lwork, integer *iwork, logical *bwork, integer *info)
  869. {
  870. /* System generated locals */
  871. integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1,
  872. vr_offset, i__1, i__2;
  873. real r__1, r__2, r__3, r__4;
  874. /* Local variables */
  875. logical pair;
  876. real anrm, bnrm;
  877. integer ierr, itau;
  878. real temp;
  879. logical ilvl, ilvr;
  880. integer iwrk, iwrk1, i__, j, m;
  881. extern logical lsame_(char *, char *);
  882. integer icols;
  883. logical noscl;
  884. integer irows, jc;
  885. extern /* Subroutine */ void slabad_(real *, real *);
  886. integer in, mm, jr;
  887. extern /* Subroutine */ void sggbak_(char *, char *, integer *, integer *,
  888. integer *, real *, real *, integer *, real *, integer *, integer *
  889. ), sggbal_(char *, integer *, real *, integer *,
  890. real *, integer *, integer *, integer *, real *, real *, real *,
  891. integer *);
  892. logical ilascl, ilbscl;
  893. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  894. extern void sgghrd_(
  895. char *, char *, integer *, integer *, integer *, real *, integer *
  896. , real *, integer *, real *, integer *, real *, integer *,
  897. integer *);
  898. logical ldumma[1];
  899. char chtemp[1];
  900. real bignum;
  901. extern /* Subroutine */ void slascl_(char *, integer *, integer *, real *,
  902. real *, integer *, integer *, real *, integer *, integer *);
  903. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  904. integer *, integer *, ftnlen, ftnlen);
  905. extern real slamch_(char *);
  906. integer ijobvl;
  907. extern real slange_(char *, integer *, integer *, real *, integer *, real
  908. *);
  909. extern /* Subroutine */ void sgeqrf_(integer *, integer *, real *, integer
  910. *, real *, real *, integer *, integer *);
  911. integer ijobvr;
  912. extern /* Subroutine */ void slacpy_(char *, integer *, integer *, real *,
  913. integer *, real *, integer *);
  914. logical wantsb;
  915. extern /* Subroutine */ void slaset_(char *, integer *, integer *, real *,
  916. real *, real *, integer *);
  917. real anrmto;
  918. logical wantse;
  919. real bnrmto;
  920. extern /* Subroutine */ void shgeqz_(char *, char *, char *, integer *,
  921. integer *, integer *, real *, integer *, real *, integer *, real *
  922. , real *, real *, real *, integer *, real *, integer *, real *,
  923. integer *, integer *), stgevc_(char *,
  924. char *, logical *, integer *, real *, integer *, real *, integer *
  925. , real *, integer *, real *, integer *, integer *, integer *,
  926. real *, integer *), stgsna_(char *, char *,
  927. logical *, integer *, real *, integer *, real *, integer *, real *
  928. , integer *, real *, integer *, real *, real *, integer *,
  929. integer *, real *, integer *, integer *, integer *);
  930. integer minwrk, maxwrk;
  931. logical wantsn;
  932. real smlnum;
  933. extern /* Subroutine */ void sorgqr_(integer *, integer *, integer *, real
  934. *, integer *, real *, real *, integer *, integer *);
  935. logical lquery, wantsv;
  936. extern /* Subroutine */ void sormqr_(char *, char *, integer *, integer *,
  937. integer *, real *, integer *, real *, real *, integer *, real *,
  938. integer *, integer *);
  939. real eps;
  940. logical ilv;
  941. /* -- LAPACK driver routine (version 3.7.0) -- */
  942. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  943. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  944. /* April 2012 */
  945. /* ===================================================================== */
  946. /* Decode the input arguments */
  947. /* Parameter adjustments */
  948. a_dim1 = *lda;
  949. a_offset = 1 + a_dim1 * 1;
  950. a -= a_offset;
  951. b_dim1 = *ldb;
  952. b_offset = 1 + b_dim1 * 1;
  953. b -= b_offset;
  954. --alphar;
  955. --alphai;
  956. --beta;
  957. vl_dim1 = *ldvl;
  958. vl_offset = 1 + vl_dim1 * 1;
  959. vl -= vl_offset;
  960. vr_dim1 = *ldvr;
  961. vr_offset = 1 + vr_dim1 * 1;
  962. vr -= vr_offset;
  963. --lscale;
  964. --rscale;
  965. --rconde;
  966. --rcondv;
  967. --work;
  968. --iwork;
  969. --bwork;
  970. /* Function Body */
  971. if (lsame_(jobvl, "N")) {
  972. ijobvl = 1;
  973. ilvl = FALSE_;
  974. } else if (lsame_(jobvl, "V")) {
  975. ijobvl = 2;
  976. ilvl = TRUE_;
  977. } else {
  978. ijobvl = -1;
  979. ilvl = FALSE_;
  980. }
  981. if (lsame_(jobvr, "N")) {
  982. ijobvr = 1;
  983. ilvr = FALSE_;
  984. } else if (lsame_(jobvr, "V")) {
  985. ijobvr = 2;
  986. ilvr = TRUE_;
  987. } else {
  988. ijobvr = -1;
  989. ilvr = FALSE_;
  990. }
  991. ilv = ilvl || ilvr;
  992. noscl = lsame_(balanc, "N") || lsame_(balanc, "P");
  993. wantsn = lsame_(sense, "N");
  994. wantse = lsame_(sense, "E");
  995. wantsv = lsame_(sense, "V");
  996. wantsb = lsame_(sense, "B");
  997. /* Test the input arguments */
  998. *info = 0;
  999. lquery = *lwork == -1;
  1000. if (! (noscl || lsame_(balanc, "S") || lsame_(
  1001. balanc, "B"))) {
  1002. *info = -1;
  1003. } else if (ijobvl <= 0) {
  1004. *info = -2;
  1005. } else if (ijobvr <= 0) {
  1006. *info = -3;
  1007. } else if (! (wantsn || wantse || wantsb || wantsv)) {
  1008. *info = -4;
  1009. } else if (*n < 0) {
  1010. *info = -5;
  1011. } else if (*lda < f2cmax(1,*n)) {
  1012. *info = -7;
  1013. } else if (*ldb < f2cmax(1,*n)) {
  1014. *info = -9;
  1015. } else if (*ldvl < 1 || ilvl && *ldvl < *n) {
  1016. *info = -14;
  1017. } else if (*ldvr < 1 || ilvr && *ldvr < *n) {
  1018. *info = -16;
  1019. }
  1020. /* Compute workspace */
  1021. /* (Note: Comments in the code beginning "Workspace:" describe the */
  1022. /* minimal amount of workspace needed at that point in the code, */
  1023. /* as well as the preferred amount for good performance. */
  1024. /* NB refers to the optimal block size for the immediately */
  1025. /* following subroutine, as returned by ILAENV. The workspace is */
  1026. /* computed assuming ILO = 1 and IHI = N, the worst case.) */
  1027. if (*info == 0) {
  1028. if (*n == 0) {
  1029. minwrk = 1;
  1030. maxwrk = 1;
  1031. } else {
  1032. if (noscl && ! ilv) {
  1033. minwrk = *n << 1;
  1034. } else {
  1035. minwrk = *n * 6;
  1036. }
  1037. if (wantse) {
  1038. minwrk = *n * 10;
  1039. } else if (wantsv || wantsb) {
  1040. minwrk = (*n << 1) * (*n + 4) + 16;
  1041. }
  1042. maxwrk = minwrk;
  1043. /* Computing MAX */
  1044. i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "SGEQRF", " ", n, &
  1045. c__1, n, &c__0, (ftnlen)6, (ftnlen)1);
  1046. maxwrk = f2cmax(i__1,i__2);
  1047. /* Computing MAX */
  1048. i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "SORMQR", " ", n, &
  1049. c__1, n, &c__0, (ftnlen)6, (ftnlen)1);
  1050. maxwrk = f2cmax(i__1,i__2);
  1051. if (ilvl) {
  1052. /* Computing MAX */
  1053. i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "SORGQR",
  1054. " ", n, &c__1, n, &c__0, (ftnlen)6, (ftnlen)1);
  1055. maxwrk = f2cmax(i__1,i__2);
  1056. }
  1057. }
  1058. work[1] = (real) maxwrk;
  1059. if (*lwork < minwrk && ! lquery) {
  1060. *info = -26;
  1061. }
  1062. }
  1063. if (*info != 0) {
  1064. i__1 = -(*info);
  1065. xerbla_("SGGEVX", &i__1, (ftnlen)6);
  1066. return;
  1067. } else if (lquery) {
  1068. return;
  1069. }
  1070. /* Quick return if possible */
  1071. if (*n == 0) {
  1072. return;
  1073. }
  1074. /* Get machine constants */
  1075. eps = slamch_("P");
  1076. smlnum = slamch_("S");
  1077. bignum = 1.f / smlnum;
  1078. slabad_(&smlnum, &bignum);
  1079. smlnum = sqrt(smlnum) / eps;
  1080. bignum = 1.f / smlnum;
  1081. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  1082. anrm = slange_("M", n, n, &a[a_offset], lda, &work[1]);
  1083. ilascl = FALSE_;
  1084. if (anrm > 0.f && anrm < smlnum) {
  1085. anrmto = smlnum;
  1086. ilascl = TRUE_;
  1087. } else if (anrm > bignum) {
  1088. anrmto = bignum;
  1089. ilascl = TRUE_;
  1090. }
  1091. if (ilascl) {
  1092. slascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
  1093. ierr);
  1094. }
  1095. /* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
  1096. bnrm = slange_("M", n, n, &b[b_offset], ldb, &work[1]);
  1097. ilbscl = FALSE_;
  1098. if (bnrm > 0.f && bnrm < smlnum) {
  1099. bnrmto = smlnum;
  1100. ilbscl = TRUE_;
  1101. } else if (bnrm > bignum) {
  1102. bnrmto = bignum;
  1103. ilbscl = TRUE_;
  1104. }
  1105. if (ilbscl) {
  1106. slascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
  1107. ierr);
  1108. }
  1109. /* Permute and/or balance the matrix pair (A,B) */
  1110. /* (Workspace: need 6*N if BALANC = 'S' or 'B', 1 otherwise) */
  1111. sggbal_(balanc, n, &a[a_offset], lda, &b[b_offset], ldb, ilo, ihi, &
  1112. lscale[1], &rscale[1], &work[1], &ierr);
  1113. /* Compute ABNRM and BBNRM */
  1114. *abnrm = slange_("1", n, n, &a[a_offset], lda, &work[1]);
  1115. if (ilascl) {
  1116. work[1] = *abnrm;
  1117. slascl_("G", &c__0, &c__0, &anrmto, &anrm, &c__1, &c__1, &work[1], &
  1118. c__1, &ierr);
  1119. *abnrm = work[1];
  1120. }
  1121. *bbnrm = slange_("1", n, n, &b[b_offset], ldb, &work[1]);
  1122. if (ilbscl) {
  1123. work[1] = *bbnrm;
  1124. slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, &c__1, &c__1, &work[1], &
  1125. c__1, &ierr);
  1126. *bbnrm = work[1];
  1127. }
  1128. /* Reduce B to triangular form (QR decomposition of B) */
  1129. /* (Workspace: need N, prefer N*NB ) */
  1130. irows = *ihi + 1 - *ilo;
  1131. if (ilv || ! wantsn) {
  1132. icols = *n + 1 - *ilo;
  1133. } else {
  1134. icols = irows;
  1135. }
  1136. itau = 1;
  1137. iwrk = itau + irows;
  1138. i__1 = *lwork + 1 - iwrk;
  1139. sgeqrf_(&irows, &icols, &b[*ilo + *ilo * b_dim1], ldb, &work[itau], &work[
  1140. iwrk], &i__1, &ierr);
  1141. /* Apply the orthogonal transformation to A */
  1142. /* (Workspace: need N, prefer N*NB) */
  1143. i__1 = *lwork + 1 - iwrk;
  1144. sormqr_("L", "T", &irows, &icols, &irows, &b[*ilo + *ilo * b_dim1], ldb, &
  1145. work[itau], &a[*ilo + *ilo * a_dim1], lda, &work[iwrk], &i__1, &
  1146. ierr);
  1147. /* Initialize VL and/or VR */
  1148. /* (Workspace: need N, prefer N*NB) */
  1149. if (ilvl) {
  1150. slaset_("Full", n, n, &c_b57, &c_b58, &vl[vl_offset], ldvl)
  1151. ;
  1152. if (irows > 1) {
  1153. i__1 = irows - 1;
  1154. i__2 = irows - 1;
  1155. slacpy_("L", &i__1, &i__2, &b[*ilo + 1 + *ilo * b_dim1], ldb, &vl[
  1156. *ilo + 1 + *ilo * vl_dim1], ldvl);
  1157. }
  1158. i__1 = *lwork + 1 - iwrk;
  1159. sorgqr_(&irows, &irows, &irows, &vl[*ilo + *ilo * vl_dim1], ldvl, &
  1160. work[itau], &work[iwrk], &i__1, &ierr);
  1161. }
  1162. if (ilvr) {
  1163. slaset_("Full", n, n, &c_b57, &c_b58, &vr[vr_offset], ldvr)
  1164. ;
  1165. }
  1166. /* Reduce to generalized Hessenberg form */
  1167. /* (Workspace: none needed) */
  1168. if (ilv || ! wantsn) {
  1169. /* Eigenvectors requested -- work on whole matrix. */
  1170. sgghrd_(jobvl, jobvr, n, ilo, ihi, &a[a_offset], lda, &b[b_offset],
  1171. ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &ierr);
  1172. } else {
  1173. sgghrd_("N", "N", &irows, &c__1, &irows, &a[*ilo + *ilo * a_dim1],
  1174. lda, &b[*ilo + *ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[
  1175. vr_offset], ldvr, &ierr);
  1176. }
  1177. /* Perform QZ algorithm (Compute eigenvalues, and optionally, the */
  1178. /* Schur forms and Schur vectors) */
  1179. /* (Workspace: need N) */
  1180. if (ilv || ! wantsn) {
  1181. *(unsigned char *)chtemp = 'S';
  1182. } else {
  1183. *(unsigned char *)chtemp = 'E';
  1184. }
  1185. shgeqz_(chtemp, jobvl, jobvr, n, ilo, ihi, &a[a_offset], lda, &b[b_offset]
  1186. , ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset], ldvl, &
  1187. vr[vr_offset], ldvr, &work[1], lwork, &ierr);
  1188. if (ierr != 0) {
  1189. if (ierr > 0 && ierr <= *n) {
  1190. *info = ierr;
  1191. } else if (ierr > *n && ierr <= *n << 1) {
  1192. *info = ierr - *n;
  1193. } else {
  1194. *info = *n + 1;
  1195. }
  1196. goto L130;
  1197. }
  1198. /* Compute Eigenvectors and estimate condition numbers if desired */
  1199. /* (Workspace: STGEVC: need 6*N */
  1200. /* STGSNA: need 2*N*(N+2)+16 if SENSE = 'V' or 'B', */
  1201. /* need N otherwise ) */
  1202. if (ilv || ! wantsn) {
  1203. if (ilv) {
  1204. if (ilvl) {
  1205. if (ilvr) {
  1206. *(unsigned char *)chtemp = 'B';
  1207. } else {
  1208. *(unsigned char *)chtemp = 'L';
  1209. }
  1210. } else {
  1211. *(unsigned char *)chtemp = 'R';
  1212. }
  1213. stgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset],
  1214. ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &
  1215. work[1], &ierr);
  1216. if (ierr != 0) {
  1217. *info = *n + 2;
  1218. goto L130;
  1219. }
  1220. }
  1221. if (! wantsn) {
  1222. /* compute eigenvectors (STGEVC) and estimate condition */
  1223. /* numbers (STGSNA). Note that the definition of the condition */
  1224. /* number is not invariant under transformation (u,v) to */
  1225. /* (Q*u, Z*v), where (u,v) are eigenvectors of the generalized */
  1226. /* Schur form (S,T), Q and Z are orthogonal matrices. In order */
  1227. /* to avoid using extra 2*N*N workspace, we have to recalculate */
  1228. /* eigenvectors and estimate one condition numbers at a time. */
  1229. pair = FALSE_;
  1230. i__1 = *n;
  1231. for (i__ = 1; i__ <= i__1; ++i__) {
  1232. if (pair) {
  1233. pair = FALSE_;
  1234. goto L20;
  1235. }
  1236. mm = 1;
  1237. if (i__ < *n) {
  1238. if (a[i__ + 1 + i__ * a_dim1] != 0.f) {
  1239. pair = TRUE_;
  1240. mm = 2;
  1241. }
  1242. }
  1243. i__2 = *n;
  1244. for (j = 1; j <= i__2; ++j) {
  1245. bwork[j] = FALSE_;
  1246. /* L10: */
  1247. }
  1248. if (mm == 1) {
  1249. bwork[i__] = TRUE_;
  1250. } else if (mm == 2) {
  1251. bwork[i__] = TRUE_;
  1252. bwork[i__ + 1] = TRUE_;
  1253. }
  1254. iwrk = mm * *n + 1;
  1255. iwrk1 = iwrk + mm * *n;
  1256. /* Compute a pair of left and right eigenvectors. */
  1257. /* (compute workspace: need up to 4*N + 6*N) */
  1258. if (wantse || wantsb) {
  1259. stgevc_("B", "S", &bwork[1], n, &a[a_offset], lda, &b[
  1260. b_offset], ldb, &work[1], n, &work[iwrk], n, &mm,
  1261. &m, &work[iwrk1], &ierr);
  1262. if (ierr != 0) {
  1263. *info = *n + 2;
  1264. goto L130;
  1265. }
  1266. }
  1267. i__2 = *lwork - iwrk1 + 1;
  1268. stgsna_(sense, "S", &bwork[1], n, &a[a_offset], lda, &b[
  1269. b_offset], ldb, &work[1], n, &work[iwrk], n, &rconde[
  1270. i__], &rcondv[i__], &mm, &m, &work[iwrk1], &i__2, &
  1271. iwork[1], &ierr);
  1272. L20:
  1273. ;
  1274. }
  1275. }
  1276. }
  1277. /* Undo balancing on VL and VR and normalization */
  1278. /* (Workspace: none needed) */
  1279. if (ilvl) {
  1280. sggbak_(balanc, "L", n, ilo, ihi, &lscale[1], &rscale[1], n, &vl[
  1281. vl_offset], ldvl, &ierr);
  1282. i__1 = *n;
  1283. for (jc = 1; jc <= i__1; ++jc) {
  1284. if (alphai[jc] < 0.f) {
  1285. goto L70;
  1286. }
  1287. temp = 0.f;
  1288. if (alphai[jc] == 0.f) {
  1289. i__2 = *n;
  1290. for (jr = 1; jr <= i__2; ++jr) {
  1291. /* Computing MAX */
  1292. r__2 = temp, r__3 = (r__1 = vl[jr + jc * vl_dim1], abs(
  1293. r__1));
  1294. temp = f2cmax(r__2,r__3);
  1295. /* L30: */
  1296. }
  1297. } else {
  1298. i__2 = *n;
  1299. for (jr = 1; jr <= i__2; ++jr) {
  1300. /* Computing MAX */
  1301. r__3 = temp, r__4 = (r__1 = vl[jr + jc * vl_dim1], abs(
  1302. r__1)) + (r__2 = vl[jr + (jc + 1) * vl_dim1], abs(
  1303. r__2));
  1304. temp = f2cmax(r__3,r__4);
  1305. /* L40: */
  1306. }
  1307. }
  1308. if (temp < smlnum) {
  1309. goto L70;
  1310. }
  1311. temp = 1.f / temp;
  1312. if (alphai[jc] == 0.f) {
  1313. i__2 = *n;
  1314. for (jr = 1; jr <= i__2; ++jr) {
  1315. vl[jr + jc * vl_dim1] *= temp;
  1316. /* L50: */
  1317. }
  1318. } else {
  1319. i__2 = *n;
  1320. for (jr = 1; jr <= i__2; ++jr) {
  1321. vl[jr + jc * vl_dim1] *= temp;
  1322. vl[jr + (jc + 1) * vl_dim1] *= temp;
  1323. /* L60: */
  1324. }
  1325. }
  1326. L70:
  1327. ;
  1328. }
  1329. }
  1330. if (ilvr) {
  1331. sggbak_(balanc, "R", n, ilo, ihi, &lscale[1], &rscale[1], n, &vr[
  1332. vr_offset], ldvr, &ierr);
  1333. i__1 = *n;
  1334. for (jc = 1; jc <= i__1; ++jc) {
  1335. if (alphai[jc] < 0.f) {
  1336. goto L120;
  1337. }
  1338. temp = 0.f;
  1339. if (alphai[jc] == 0.f) {
  1340. i__2 = *n;
  1341. for (jr = 1; jr <= i__2; ++jr) {
  1342. /* Computing MAX */
  1343. r__2 = temp, r__3 = (r__1 = vr[jr + jc * vr_dim1], abs(
  1344. r__1));
  1345. temp = f2cmax(r__2,r__3);
  1346. /* L80: */
  1347. }
  1348. } else {
  1349. i__2 = *n;
  1350. for (jr = 1; jr <= i__2; ++jr) {
  1351. /* Computing MAX */
  1352. r__3 = temp, r__4 = (r__1 = vr[jr + jc * vr_dim1], abs(
  1353. r__1)) + (r__2 = vr[jr + (jc + 1) * vr_dim1], abs(
  1354. r__2));
  1355. temp = f2cmax(r__3,r__4);
  1356. /* L90: */
  1357. }
  1358. }
  1359. if (temp < smlnum) {
  1360. goto L120;
  1361. }
  1362. temp = 1.f / temp;
  1363. if (alphai[jc] == 0.f) {
  1364. i__2 = *n;
  1365. for (jr = 1; jr <= i__2; ++jr) {
  1366. vr[jr + jc * vr_dim1] *= temp;
  1367. /* L100: */
  1368. }
  1369. } else {
  1370. i__2 = *n;
  1371. for (jr = 1; jr <= i__2; ++jr) {
  1372. vr[jr + jc * vr_dim1] *= temp;
  1373. vr[jr + (jc + 1) * vr_dim1] *= temp;
  1374. /* L110: */
  1375. }
  1376. }
  1377. L120:
  1378. ;
  1379. }
  1380. }
  1381. /* Undo scaling if necessary */
  1382. L130:
  1383. if (ilascl) {
  1384. slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
  1385. ierr);
  1386. slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
  1387. ierr);
  1388. }
  1389. if (ilbscl) {
  1390. slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
  1391. ierr);
  1392. }
  1393. work[1] = (real) maxwrk;
  1394. return;
  1395. /* End of SGGEVX */
  1396. } /* sggevx_ */