You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlasyf_aa.c 31 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static doublecomplex c_b6 = {-1.,0.};
  487. static integer c__1 = 1;
  488. static doublecomplex c_b8 = {1.,0.};
  489. static doublecomplex c_b19 = {0.,0.};
  490. /* > \brief \b ZLASYF_AA */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download ZLASYF_AA + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlasyf_
  497. aa.f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlasyf_
  500. aa.f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlasyf_
  503. aa.f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE ZLASYF_AA( UPLO, J1, M, NB, A, LDA, IPIV, */
  509. /* H, LDH, WORK ) */
  510. /* CHARACTER UPLO */
  511. /* INTEGER J1, M, NB, LDA, LDH */
  512. /* INTEGER IPIV( * ) */
  513. /* COMPLEX*16 A( LDA, * ), H( LDH, * ), WORK( * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > DLATRF_AA factorizes a panel of a complex symmetric matrix A using */
  520. /* > the Aasen's algorithm. The panel consists of a set of NB rows of A */
  521. /* > when UPLO is U, or a set of NB columns when UPLO is L. */
  522. /* > */
  523. /* > In order to factorize the panel, the Aasen's algorithm requires the */
  524. /* > last row, or column, of the previous panel. The first row, or column, */
  525. /* > of A is set to be the first row, or column, of an identity matrix, */
  526. /* > which is used to factorize the first panel. */
  527. /* > */
  528. /* > The resulting J-th row of U, or J-th column of L, is stored in the */
  529. /* > (J-1)-th row, or column, of A (without the unit diagonals), while */
  530. /* > the diagonal and subdiagonal of A are overwritten by those of T. */
  531. /* > */
  532. /* > \endverbatim */
  533. /* Arguments: */
  534. /* ========== */
  535. /* > \param[in] UPLO */
  536. /* > \verbatim */
  537. /* > UPLO is CHARACTER*1 */
  538. /* > = 'U': Upper triangle of A is stored; */
  539. /* > = 'L': Lower triangle of A is stored. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] J1 */
  543. /* > \verbatim */
  544. /* > J1 is INTEGER */
  545. /* > The location of the first row, or column, of the panel */
  546. /* > within the submatrix of A, passed to this routine, e.g., */
  547. /* > when called by ZSYTRF_AA, for the first panel, J1 is 1, */
  548. /* > while for the remaining panels, J1 is 2. */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[in] M */
  552. /* > \verbatim */
  553. /* > M is INTEGER */
  554. /* > The dimension of the submatrix. M >= 0. */
  555. /* > \endverbatim */
  556. /* > */
  557. /* > \param[in] NB */
  558. /* > \verbatim */
  559. /* > NB is INTEGER */
  560. /* > The dimension of the panel to be facotorized. */
  561. /* > \endverbatim */
  562. /* > */
  563. /* > \param[in,out] A */
  564. /* > \verbatim */
  565. /* > A is COMPLEX*16 array, dimension (LDA,M) for */
  566. /* > the first panel, while dimension (LDA,M+1) for the */
  567. /* > remaining panels. */
  568. /* > */
  569. /* > On entry, A contains the last row, or column, of */
  570. /* > the previous panel, and the trailing submatrix of A */
  571. /* > to be factorized, except for the first panel, only */
  572. /* > the panel is passed. */
  573. /* > */
  574. /* > On exit, the leading panel is factorized. */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in] LDA */
  578. /* > \verbatim */
  579. /* > LDA is INTEGER */
  580. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[out] IPIV */
  584. /* > \verbatim */
  585. /* > IPIV is INTEGER array, dimension (M) */
  586. /* > Details of the row and column interchanges, */
  587. /* > the row and column k were interchanged with the row and */
  588. /* > column IPIV(k). */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[in,out] H */
  592. /* > \verbatim */
  593. /* > H is COMPLEX*16 workspace, dimension (LDH,NB). */
  594. /* > */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[in] LDH */
  598. /* > \verbatim */
  599. /* > LDH is INTEGER */
  600. /* > The leading dimension of the workspace H. LDH >= f2cmax(1,M). */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[out] WORK */
  604. /* > \verbatim */
  605. /* > WORK is COMPLEX*16 workspace, dimension (M). */
  606. /* > \endverbatim */
  607. /* > */
  608. /* Authors: */
  609. /* ======== */
  610. /* > \author Univ. of Tennessee */
  611. /* > \author Univ. of California Berkeley */
  612. /* > \author Univ. of Colorado Denver */
  613. /* > \author NAG Ltd. */
  614. /* > \date November 2017 */
  615. /* > \ingroup complex16SYcomputational */
  616. /* ===================================================================== */
  617. /* Subroutine */ void zlasyf_aa_(char *uplo, integer *j1, integer *m, integer
  618. *nb, doublecomplex *a, integer *lda, integer *ipiv, doublecomplex *
  619. h__, integer *ldh, doublecomplex *work)
  620. {
  621. /* System generated locals */
  622. integer a_dim1, a_offset, h_dim1, h_offset, i__1, i__2;
  623. doublecomplex z__1;
  624. /* Local variables */
  625. integer j, k;
  626. doublecomplex alpha;
  627. extern logical lsame_(char *, char *);
  628. extern /* Subroutine */ void zscal_(integer *, doublecomplex *,
  629. doublecomplex *, integer *), zgemv_(char *, integer *, integer *,
  630. doublecomplex *, doublecomplex *, integer *, doublecomplex *,
  631. integer *, doublecomplex *, doublecomplex *, integer *);
  632. integer i1, k1, i2;
  633. extern /* Subroutine */ void zcopy_(integer *, doublecomplex *, integer *,
  634. doublecomplex *, integer *), zswap_(integer *, doublecomplex *,
  635. integer *, doublecomplex *, integer *), zaxpy_(integer *,
  636. doublecomplex *, doublecomplex *, integer *, doublecomplex *,
  637. integer *);
  638. integer mj;
  639. extern integer izamax_(integer *, doublecomplex *, integer *);
  640. extern /* Subroutine */ void zlaset_(char *, integer *, integer *,
  641. doublecomplex *, doublecomplex *, doublecomplex *, integer *);
  642. doublecomplex piv;
  643. /* -- LAPACK computational routine (version 3.8.0) -- */
  644. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  645. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  646. /* November 2017 */
  647. /* ===================================================================== */
  648. /* Parameter adjustments */
  649. a_dim1 = *lda;
  650. a_offset = 1 + a_dim1 * 1;
  651. a -= a_offset;
  652. --ipiv;
  653. h_dim1 = *ldh;
  654. h_offset = 1 + h_dim1 * 1;
  655. h__ -= h_offset;
  656. --work;
  657. /* Function Body */
  658. j = 1;
  659. /* K1 is the first column of the panel to be factorized */
  660. /* i.e., K1 is 2 for the first block column, and 1 for the rest of the blocks */
  661. k1 = 2 - *j1 + 1;
  662. if (lsame_(uplo, "U")) {
  663. /* ..................................................... */
  664. /* Factorize A as U**T*D*U using the upper triangle of A */
  665. /* ..................................................... */
  666. L10:
  667. if (j > f2cmin(*m,*nb)) {
  668. goto L20;
  669. }
  670. /* K is the column to be factorized */
  671. /* when being called from ZSYTRF_AA, */
  672. /* > for the first block column, J1 is 1, hence J1+J-1 is J, */
  673. /* > for the rest of the columns, J1 is 2, and J1+J-1 is J+1, */
  674. k = *j1 + j - 1;
  675. if (j == *m) {
  676. /* Only need to compute T(J, J) */
  677. mj = 1;
  678. } else {
  679. mj = *m - j + 1;
  680. }
  681. /* H(J:M, J) := A(J, J:M) - H(J:M, 1:(J-1)) * L(J1:(J-1), J), */
  682. /* where H(J:M, J) has been initialized to be A(J, J:M) */
  683. if (k > 2) {
  684. /* K is the column to be factorized */
  685. /* > for the first block column, K is J, skipping the first two */
  686. /* columns */
  687. /* > for the rest of the columns, K is J+1, skipping only the */
  688. /* first column */
  689. i__1 = j - k1;
  690. zgemv_("No transpose", &mj, &i__1, &c_b6, &h__[j + k1 * h_dim1],
  691. ldh, &a[j * a_dim1 + 1], &c__1, &c_b8, &h__[j + j *
  692. h_dim1], &c__1);
  693. }
  694. /* Copy H(i:M, i) into WORK */
  695. zcopy_(&mj, &h__[j + j * h_dim1], &c__1, &work[1], &c__1);
  696. if (j > k1) {
  697. /* Compute WORK := WORK - L(J-1, J:M) * T(J-1,J), */
  698. /* where A(J-1, J) stores T(J-1, J) and A(J-2, J:M) stores U(J-1, J:M) */
  699. i__1 = k - 1 + j * a_dim1;
  700. z__1.r = -a[i__1].r, z__1.i = -a[i__1].i;
  701. alpha.r = z__1.r, alpha.i = z__1.i;
  702. zaxpy_(&mj, &alpha, &a[k - 2 + j * a_dim1], lda, &work[1], &c__1);
  703. }
  704. /* Set A(J, J) = T(J, J) */
  705. i__1 = k + j * a_dim1;
  706. a[i__1].r = work[1].r, a[i__1].i = work[1].i;
  707. if (j < *m) {
  708. /* Compute WORK(2:M) = T(J, J) L(J, (J+1):M) */
  709. /* where A(J, J) stores T(J, J) and A(J-1, (J+1):M) stores U(J, (J+1):M) */
  710. if (k > 1) {
  711. i__1 = k + j * a_dim1;
  712. z__1.r = -a[i__1].r, z__1.i = -a[i__1].i;
  713. alpha.r = z__1.r, alpha.i = z__1.i;
  714. i__1 = *m - j;
  715. zaxpy_(&i__1, &alpha, &a[k - 1 + (j + 1) * a_dim1], lda, &
  716. work[2], &c__1);
  717. }
  718. /* Find f2cmax(|WORK(2:M)|) */
  719. i__1 = *m - j;
  720. i2 = izamax_(&i__1, &work[2], &c__1) + 1;
  721. i__1 = i2;
  722. piv.r = work[i__1].r, piv.i = work[i__1].i;
  723. /* Apply symmetric pivot */
  724. if (i2 != 2 && (piv.r != 0. || piv.i != 0.)) {
  725. /* Swap WORK(I1) and WORK(I2) */
  726. i1 = 2;
  727. i__1 = i2;
  728. i__2 = i1;
  729. work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
  730. i__1 = i1;
  731. work[i__1].r = piv.r, work[i__1].i = piv.i;
  732. /* Swap A(I1, I1+1:M) with A(I1+1:M, I2) */
  733. i1 = i1 + j - 1;
  734. i2 = i2 + j - 1;
  735. i__1 = i2 - i1 - 1;
  736. zswap_(&i__1, &a[*j1 + i1 - 1 + (i1 + 1) * a_dim1], lda, &a[*
  737. j1 + i1 + i2 * a_dim1], &c__1);
  738. /* Swap A(I1, I2+1:M) with A(I2, I2+1:M) */
  739. if (i2 < *m) {
  740. i__1 = *m - i2;
  741. zswap_(&i__1, &a[*j1 + i1 - 1 + (i2 + 1) * a_dim1], lda, &
  742. a[*j1 + i2 - 1 + (i2 + 1) * a_dim1], lda);
  743. }
  744. /* Swap A(I1, I1) with A(I2,I2) */
  745. i__1 = i1 + *j1 - 1 + i1 * a_dim1;
  746. piv.r = a[i__1].r, piv.i = a[i__1].i;
  747. i__1 = *j1 + i1 - 1 + i1 * a_dim1;
  748. i__2 = *j1 + i2 - 1 + i2 * a_dim1;
  749. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  750. i__1 = *j1 + i2 - 1 + i2 * a_dim1;
  751. a[i__1].r = piv.r, a[i__1].i = piv.i;
  752. /* Swap H(I1, 1:J1) with H(I2, 1:J1) */
  753. i__1 = i1 - 1;
  754. zswap_(&i__1, &h__[i1 + h_dim1], ldh, &h__[i2 + h_dim1], ldh);
  755. ipiv[i1] = i2;
  756. if (i1 > k1 - 1) {
  757. /* Swap L(1:I1-1, I1) with L(1:I1-1, I2), */
  758. /* skipping the first column */
  759. i__1 = i1 - k1 + 1;
  760. zswap_(&i__1, &a[i1 * a_dim1 + 1], &c__1, &a[i2 * a_dim1
  761. + 1], &c__1);
  762. }
  763. } else {
  764. ipiv[j + 1] = j + 1;
  765. }
  766. /* Set A(J, J+1) = T(J, J+1) */
  767. i__1 = k + (j + 1) * a_dim1;
  768. a[i__1].r = work[2].r, a[i__1].i = work[2].i;
  769. if (j < *nb) {
  770. /* Copy A(J+1:M, J+1) into H(J:M, J), */
  771. i__1 = *m - j;
  772. zcopy_(&i__1, &a[k + 1 + (j + 1) * a_dim1], lda, &h__[j + 1 +
  773. (j + 1) * h_dim1], &c__1);
  774. }
  775. /* Compute L(J+2, J+1) = WORK( 3:M ) / T(J, J+1), */
  776. /* where A(J, J+1) = T(J, J+1) and A(J+2:M, J) = L(J+2:M, J+1) */
  777. if (j < *m - 1) {
  778. i__1 = k + (j + 1) * a_dim1;
  779. if (a[i__1].r != 0. || a[i__1].i != 0.) {
  780. z_div(&z__1, &c_b8, &a[k + (j + 1) * a_dim1]);
  781. alpha.r = z__1.r, alpha.i = z__1.i;
  782. i__1 = *m - j - 1;
  783. zcopy_(&i__1, &work[3], &c__1, &a[k + (j + 2) * a_dim1],
  784. lda);
  785. i__1 = *m - j - 1;
  786. zscal_(&i__1, &alpha, &a[k + (j + 2) * a_dim1], lda);
  787. } else {
  788. i__1 = *m - j - 1;
  789. zlaset_("Full", &c__1, &i__1, &c_b19, &c_b19, &a[k + (j +
  790. 2) * a_dim1], lda);
  791. }
  792. }
  793. }
  794. ++j;
  795. goto L10;
  796. L20:
  797. ;
  798. } else {
  799. /* ..................................................... */
  800. /* Factorize A as L*D*L**T using the lower triangle of A */
  801. /* ..................................................... */
  802. L30:
  803. if (j > f2cmin(*m,*nb)) {
  804. goto L40;
  805. }
  806. /* K is the column to be factorized */
  807. /* when being called from ZSYTRF_AA, */
  808. /* > for the first block column, J1 is 1, hence J1+J-1 is J, */
  809. /* > for the rest of the columns, J1 is 2, and J1+J-1 is J+1, */
  810. k = *j1 + j - 1;
  811. if (j == *m) {
  812. /* Only need to compute T(J, J) */
  813. mj = 1;
  814. } else {
  815. mj = *m - j + 1;
  816. }
  817. /* H(J:M, J) := A(J:M, J) - H(J:M, 1:(J-1)) * L(J, J1:(J-1))^T, */
  818. /* where H(J:M, J) has been initialized to be A(J:M, J) */
  819. if (k > 2) {
  820. /* K is the column to be factorized */
  821. /* > for the first block column, K is J, skipping the first two */
  822. /* columns */
  823. /* > for the rest of the columns, K is J+1, skipping only the */
  824. /* first column */
  825. i__1 = j - k1;
  826. zgemv_("No transpose", &mj, &i__1, &c_b6, &h__[j + k1 * h_dim1],
  827. ldh, &a[j + a_dim1], lda, &c_b8, &h__[j + j * h_dim1], &
  828. c__1);
  829. }
  830. /* Copy H(J:M, J) into WORK */
  831. zcopy_(&mj, &h__[j + j * h_dim1], &c__1, &work[1], &c__1);
  832. if (j > k1) {
  833. /* Compute WORK := WORK - L(J:M, J-1) * T(J-1,J), */
  834. /* where A(J-1, J) = T(J-1, J) and A(J, J-2) = L(J, J-1) */
  835. i__1 = j + (k - 1) * a_dim1;
  836. z__1.r = -a[i__1].r, z__1.i = -a[i__1].i;
  837. alpha.r = z__1.r, alpha.i = z__1.i;
  838. zaxpy_(&mj, &alpha, &a[j + (k - 2) * a_dim1], &c__1, &work[1], &
  839. c__1);
  840. }
  841. /* Set A(J, J) = T(J, J) */
  842. i__1 = j + k * a_dim1;
  843. a[i__1].r = work[1].r, a[i__1].i = work[1].i;
  844. if (j < *m) {
  845. /* Compute WORK(2:M) = T(J, J) L((J+1):M, J) */
  846. /* where A(J, J) = T(J, J) and A((J+1):M, J-1) = L((J+1):M, J) */
  847. if (k > 1) {
  848. i__1 = j + k * a_dim1;
  849. z__1.r = -a[i__1].r, z__1.i = -a[i__1].i;
  850. alpha.r = z__1.r, alpha.i = z__1.i;
  851. i__1 = *m - j;
  852. zaxpy_(&i__1, &alpha, &a[j + 1 + (k - 1) * a_dim1], &c__1, &
  853. work[2], &c__1);
  854. }
  855. /* Find f2cmax(|WORK(2:M)|) */
  856. i__1 = *m - j;
  857. i2 = izamax_(&i__1, &work[2], &c__1) + 1;
  858. i__1 = i2;
  859. piv.r = work[i__1].r, piv.i = work[i__1].i;
  860. /* Apply symmetric pivot */
  861. if (i2 != 2 && (piv.r != 0. || piv.i != 0.)) {
  862. /* Swap WORK(I1) and WORK(I2) */
  863. i1 = 2;
  864. i__1 = i2;
  865. i__2 = i1;
  866. work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
  867. i__1 = i1;
  868. work[i__1].r = piv.r, work[i__1].i = piv.i;
  869. /* Swap A(I1+1:M, I1) with A(I2, I1+1:M) */
  870. i1 = i1 + j - 1;
  871. i2 = i2 + j - 1;
  872. i__1 = i2 - i1 - 1;
  873. zswap_(&i__1, &a[i1 + 1 + (*j1 + i1 - 1) * a_dim1], &c__1, &a[
  874. i2 + (*j1 + i1) * a_dim1], lda);
  875. /* Swap A(I2+1:M, I1) with A(I2+1:M, I2) */
  876. if (i2 < *m) {
  877. i__1 = *m - i2;
  878. zswap_(&i__1, &a[i2 + 1 + (*j1 + i1 - 1) * a_dim1], &c__1,
  879. &a[i2 + 1 + (*j1 + i2 - 1) * a_dim1], &c__1);
  880. }
  881. /* Swap A(I1, I1) with A(I2, I2) */
  882. i__1 = i1 + (*j1 + i1 - 1) * a_dim1;
  883. piv.r = a[i__1].r, piv.i = a[i__1].i;
  884. i__1 = i1 + (*j1 + i1 - 1) * a_dim1;
  885. i__2 = i2 + (*j1 + i2 - 1) * a_dim1;
  886. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  887. i__1 = i2 + (*j1 + i2 - 1) * a_dim1;
  888. a[i__1].r = piv.r, a[i__1].i = piv.i;
  889. /* Swap H(I1, I1:J1) with H(I2, I2:J1) */
  890. i__1 = i1 - 1;
  891. zswap_(&i__1, &h__[i1 + h_dim1], ldh, &h__[i2 + h_dim1], ldh);
  892. ipiv[i1] = i2;
  893. if (i1 > k1 - 1) {
  894. /* Swap L(1:I1-1, I1) with L(1:I1-1, I2), */
  895. /* skipping the first column */
  896. i__1 = i1 - k1 + 1;
  897. zswap_(&i__1, &a[i1 + a_dim1], lda, &a[i2 + a_dim1], lda);
  898. }
  899. } else {
  900. ipiv[j + 1] = j + 1;
  901. }
  902. /* Set A(J+1, J) = T(J+1, J) */
  903. i__1 = j + 1 + k * a_dim1;
  904. a[i__1].r = work[2].r, a[i__1].i = work[2].i;
  905. if (j < *nb) {
  906. /* Copy A(J+1:M, J+1) into H(J+1:M, J), */
  907. i__1 = *m - j;
  908. zcopy_(&i__1, &a[j + 1 + (k + 1) * a_dim1], &c__1, &h__[j + 1
  909. + (j + 1) * h_dim1], &c__1);
  910. }
  911. /* Compute L(J+2, J+1) = WORK( 3:M ) / T(J, J+1), */
  912. /* where A(J, J+1) = T(J, J+1) and A(J+2:M, J) = L(J+2:M, J+1) */
  913. if (j < *m - 1) {
  914. i__1 = j + 1 + k * a_dim1;
  915. if (a[i__1].r != 0. || a[i__1].i != 0.) {
  916. z_div(&z__1, &c_b8, &a[j + 1 + k * a_dim1]);
  917. alpha.r = z__1.r, alpha.i = z__1.i;
  918. i__1 = *m - j - 1;
  919. zcopy_(&i__1, &work[3], &c__1, &a[j + 2 + k * a_dim1], &
  920. c__1);
  921. i__1 = *m - j - 1;
  922. zscal_(&i__1, &alpha, &a[j + 2 + k * a_dim1], &c__1);
  923. } else {
  924. i__1 = *m - j - 1;
  925. zlaset_("Full", &i__1, &c__1, &c_b19, &c_b19, &a[j + 2 +
  926. k * a_dim1], lda);
  927. }
  928. }
  929. }
  930. ++j;
  931. goto L30;
  932. L40:
  933. ;
  934. }
  935. return;
  936. /* End of ZLASYF_AA */
  937. } /* zlasyf_aa__ */